


CONVERSION FACTORS U.S. Customary Units to SI Units

Quantity Converted from U.S. Customary To SI Equivalent

(Acceleration)

1 foot/second2 (ft/s2) meter/second2 (m/s2) 0.3048 m/s2

1 inch/second2 (in./s2) meter/second2 (m/s2) 0.0254 m/s2

(Area)

1 foot2 (ft2) meter2 (m2) 0.0929 m2

1 inch2 (in.2) meter2 (m2) 645.2 mm2

(Density, mass)

1 pound mass/inch3 (lbm/in.3) kilogram/meter3 (kg/m3) 27.68 Mg/m3

1 pound mass/foot3 (lbm/ft3) kilogram/meter3 (kg/m3) 16.02 kg/m3

(Energy, Work)

1 British thermal unit (BTU) Joule (J) 1055 J
1 foot-pound force (ft-lb) Joule (J) 1.356 J
1 kilowatt-hour Joule (J) 3:60� 106 J

(Force)

1 kip (1000 lb) Newton (N) 4.448 kN
1 pound force (lb) Newton (N) 4.448 N

(Length)

1 foot (ft) meter (m) 0.3048 m
1 inch (in.) meter (m) 25.4 mm
1 mile (mi), (U.S. statute) meter (m) 1.609 km
1 mile (mi), (international nautical) meter (m) 1.852 km

(Mass)

1 pound mass (lbm) kilogram (kg) 0.4536 kg
1 slug (lb-sec2/ft) kilogram (kg) 14.59 kg
1 metric ton (2000 lbm) kilogram (kg) 907.2 kg

(Moment of force)

1 pound-foot (lb � ft) Newton-meter (N �m) 1.356 N �m
1 pound-inch (lb � in.) Newton-meter (N �m) 0.1130 N �m

(Moment of inertia of an area)

1 inch4 meter4 (m4) 0:4162� 10�6 m4

(Moment of inertia of a mass)

1 pound-foot-second2(lb � ft � s2) kilogram-meter2 (kg �m2) 1.356 kg �m2

(Momentum, linear)

1 pound-second (lb �s) kilogram-meter/second (kg �m/s) 4.448 N �s

(Momentum, angular)

pound-foot-second (lb � ft �s) Newton-meter-second (N �m �s) 1.356 N �m �s
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PROPERTIES OF SOLIDS Notes: � ¼ mass density, m ¼ mass, I ¼ mass moment of inertia.
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CONVERSION FACTORS U.S. Customary Units to SI Units (Continued )

Quantity Converted from U.S. Customary To SI Equivalent

(Power)

1 foot-pound/second (ft � lb/s) Watt (W) 1.356 W
1 horsepower (550 ft � lb/s) Watt (W) 745.7 W

(Pressure, stress)

1 atmosphere (std)(14.7.lb/in.2Þ Newton/meter2 (N/m2 or Pa) 101.3 kPa
1 pound/foot2 (lb/ft2) Newton/meter2 (N/m2 or Pa) 47.88 Pa
1 pound/inch2 (lb/in.2 or psi) Newton/meter2 (N/m2 or Pa) 6.895 kPa
1 kip/inch2(ksi) Newton/meter2 (N/m2 or Pa) 6.895 MPa

(Spring constant)

1 pound/inch (lb/in.) Newton/meter (N/m) 175.1 N/m

(Temperature)

T(�F) ¼ 1.8T(�C) þ 32

(Velocity)

1 foot/second (ft/s) meter/second (m/s) 0.3048 m/s
1 knot (nautical mi/h) meter/second (m/s) 0.5144 m/s
1 mile/hour (mi/h) meter/second (m/s) 0.4470 m/s
1 mile/hour (mi/h) kilometer/hour (km/h) 1.609 km/h

(Volume)

1 foot3 (ft3) meter3 (m3) 0.02832 m3

1 inch3 (in.3) meter3 (m3) 16:39� 10�6 m3
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xi

P R E FA C E  T O  T H E  S I  E D I T I O N

This edition of A First Course in the Finite Element Method, Enhanced Sixth Edition has 
been adapted to incorporate the International System of Units (Le Système International 
d’Unités or SI) throughout the book.

Le Système International d’Unités
The United States Customary System (USCS) of units uses FPS (foot−pound−second) units 
(also called English or Imperial units). SI units are primarily the units of the MKS (meter−
kilogram−second) system. However, CGS (centimeter−gram−second) units are often accepted 
as SI units, especially in textbooks.

Using SI Units in this Book
In this book, we have used both MKS and CGS units. USCS (U.S. Customary Units) or 
FPS (foot-pound-second) units used in the US Edition of the book have been converted to SI 
units throughout the text and problems. However, in case of data sourced from handbooks, 
government standards, and product manuals, it is not only extremely difficult to convert all 
values to SI, it also encroaches upon the intellectual property of the source. Some data in 
figures, tables, and references, therefore, remains in FPS units. For readers unfamiliar with 
the relationship between the USCS and the SI systems, a conversion table has been provided 
inside the front cover.

To solve problems that require the use of sourced data, the sourced values can be con-
verted from FPS units to SI units just before they are to be used in a calculation. To obtain 
standardized quantities and manufacturers’ data in SI units, readers may contact the appropriate 
government agencies or authorities in their regions.

Instructor Resources
The Instructors’ Solution Manual in SI units is available through your Sales Representative 
or online through the book website at http://login.cengage.com. A digital version of the ISM, 
Lecture Note PowerPoint slides for the SI text, as well as other resources are available for 
instructors registering on the book website.

Feedback from users of this SI Edition will be greatly appreciated and will help us improve 
subsequent editions.
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xiixii

P R E FA C E

Features and Approach
The purpose of this enhanced edition is to provide an introductory approach to the finite 
element method that can be understood by both undergraduate and graduate students without 
the usual prerequisites (such as structural analysis and upper level calculus) required by many 
available texts in this area. The book is written primarily as a basic learning tool for the under-
graduate student in civil and mechanical engineering whose main interest is in stress analysis 
and heat transfer, although material on fluid flow in porous media and through hydraulic 
networks and electrical networks and electrostatics is also included. The concepts are presented 
in sufficiently simple form with numerous example problems logically placed throughout the 
book, so that the book serves as a valuable learning aid for students with other backgrounds, as 
well as for practicing engineers. The text is geared toward those who want to apply the finite 
element method to solve practical physical problems.

General principles are presented for each topic, followed by traditional applications of 
these principles, including longhand solutions, which are in turn followed by computer appli-
cations where relevant. The approach is taken to illustrate concepts used for computer analysis 
of large-scale problems.

The book proceeds from basic to advanced topics and can be suitably used in a two-
course sequence. Topics include basic treatments of (1) simple springs and bars, leading to 
two- and three-dimensional truss analysis; (2) beam bending, leading to plane frame, grid, and 
space frame analysis; (3) elementary plane stress/strain elements, leading to more advanced 
plane stress/strain elements and applications to more complex plane stress/strain analysis; 
(4) axisymmetric stress analysis; (5) isoparametric formulation of the finite element method; 
(6) three-dimensional stress analysis; (7) plate bending analysis; (8) heat transfer and fluid 
mass transport; (9) basic fluid flow through porous media and around solid bodies, hydraulic 
networks, electric networks, and electrostatics analysis; (10) thermal stress analysis; and  
(11) time-dependent stress and heat transfer.

Additional features include how to handle inclined or skewed boundary conditions, beam 
element with nodal hinge, the concept of substructure, the patch test, and practical consider-
ations in modeling and interpreting results.

The direct approach, the principle of minimum potential energy, and Galerkin’s residual 
method are introduced at various stages, as required, to develop the equations needed for 
analysis.

Appendices provide material on the following topics: (A) basic matrix algebra used 
throughout the text; (B) solution methods for simultaneous equations; (C) basic theory of elas-
ticity; (D) work-equivalent nodal forces; (E) the principle of virtual work; and (F) properties 
of structural steel shapes.
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xiii

More than 100 solved examples appear throughout the text. Most of these examples are 
solved “longhand” to illustrate the concepts. More than 570 end-of-chapter problems are pro-
vided to reinforce concepts. The answers to many problems are included in the back of the 
book to aid those wanting to verify their work. Those end-of-chapter problems to be solved 
using a computer program are marked with a computer symbol.

Additional Features
Additional features of this edition include updated notation used by most engineering instruc-
tors, chapter objectives at the start of each chapter to help students identify what content is 
most important to focus on and retain summary equations for handy use at the end of each 
chapter, additional information on modeling, and more comparisons of finite element solutions 
to analytical solutions.

New Features
Over 140 new problems for solution have been included, and additional design-type prob-
lems have been added to chapters 3, 5, 7, 11, and 12. Additional real-world applications from 
industry have been added to enhance student understanding and reinforce concepts. New space 
frames, solid-model-type examples, and problems for solution have been added. New examples 
from other fields now demonstrate how students can use the Finite Element Method to solve 
problems in a variety of engineering and mathematical physics areas. As in the 5th edition, 
this edition deliberately leaves out consideration of special purpose computer programs and 
suggests that instructors choose a program they are familiar with to integrate into their finite 
element course.

	Resources for Instructors
To access instructor resources, including a secure, downloadable Instructor’s Solution 
Manual and Lecture Note PowerPoint Slides, please visit our Instructor Resource Center at 
http://login.cengage.com.

Preface
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Digital Resources

New Digital Solution for Your Engineering Classroom
WebAssign is a powerful digital solution designed by educators to enrich the engineering  
teaching and learning experience. With a robust computational engine at its core, WebAssign 
provides extensive content, instant assessment, and superior support. WebAssign’s powerful 
question editor allows engineering instructors to create their own questions or modify exist-
ing questions. Each question can use any combination of text, mathematical equations and 
formulas, sound, pictures, video, and interactive HTML elements. Numbers, words, phrases, 
graphics, and sound or video files can be randomized so that each student receives a different 
version of the same question. In addition to common question types such as multiple choice, 
fill-in-the-blank, essay, and numerical, you can also incorporate robust answer entry palettes 
(mathPad, chemPad, calcPad, physPad, Graphing Tool) to input and grade symbolic expres-
sions, equations, matrices, and chemical structures using powerful computer algebra systems.

WebAssign Offers Engineering Instructors the Following

•	 The ability to create and edit algorithmic and numerical exercises.
•	 The opportunity to generate randomized iterations of algorithmic and numerical 

exercises. When instructors assign numerical WebAssign homework exercises 
(engineering math exercises), the WebAssign program offers them the ability 
to generate and assign their students differing versions of the same engineering 
math exercise. The computational engine extends beyond and provides the 
luxury of solving for correct solutions/answers.

•	 The ability to create and customize numerical questions, allowing students to 
enter units, use a specific number of significant digits, use a specific number of 
decimal places, respond with a computed answer, or answer within a different 
tolerance value than the default.

Visit www.webassign.com/instructors/features/ to learn more. To create an account, 
instructors can go directly to the signup page at www.webassign.net/signup.html.

WebAssign Features for Students

Review Concepts at Point of Use
Within WebAssign, a “Read It” button at the bottom of each question links students 
to corresponding sections of the textbook, enabling access to the MindTap Reader 
at the precise moment of learning. A “Watch It” button allows a short video to play. 
These videos help students understand and review the problem they need to complete, 
enabling support at the precise moment of learning.

Digital Resources
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My Class Insights
WebAssign’s built-in study feature shows performance across course topics so that students 
can quickly identify which concepts they have mastered and which areas they may need to 
spend more time on.

Ask Your Teacher
This powerful feature enables students to contact their instructor with questions about a spe-
cific assignment or problem they are working on.

MindTap Reader
Available via WebAssign and our digital subscription service, Cengage Unlimited, 
MindTap Reader is Cengage’s next-generation eBook for engineering students.

The MindTap Reader provides more than just text learning for the student. It offers 
a variety of tools to help our future engineers learn chapter concepts in a way that 
resonates with their workflow and learning styles.

Personalize their experience
Within the MindTap Reader, students can highlight key concepts, add notes, and book-
mark pages. These are collected in My Notes, ensuring they will have their own study 
guide when it comes time to study for exams.

Digital Resources
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Flexibility at their fingertips
With access to the book’s internal glossary, students can personalize their study expe-
rience by creating and collating their own custom flashcards. The ReadSpeaker feature 
reads text aloud to students, so they can learn on the go—wherever they are.

The Cengage Mobile App
Available on iOS and Android smartphones, the Cengage Mobile App provides conve-
nience. Students can access their entire textbook anyplace and anytime. They can take notes, 
highlight important passages, and have their text read aloud whether they are online or off.

To learn more and download the mobile app, visit www.cengage.com/mobile-app/.

All-You-Can-Learn Access with Cengage Unlimited
Cengage Unlimited is the cost-saving student plan that includes access to our entire 
library of eTextbooks, online platforms and more—in one place, for one price. For just 
$119.99 for four months, a student gets online and offline access to Cengage course 
materials across disciplines, plus hundreds of student success and career readiness 
skill-building activities. To learn more, visit www.cengage.com/unlimited.

Digital Resources

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xvii

Suggested Topics
Following is an outline of suggested topics for a first course (approximately 44 lectures,  
52 minutes each) in which this textbook is used.

Topic Number of Lectures
Appendix A 1

Appendix B 1

Chapter 1 2

Chapter 2 3

Chapter 3, Sections 3.1–3.11, 3.14 and 3.15 5

Exam 1 1

Chapter 4, Sections 4.1–4.6 4

Chapter 5, Sections 5.1–5.3, 5.5 4

Chapter 6 4

Chapter 7 3

Exam 2 1

Chapter 9 2

Chapter 10 4

Chapter 11 3

Chapter 13, Sections 13.1–13.7 5

Chapter 15 3

Exam 3 1
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N O TAT I O N

English Symbols
ai generalized coordinates (coefficients used to express displacement in general 

form)
A cross-sectional area
[B] matrix relating strains to nodal displacements or relating temperature 

gradient to nodal temperatures
c specific heat of a material
C9[ ] matrix relating stresses to nodal displacements
C direction cosine in two dimensions
Cx, Cy, Cz direction cosines in three dimensions
{d} element and structure nodal displacement matrix, both in global coordinates
d9{ } local-coordinate element nodal displacement matrix

D bending rigidity of a plate
[D] matrix relating stresses to strains
D9[ ] operator matrix given by Eq. (10.2.16)

e exponential function
E modulus of elasticity
{f} global-coordinate nodal force matrix
f 9{ } local-coordinate element nodal force matrix
fb{ } body force matrix
fh{ } heat transfer force matrix
fq{ } heat flux force matrix
fQ{ } heat source force matrix
fs{ } surface force matrix

{F} global-coordinate structure force matrix
Fc{ } condensed force matrix
Fi{ } global nodal forces
F{ }0 equivalent force matrix

{g} temperature gradient matrix or hydraulic gradient matrix
G shear modulus
h heat-transfer (or convection) coefficient
i, j, m nodes of a triangular element
I principal moment of inertia
[J ] Jacobian matrix
k spring stiffness
[k] global-coordinate element stiffness or conduction matrix
kc[ ] condensed stiffness matrix, and conduction part of the stiffness matrix in 

heat-transfer problems
k9[ ] local-coordinate element stiffness matrix
kn[ ] convective part of the stiffness matrix in heat-transfer problems

[K] global-coordinate structure stiffness matrix
Kxx, Kyy thermal conductivities (or permeabilities, for fluid mechanics) in the x and y 

directions, respectively
L length of a bar or beam element
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xix

m maximum difference in node numbers in an element
m(x) general moment expression
mx, my, mxy moments in a plate
m9[ ], [m] local element mass matrix
mi9[ ] local nodal moments

[M] global mass matrix
[M*] matrix used to relate displacements to generalized coordinates for a 

linear-strain triangle formulation
M9[ ] matrix used to relate strains to generalized coordinates for a linear-strain 

triangle formulation
nb bandwidth of a structure
nd number of degrees of freedom per node
[N] shape (interpolation or basis) function matrix
Ni shape functions
p surface pressure (or nodal heads in fluid mechanics)
pr , pz radial and axial (longitudinal) pressures, respectively
P concentrated load
P9[ ] concentrated local force matrix

q heat flow (flux) per unit area or distributed loading on a plate
q rate of heat flow
q* heat flow per unit area on a boundary surface
Q heat source generated per unit volume or internal fluid source
Q* line or point heat source
Qx, Qy transverse shear line loads on a plate
r, u, z radial, circumferential, and axial coordinates, respectively
R residual in Galerkin’s integral
Rb body force in the radial direction
Rix, Riy nodal reactions in x and y directions, respectively
s, t, z9 natural coordinates attached to isoparametric element
S surface area
t thickness of a plane element or a plate element
ti, t j, tm nodal temperatures of a triangular element
T temperature function
T` free-stream temperature
[T] displacement, force, and stiffness transformation matrix
Ti[ ] surface traction matrix in the i direction
u, v, w displacement functions in the x, y, and z directions, respectively
ui, vi, wi x, y, and z displacements at node i, respectively
U strain energy
ΔU change in stored energy
v velocity of fluid flow
V shear force in a beam
w distributed loading on a beam or along an edge of a plane element
W work
xi, yi, zi nodal coordinates in the x, y, and z directions, respectively

x9, y9, z9 local element coordinate axes
x, y, z structure global or reference coordinate axes
[X ] body force matrix
Xb, Yb body forces in the x and y directions, respectively
Zb body force in longitudinal direction (axisymmetric case)  

or in the z direction (three-dimensional case)

Notation
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xx Notation

Greek Symbols
a coefficient of thermal expansion

ia , ib , ig , id used to express the shape functions defined by Eq. (6.2.10) and 
Eqs. (11.2.5) through (11.2.8)

d spring or bar deformation
e normal strain

T«{ } thermal strain matrix
kx , ky , kxy curvatures in plate bending
n Poisson’s ratio

if nodal angle of rotation or slope in a beam element
hp functional for heat-transfer problem
pp total potential energy

r mass density of a material
wr weight density of a material

v angular velocity and natural circular frequency
Ω potential energy of forces
f fluid head or potential, or rotation or slope in a beam
s normal stress

Ts{ } thermal stress matrix
t shear stress and period of vibration
u angle between the x axis and the local x9 axis for two-dimensional 

problems
pu principal angle
xu , yu , zu angles between the global x, y, and z axes and the local x9 axis, 

respectively, or rotations about the x and y axes in a plate
[c] general displacement function matrix

Other Symbols
d

dx

( )
derivative of a variable with respect to x

dt time differential
⋅( ) the dot over a variable denotes that the variable is being differentiated 

with respect to time
[ ] denotes a rectangular or a square matrix
{ } denotes a column matrix
(_) the underline of a variable denotes a matrix
(9 ) the prime next to a variable denotes that the variable is being described 

in a local coordinate system
2[ ] 1 denotes the inverse of a matrix
T[ ] denotes the transpose of a matrix

x
( )�

�
partial derivative with respect to x

x

( )

{ }

�

�
partial derivative with respect to each variable in {d}
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Introduction

CHAPTER OBJECTIVES

At the conclusion of this chapter, you will be able to:

■	 Present an introduction to the finite element method.

■	 Provide a brief history of the finite element method.

■	 Introduce matrix notation.

■	 Describe the role of the computer in the development of the finite element method.

■	 Present the general steps used in the finite element method.

■	 Illustrate the various types of elements used in the finite element method.

■	 Show typical applications of the finite element method.

■	 Summarize some of the advantages of the finite element method.

Prologue
The finite element method is a numerical method for solving problems of engineering and 
mathematical physics. Typical problem areas of interest in engineering and mathematical 
physics that are solvable by use of the finite element method include structural analysis, heat 
transfer, fluid flow, mass transport, and electromagnetic potential.

For physical systems involving complicated geometries, loadings, and material proper-
ties, it is generally not possible to obtain analytical mathematical solutions to simulate the 
response of the physical system. Analytical solutions are those given by a mathematical 
expression that yields the values of the desired unknown quantities at any location in a body 
(here total structure or physical system of interest) and are thus valid for an infinite number of 
locations in the body. These analytical solutions generally require the solution of ordinary or 
partial differential equations, typically created by engineers, physicists, and mathematicians 
to eliminate the need for the creation and testing of numerous prototype designs, which may 
be quite costly. Because of the complicated geometries, loadings, and material properties, the 
solution to these differential equations is usually not obtainable. Hence, we need to rely on 
numerical methods, such as the finite element method, that can approximate the solution to 
these equations.

The finite element formulation of the problem results in a system of simultaneous algebraic 
equations for solution, rather than requiring the solution of differential equations. These numerical 

C H A P T E R 

1
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1  |  Introduction2

methods yield approximate values of the unknowns at discrete numbers of points in the contin-
uum. Hence, this process of modeling a body by dividing it into an equivalent system of smaller 
bodies of units (finite elements) interconnected at points common to two or more elements (nodal 
points or nodes) and/or boundary lines and/or surfaces is called discretization. Figure 1–1 shows 
a cross section of a concrete dam and a bicycle wrench, respectively, that illustrate this process 
of discretization, where the dam has been divided into 490 plane triangular elements and the 
wrench has been divided into 254 plane quadrilateral elements. In both models the elements are 
connected at nodes and along inter element boundary lines. In the finite element method, instead 
of solving the problem for the entire body in one operation, we formulate the equations for each 
finite element and then combine them to obtain the solution for the whole body.

Briefly, the solution for structural problems typically refers to determining the displace-
ments at each node and the stresses within each element making up the structure that is sub-
jected to applied loads. In nonstructural problems, the nodal unknowns may, for instance, be 
temperatures or fluid pressures due to thermal or fluid fluxes.

This chapter first presents a brief history of the development of the finite element method. 
You will see from this historical account that the method has become a practical one for 
solving engineering problems only in the past 60 years (paralleling the developments asso-
ciated with the modern high-speed electronic digital computer). This historical account is 
followed by an introduction to matrix notation; then we describe the need for matrix methods 
(as made practical by the development of the modern digital computer) in formulating the 
equations for solution. This section discusses both the role of the digital computer in solving 
the large systems of simultaneous algebraic equations associated with complex problems and 
the development of numerous computer programs based on the finite element method. Next, a 
general description of the steps involved in obtaining a solution to a problem is provided. This 
description includes discussion of the types of elements available for a finite element method 
solution. Various representative applications are then presented to illustrate the capacity of the 
method to solve problems, such as those involving complicated geometries, several different 
materials, and irregular loadings. Chapter 1 also lists some of the advantages of the finite 
element method in solving problems of engineering and mathematical physics. Finally, we 
present numerous features of computer programs based on the finite element method.

 Figure 1–1  Two-dimensional models of (a) discretized dam and (b) discretized bicycle wrench 
(Applied loads are not shown.) All elements and nodes lie in a plane.

Typical �xed node

Fixed nodes along bottom of dam(a) (b)
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1.1  Brief History 3

		 1.1	 Brief History
This section presents a brief history of the finite element method as applied to both structural 
and nonstructural areas of engineering and to mathematical physics. References cited here are 
intended to augment this short introduction to the historical background.

The modern development of the finite element method began in the 1940s in the field of 
structural engineering with the work by Hrennikoff [1] in 1941 and McHenry [2] in 1943, 
who used a lattice of line (one-dimensional) elements (bars and beams) for the solution of 
stresses in continuous solids. In a paper published in 1943 but not widely recognized for many 
years, Courant [3] proposed setting up the solution of stresses in a variational form. Then he 
introduced piecewise interpolation (or shape) functions over triangular subregions making up 
the whole region as a method to obtain approximate numerical solutions. In 1947 Levy [4] 
developed the flexibility or force method, and in 1953 his work [5] suggested that another 
method (the stiffness or displacement method) could be a promising alternative for use in 
analyzing statically redundant aircraft structures. However, his equations were cumbersome 
to solve by hand, and thus the method became popular only with the advent of the high-speed 
digital computer.

In 1954 Argyris and Kelsey [6, 7] developed matrix structural analysis methods using 
energy principles. This development illustrated the important role that energy principles 
would play in the finite element method.

The first treatment of two-dimensional elements was by Turner et al. [8] in 1956. 
They derived stiffness matrices for truss elements, beam elements, and two-dimensional 
triangular and rectangular elements in plane stress and outlined the procedure commonly 
known as the direct stiffness method for obtaining the total structure stiffness matrix. 
Along with the development of the high-speed digital computer in the early 1950s, the 
work of Turner et al. [8] prompted further development of finite element stiffness equa-
tions expressed in matrix notation. The phrase finite element was introduced by Clough 
[9] in 1960 when both triangular and rectangular elements were used for plane stress 
analysis.

A flat, rectangular-plate bending-element stiffness matrix was developed by Melosh [10] 
in 1961. This was followed by development of the curved-shell bending-element stiffness 
matrix for axisymmetric shells and pressure vessels by Grafton and Strome [11] in 1963.

Extension of the finite element method to three-dimensional problems with the develop-
ment of a tetrahedral stiffness matrix was done by Martin [12] in 1961, by Gallagher et al. [13] 
in 1962, and by Melosh [14] in 1963. Additional three-dimensional elements were studied by 
Argyris [15] in 1964. The special case of axisymmetric solids was considered by Clough and 
Rashid [16] and Wilson [17] in 1965.

Most of the finite element work up to the early 1960s dealt with small strains and small 
displacements, elastic material behavior, and static loadings. However, large deflection and 
thermal analysis were considered by Turner et al. [18] in 1960 and material nonlinearities by 
Gallagher et al. [13] in 1962, whereas buckling problems were initially treated by Gallagher 
and Padlog [19] in 1963. Zienkiewicz et al. [20] extended the method to visco elasticity prob-
lems in 1968.

In 1965 Archer [21] considered dynamic analysis in the development of the consistent-mass 
matrix, which is applicable to analysis of distributed-mass systems such as bars and beams in 
structural analysis.
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With Melosh’s [14] realization in 1963 that the finite element method could be set up 
in terms of a variational formulation, it began to be used to solve nonstructural applications. 
Field problems, such as determination of the torsion of a shaft, fluid flow, and heat conduction, 
were solved by Zienkiewicz and Cheung [22] in 1965, Martin [23] in 1968, and Wilson and 
Nickel [24] in 1966.

Further extension of the method was made possible by the adaptation of weighted resid-
ual methods, first by Szabo and Lee [25] in 1969 to derive the previously known elasticity 
equations used in structural analysis and then by Zienkiewicz and Parekh [26] in 1970 for 
transient field problems. It was then recognized that when direct formulations and variational 
formulations are difficult or not possible to use, the method of weighted residuals may at 
times be appropriate. For example, in 1977 Lyness et al. [27] applied the method of weighted 
residuals to the determination of magnetic field.

In 1976, Belytschko [28, 29] considered problems associated with large-displacement 
nonlinear dynamic behavior and improved numerical techniques for solving the resulting sys-
tems of equations. For more on these topics, consult the texts by Belytschko, Liu, Moran [58], 
and Crisfield [61, 62].

A relatively new field of application of the finite element method is that of bioengineering 
[30, 31]. This field is still troubled by such difficulties as nonlinear materials, geometric non-
linearities, and other complexities still being discovered.

From the early 1950s to the present, enormous advances have been made in the appli-
cation of the finite element method to solve complicated engineering problems. Engineers, 
applied mathematicians, and other scientists will undoubtedly continue to develop new appli-
cations. For an extensive bibliography on the finite element method, consult the work of Kard-
estuncer [32], Clough [33], or Noor [57].

	 1.2	 Introduction to Matrix Notation
Matrix methods are a necessary tool used in the finite element method for purposes of simpli-
fying the formulation of the element stiffness equations, for purposes of longhand solutions of 
various problems, and, most important, for use in programming the methods for high-speed 
electronic digital computers. Hence matrix notation represents a simple and easy-to-use nota-
tion for writing and solving sets of simultaneous algebraic equations.

Appendix A discusses the significant matrix concepts used throughout the text. We will 
present here only a brief summary of the notation used in this text.

A matrix is a rectangular array of quantities arranged in rows and columns that is 
often used as an aid in expressing and solving a system of algebraic equations. As exam-
ples of matrices that will be described in subsequent chapters, the force components  
( , , , , , , . . . , , , )1 1 1 2 2 2F F F F F F F F Fx y z x y z nx ny nz  acting at the various nodes or points (1, 2, . . . , n) on 
a structure and the corresponding set of nodal displacements u v w u v w u v wn n n( , , , , , , . . ., , , )1 1 1 2 2 2  
can both be expressed as matrices:
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	 (1.2.1)

The subscripts to the right of F identify the node and the direction of force, respectively. For 
instance, F x1  denotes the force at node 1 applied in the x direction. The x, y, and z displace-
ments at a node are denoted by u, v, and w, respectively. The subscript next to u, v, and w 
denotes the node. For instance, u ,1  ,1v  and 1w  denote the displacement components in the 
x, y, and z directions, respectively, at node 1. The matrices in Eqs. (1.2.1) are called column 
matrices and have a size of 3 1n . The brace notation {} will be used throughout the text to 
denote a column matrix. The whole set of force or displacement values in the column matrix 
is simply represented by {F} or {d}.

The more general case of a known rectangular matrix will be indicated by use of the 
bracket notation [ ]. For instance, the element and global structure stiffness matrices [k] and 
[K], respectively, developed throughout the text for various element types (such as those in 
Figure 1–2 on page 11), are represented by square matrices given as
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and

	

�
�

� � � �
�

K

K K K

K K K

K K K

n

n

n n nn

5[ ]

11 12 1

21 22 2

1 2



















	 (1.2.3)

where, in structural theory, the elements kij  and Kij are often referred to as stiffness influence 
coefficients.
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You will learn that the global nodal forces {F} and the global nodal displacements {d} are 
related through use of the global stiffness matrix [K] by

	 F K d5[ ]{ }{ } 	 (1.2.4)

Equation (1.2.4) is called the global stiffness equation and represents a set of simultane-
ous equations. It is the basic equation formulated in the stiffness or displacement method of 
analysis.

To obtain a clearer understanding of elements Kij  in Eq. (1.2.3), we use Eq. (1.2.1) and 
write out the expanded form of Eq. (1.2.4) as
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Now assume a structure to be forced into a displaced configuration defined by 
u v w wn5 5 5 51, 01 1 1 � . Then from Eq. (1.2.5), we have

	 F K F K F Kx y nz n5 5 5, . . . ,1 11 1 21 1	 (1.2.6)

Equations (1.2.6) contain all elements in the first column of [K]. In addition, they show that 
these elements, , , . . . ,11 21 1K K Kn , are the values of the full set of nodal forces required to 
maintain the imposed displacement state. In a similar manner, the second column in [K] rep-
resents the values of forces required to maintain the displaced state v 511  and all other nodal 
displacement components equal to zero. We should now have a better understanding of the 
meaning of stiffness influence coefficients.

Subsequent chapters will discuss the element stiffness matrices [k] for various element 
types, such as bars, beams, plane stress, and three-dimensional stress. They will also cover the 
procedure for obtaining the global stiffness matrices [K] for various structures and for solving 
Eq. (1.2.4) for the unknown displacements in matrix {d}.

Using matrix concepts and operations will become routine with practice; they will be 
valuable tools for solving small problems longhand. And matrix methods are crucial to the 
use of the digital computers necessary for solving complicated problems with their associated 
large number of simultaneous equations.

	 1.3	 Role of the Computer
As we have said, until the early 1950s, matrix methods and the associated finite element 
method were not readily adaptable for solving complicated problems. Even though the finite 
element method was being used to describe complicated structures, the resulting large number 
of algebraic equations associated with the finite element method of structural analysis made 
the method extremely difficult and impractical to use. However, with the advent of the com-
puter, the solution of thousands of equations in a matter of minutes became possible.

The first modern-day commercial computer appears to have been the UNIVAC, IBM 701, 
which was developed in the 1950s. This computer was built based on vacuum-tube technology. 
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Along with the UNIVAC came the punch-card technology whereby programs and data were 
created on punch cards. In the 1960s, transistor-based technology replaced the vacuum-tube 
technology due to the transistor’s reduced cost, weight, and power consumption and its higher 
reliability. From 1969 to the late 1970s, integrated circuit-based technology was being devel-
oped, which greatly enhanced the processing speed of computers, thus making it possible to 
solve larger finite element problems with increased degrees of freedom. From the late 1970s 
into the 1980s, large-scale integration as well as workstations that introduced a windows-type 
graphical interface appeared along with the computer mouse. The first computer mouse 
received a patent on November 17, 1970. Personal computers had now become mass-market 
desktop computers. These developments came during the age of networked computing, which 
brought the Internet and the World Wide Web. In the 1990s the Windows operating system was 
released, making IBM and IBM-compatible PCs more user friendly by integrating a graphical 
user interface into the software.

The development of the computer resulted in the writing of computational programs. 
Numerous special-purpose and general-purpose programs have been written to handle various 
complicated structural (and nonstructural) problems. Programs such as [46–56] illustrate the 
elegance of the finite element method and reinforce understanding of it.

In fact, finite element computer programs now can be solved on single-processor machines, 
such as a single desktop or laptop personal computer (PC) or on a cluster of computer nodes. 
The powerful memories of the PC and the advances in solver programs have made it possible 
to solve problems with over a million unknowns.

To use the computer, the analyst, having defined the finite element model, inputs the 
information into the computer. This information may include the position of the element nodal 
coordinates, the manner in which elements are connected, the material properties of the ele-
ments, the applied loads, boundary conditions, or constraints, and the kind of analysis to be 
performed. The computer then uses this information to generate and solve the equations nec-
essary to carry out the analysis.

	 1.4	 General Steps of the Finite Element Method
This section presents the general steps included in a finite element method formulation and 
solution to an engineering problem. We will use these steps as our guide in developing solu-
tions for structural and nonstructural problems in subsequent chapters.

For simplicity’s sake, for the presentation of the steps to follow, we will consider only 
the structural problem. The nonstructural heat-transfer, fluid mechanics, and electrostatics 
problems and their analogies to the structural problem are considered in Chapters 13 and 14.

Typically, for the structural stress-analysis problem, the engineer seeks to determine dis-
placements and stresses throughout the structure, which is in equilibrium and is subjected to 
applied loads. For many structures, it is difficult to determine the distribution of deformation 
using conventional methods, and thus the finite element method is necessarily used.

There are three primary methods that can be used to derive the finite element equations 
of a physical system. These are (1) the direct method or direct equilibrium method for struc-
tural analysis problems, (2) the variational methods consisting of among the subsets energy 
methods and the principle of virtual work, and (3) the weighted residual methods. We briefly 
describe these three primary methods as follows, and more details of each will be described 
later in this section under step 4.
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Direct Methods
The direct method, being the simplest and yielding a clear physical insight into the finite ele-
ment method, is recommended in the initial stages of learning the concepts of the finite element 
method. However, the direct method is limited in its application to deriving element stiffness 
matrices for one-dimensional elements involving springs, uniaxial bars, trusses, and beams.

There are two general direct approaches traditionally associated with the finite element 
method as applied to structural mechanics problems. One approach, called the force, or flexi-
bility, method, uses internal forces as the unknowns of the problem. To obtain the governing 
equations, first the equilibrium equations are used. Then necessary additional equations are 
found by introducing compatibility equations. The result is a set of algebraic equations for 
determining the redundant or unknown forces.

The second approach, called the displacement, or stiffness, method, assumes the displace-
ments of the nodes as the unknowns of the problem. For instance, compatibility conditions 
requiring that elements connected at a common node, along a common edge, or on a common 
surface before loading remain connected at that node, edge, or surface after deformation takes 
place are initially satisfied. Then the governing equations are expressed in terms of nodal 
displacements using the equations of equilibrium and an applicable law relating forces to 
displacements.

These two direct approaches result in different unknowns (forces or displacements) in the 
analysis and different matrices associated with their formulations (flexibilities or stiffnesses). 
It has been shown [34] that, for computational purposes, the displacement (or stiffness) 
method is more desirable because its formulation is simpler for most structural analysis prob-
lems. Furthermore, a vast majority of general-purpose finite element programs have incorpo-
rated the displacement formulation for solving structural problems. Consequently, only the 
displacement method will be used throughout this text.

Variational Methods
The variational method is much easier to use for deriving the finite element equations for 
two- and three-dimensional elements than the direct method. However, it requires the existence 
of a functional, that upon minimizing yields the stiffness matrix and related element equations. 
For structural/stress analysis problems, we can use the principle of minimum potential energy 
as the functional, for this principle is a relatively easy physical concept to understand and has 
likely been introduced to the reader in an undergraduate course in basic applied mechanics [35].

It can be used to develop the governing equations for both structural and nonstructural 
problems. The variational method includes a number of principles. One of these principles, 
used extensively throughout this text because it is relatively easy to comprehend and is often 
introduced in basic mechanics courses, is the theorem of minimum potential energy that 
applies to materials behaving in a linear-elastic manner. This theorem is explained and used 
in various sections of the text, such as Section 2.6 for the spring element, Section 3.10 for 
the bar element, Section 4.7 for the beam element, Section 6.2 for the constant strain triangle 
plane stress and plane strain element, Section 9.1 for the axisymmetric element, Section 11.2 
for the three-dimensional solid tetrahedral element, and Section 12.2 for the plate bending 
element. A functional analogous to that used in the theorem of minimum potential energy is 
then employed to develop the finite element equations for the nonstructural problem of heat 
transfer presented in Chapter 13.
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Another variational principle often used to derive the governing equations is the prin-
ciple of virtual work. This principle applies more generally to materials that behave in a 
linear-elastic fashion, as well as those that behave in a nonlinear fashion. The principle of 
virtual work is described in Appendix E for those choosing to use it for developing the general 
governing finite element equations that can be applied specifically to bars, beams, and two- 
and three-dimensional solids in either static or dynamic systems.

Weighted Residual Methods
The weighted residual methods [36] allow the finite element method to be applied directly to 
any differential equation without having the existence of a variational principle. Section 3.12 
introduces the Galerkin method (a very well-known residual method) for deriving the bar ele-
ment stiffness matrix and associated element equations. Section 3.13 introduces other residual 
methods for solving the governing differential equation for the axial displacement along a bar.

The finite element method involves modeling the structure using small interconnected 
elements called finite elements. A displacement function is associated with each finite ele-
ment. Every interconnected element is linked, directly or indirectly, to every other element 
through common (or shared) interfaces, including nodes and/or boundary lines and/or sur-
faces. By using known stress/strain properties for the material making up the structure, one 
can determine the behavior of a given node in terms of the properties of every other element in 
the structure. The total set of equations describing the behavior of each node results in a series 
of algebraic equations best expressed in matrix notation.

We now present the steps, along with explanations necessary at this time, used in the 
finite element method formulation and solution of a structural problem. The purpose of setting 
forth these general steps now is to expose you to the procedure generally followed in a finite 
element formulation of a problem. You will easily understand these steps when we illustrate 
them specifically for springs, bars, trusses, beams, plane frames, plane stress, axisymmetric 
stress, three-dimensional stress, plate bending, heat transfer, fluid flow, and electrostatics in 
subsequent chapters. We suggest that you review this section periodically as we develop the 
specific element equations.

Keep in mind that the analyst must make decisions regarding dividing the structure or 
continuum into finite elements and selecting the element type or types to be used in the anal-
ysis (step 1), the kinds of loads to be applied, and the types of boundary conditions or sup-
ports to be applied. The other steps, 2 through 7, are carried out automatically by a computer 
program.

Step 1 Discretize and Select the Element Types
Step 1 involves dividing the body into an equivalent system of finite elements with associ-
ated nodes and choosing the most appropriate element type to model most closely the actual 
physical behavior. The total number of elements used and their variation in size and type 
within a given body are primarily matters of engineering judgment. The elements must be 
made small enough to give usable results and yet large enough to reduce computational effort. 
Small elements (and possibly higher-order elements) are generally desirable where the results 
are changing rapidly, such as where changes in geometry occur; large elements can be used 
where results are relatively constant. We will have more to say about discretization guide-
lines in later chapters, particularly in Chapter 7, where the concept becomes quite significant. 
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The discretized body or mesh is often created with mesh-generation programs or preprocessor 
programs available to the user.

The choice of elements used in a finite element analysis depends on the physical makeup 
of the body under actual loading conditions and on how close to the actual behavior the 
analyst wants the results to be. Judgment concerning the appropriateness of one-, two-, or 
three-dimensional idealizations is necessary. Moreover, the choice of the most appropriate 
element for a particular problem is one of the major tasks that must be carried out by the 
designer/analyst. Elements that are commonly employed in practice—most of which are con-
sidered in this text—are shown in Figure 1–2.

The primary line elements [Figure 1–2(a)] consist of bar (or truss) and beam elements. 
They have a cross-sectional area but are usually represented by line segments. In general, 
the cross-sectional area within the element can vary, but throughout this text it will be con-
sidered to be constant. These elements are often used to model trusses and frame structures 
(see Figure 1–3 on page 17, for instance). The simplest line element (called a linear ele-
ment) has two nodes, one at each end, although higher-order elements having three nodes 
[Figure 1–2(a)] or more (called quadratic, cubic, etc., elements) also exist. Chapter 10 includes 
discussion of higher-order line elements. The line elements are the simplest of elements to 
consider and will be discussed in Chapters 2 through 5 to illustrate many of the basic concepts 
of the finite element method.

The basic two-dimensional (or plane) elements [Figure 1–2(b)] are loaded by forces in 
their own plane (plane stress or plane strain conditions). They are triangular or quadrilateral 
elements. The simplest two-dimensional elements have corner nodes only (linear elements) 
with straight sides or boundaries (Chapter 6), although there are also higher-order elements, 
typically with midside nodes [Figure 1–2(b)] (called quadratic elements) and curved sides 
(Chapters 8 and 10). The elements can have variable thicknesses throughout or be constant. 
They are often used to model a wide range of engineering problems (see Figures 1–4 and 1–5 
on pages 17 and 18).

The most common three-dimensional elements [Figure 1–2(c)] are tetrahedral and hexa-
hedral (or brick) elements; they are used when it becomes necessary to perform a three-
dimensional stress analysis. The basic three-dimensional elements (Chapter 11) have corner 
nodes only and straight sides, whereas higher-order elements with midedge nodes (and 
possible midface nodes) have curved surfaces for their sides [Figure 1–2(c)].

The axisymmetric element [Figure 1–2(d)] is developed by rotating a triangle or quad-
rilateral about a fixed axis located in the plane of the element through 8360 . This element 
(described in Chapter 9) can be used when the geometry and loading of the problem are 
axisymmetric.

Step 2 Select a Displacement Function
Step 2 involves choosing a displacement function within each element. The function is 
defined within the element using the nodal values of the element. Linear, quadratic, and cubic 
polynomials are frequently used functions because they are simple to work with in finite 
element formulation. However, trigonometric series can also be used. For a two-dimensional 
element, the displacement function is a function of the coordinates in its plane (say, the x-y 
plane). The functions are expressed in terms of the nodal unknowns (in the two-dimensional 
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 Figure 1–2  Various types of simple lowest-order finite elements with corner nodes only and higher-
order elements with intermediate nodes
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(a) �Simple two-noded line element (typically used to represent a bar or beam element) and the 
higher-order line element

(b) �Simple two-dimensional elements with corner nodes (typically used to represent plane stress/strain) 
and higher-order two-dimensional elements with intermediate nodes along the sides

(c) �Simple three-dimensional elements (typically used to represent three-dimensional stress state) and 
higher-order three-dimensional elements with intermediate nodes along edges

(d) Simple axisymmetric triangular and quadrilateral elements used for axisymmetric problems
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problem, in terms of an x and a y component). The same general displacement function can 
be used repeatedly for each element. Hence the finite element method is one in which a con-
tinuous quantity, such as the displacement throughout the body, is approximated by a discrete 
model composed of a set of piecewise-continuous functions defined within each finite domain 
or finite element.

For the one-dimensional spring and bar elements, the displacement function is a function of 
a single coordinate (say x, along the axis of the spring or bar). For the spring and bar elements one 
can then skip step 2 and go directly to step 3 to derive the element stiffness matrix and equations. 
This will be explicitly demonstrated in Chapters 2 and 3 for the spring and bar, respectively.

Step  3 Define the Strain/Displacement and Stress/Strain Relationships
Strain/displacement and stress/strain relationships are necessary for deriving the equations for 
each finite element. In the case of one-dimensional deformation, say, in the x direction, we 
have strain xε  related to displacement u by

	 du

dx
x 5ε 	 (1.4.1)

for small strains. In addition, the stresses must be related to the strains through the stress/
strain law—generally called the constitutive law. The ability to define the material behavior 
accurately is most important in obtaining acceptable results. The simplest of stress/strain laws, 
Hooke’s law, which is often used in stress analysis, is given by

 	 Ex xs 5 ε 	 (1.4.2)

where xs 5 stress in the x direction and E 5 modulus of elasticity.

Step 4 Derive the Element Stiffness Matrix and Equations
Initially, the development of element stiffness matrices and element equations was based on the 
concept of stiffness influence coefficients, which presupposes a background in structural analysis. 
We now present alternative methods used in this text that do not require this special background.

Direct Equilibrium Method
According to this method, the stiffness matrix and element equations relating nodal forces 
to nodal displacements are obtained using force equilibrium conditions for a basic element, 
along with force/deformation relationships. Because this method is most easily adaptable to 
line or one-dimensional elements, Chapters 2, 3, and 4 illustrate this method for spring, bar, 
and beam elements, respectively.

Work or Energy Methods
To develop the stiffness matrix and equations for two- and three-dimensional elements, it is 
much easier to apply a work or energy method [35]. The principle of virtual work (using vir-
tual displacements), the principle of minimum potential energy, and Castigliano’s theorem are 
methods frequently used for the purpose of derivation of element equations.
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The principle of virtual work outlined in Appendix E is applicable for any material behav-
ior, whereas the principle of minimum potential energy and Castigliano’s theorem are appli-
cable only to elastic materials. Furthermore, the principle of virtual work can be used even 
when a potential function does not exist. However, all three principles yield identical element 
equations for linear-elastic materials; thus which method to use for this kind of material in 
structural analysis is largely a matter of convenience and personal preference. We will present 
the principle of minimum potential energy—probably the best known of the three energy 
methods mentioned here—in detail in Chapters 2 and 3, where it will be used to derive the 
spring and bar element equations. We will further generalize the principle and apply it to the 
beam element in Chapter 4 and to the plane stress/strain element in Chapter 6. Thereafter, the 
principle is routinely referred to as the basis for deriving all other stress-analysis stiffness 
matrices and element equations given in Chapters 8, 9, 11, and 12.

For the purpose of extending the finite element method outside the structural stress anal-
ysis field, a functional1  (a function of another function or a function that takes functions as 
its argument) analogous to the one to be used with the principle of minimum potential energy 
is quite useful in deriving the element stiffness matrix and equations (see Chapters 13 and 14 
on heat transfer and fluid flow, respectively). For instance, letting π denote the functional and  
f (x,y) denote a function f of two variables x and y, we then have f x y5 ( ( , ))π π , where π is a 
function of the function f. A more general form of a functional depending on two independent 
variables u(x,y) and ( , )v x y , where independent variables are x and y in Cartesian coordinates, 
is given by

	 π F x y u v u u v v u v dx dyx y x y xx yy5 ## ( , , , , , , , , , , , , , ,... , ) 	 (1.4.3)

where the comma preceding the subscripts x and y denotes differentiation with respect to x or 

y, i.e., u x
u
x

5, ∂
∂

, etc.

Weighted Residuals Methods
The weighted residuals methods are useful for developing the element equations; particularly 
popular is Galerkin’s method. These methods yield the same results as the energy methods 
wherever the energy methods are applicable. They are especially useful when a functional 
such as potential energy is not readily available. The weighted residual methods allow the 
finite element method to be applied directly to any differential equation.

Galerkin’s method, along with the collocation, the least squares, and the subdomain 
weighted residual methods are introduced in Chapter 3. To illustrate each method, they will 
all be used to solve a one-dimensional bar problem for which a known exact solution exists for 
comparison. As the more easily adapted residual method, Galerkin’s method will also be used 
to derive the bar element equations in Chapter 3 and the beam element equations in Chapter 4 

1 Another definition of a functional is as follows: A functional is an integral expression that implicitly contains differential 
equations that describe the problem. A typical functional is of the form I u F x u u dx95( ) ( , , )#  where u(x), x, and F are real so 
that I(u) is also a real number. Here ∂ ∂9 5 /u u x .
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and to solve the combined heat-conduction/convection/mass transport problem in Chapter 13. 
For more information on the use of the methods of weighted residuals, see Reference [36]; for 
additional applications to the finite element method, consult References [37] and [38].

Using any of the methods just outlined will produce the equations to describe the behav-
ior of an element. These equations are written conveniently in matrix form as
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	 (1.4.4)

or in compact matrix form as

	 f k d5[ ]{ } { }	 (1.4.5)

where {f} is the vector of element nodal forces, [k] is the element stiffness matrix (normally 
square and symmetric), and {d} is the vector of unknown element nodal degrees of freedom 
or generalized displacements, n. Here generalized displacements may include such quantities 
as actual displacements, slopes, or even curvatures. The matrices in Eq. (1.4.5) will be devel-
oped and described in detail in subsequent chapters for specific element types, such as those 
in Figure 1–2.

Step 5 Assemble the Element Equations to Obtain the Global or Total 
Equations and Introduce Boundary Conditions
In this step the individual element nodal equilibrium equations generated in step 4 are assembled 
into the global nodal equilibrium equations. Section 2.3 illustrates this concept for a two-spring 
assemblage. Another more direct method of superposition (called the direct stiffness method), 
whose basis is nodal force equilibrium, can be used to obtain the global equations for the whole 
structure. This direct method is illustrated in Section 2.4 for a spring assemblage. Implicit in 
the direct stiffness method is the concept of continuity, or compatibility, which requires that the 
structure remain together and that no tears occur anywhere within the structure.

The final assembled or global equation written in matrix form is

	 { }{ }5[ ]F K d 	 (1.4.6)

where {F} is the vector of global nodal forces, [K] is the structure global or total stiffness 
matrix, (for most problems, the global stiffness matrix is square and symmetric) and {d} is now 
the vector of known and unknown structure nodal degrees of freedom or generalized displace-
ments. It can be shown that at this stage, the global stiffness matrix [K] is a singular matrix 
because its determinant is equal to zero. To remove this singularity problem, we must invoke 
certain boundary conditions (or constraints or supports) so that the structure remains in place 
instead of moving as a rigid body. Further details and methods of invoking boundary condi-
tions are given in subsequent chapters. At this time it is sufficient to note that invoking bound-
ary or support conditions results in a modification of the global Eq. (1.4.6). We also emphasize 
that the applied known loads have been accounted for in the global force matrix {F}.
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Step 6 Solve for the Unknown Degrees of Freedom (or Generalized 
Displacements)
Equation (1.4.6), modified to account for the boundary conditions, is a set of simultaneous 
algebraic equations that can be written in expanded matrix form as
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	 (1.4.7)

where now n is the structure total number of unknown nodal degrees of freedom. These equa-
tions can be solved for the ds by using an elimination method (such as Gauss’s method) or 
an iterative method (such as the Gauss-Seidel method). These two methods are discussed in 
Appendix B. The ds are called the primary unknowns, because they are the first quantities 
determined using the stiffness (or displacement) finite element method.

Step 7 Solve for the Element Strains and Stresses
For the structural stress-analysis problem, important secondary quantities of strain and stress 
(or moment and shear force) can be obtained because they can be directly expressed in terms 
of the displacements determined in step 6. Typical relationships between strain and displace-
ment and between stress and strain—such as Eqs. (1.4.1) and (1.4.2) for one-dimensional 
stress given in step 3—can be used.

Step 8 Interpret the Results
The final goal is to interpret and analyze the results for use in the design/analysis process. 
Determination of locations in the structure where large deformations and large stresses occur 
is generally important in making design/analysis decisions. Postprocessor computer programs 
help the user to interpret the results by displaying them in graphical form.

	 1.5	 Applications of the Finite Element Method
The finite element method can be used to analyze both structural and nonstructural problems. 
Typical structural areas include

	 1.	 Stress analysis, including truss and frame analysis (such as pedestrian walk bridges, high 
rise building frames, and windmill towers), and stress concentration problems, typically 
associated with holes, fillets, or other changes in geometry in a body (such as automotive 
parts, pressures vessels, medical devices, aircraft, and sports equipment)

	 2.	 Buckling, such as in columns, frames, and vessels
	 3.	 Vibration analysis, such as in vibratory equipment
	 4.	 Impact problems, including crash analysis of vehicles, projectile impact, and bodies fall-

ing and impacting objects
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Nonstructural problems include

	 1.	 Heat transfer, such as in electronic devices emitting heat as in a personal computer micro-
processor chip, engines, and cooling fins in radiators

	 2.	 Fluid flow, including seepage through porous media (such as water seeping through 
earthen dams), cooling ponds, and in air ventilation systems as used in sports arenas, etc., 
air flow around racing cars, yachting boats, and surfboards, etc.

	 3.	 Distribution of electric or magnetic potential, such as in antennas and transistors

Finally, some biomechanical engineering problems (which may include stress analysis) typ-
ically include analyses of human spine, skull, hip joints, jaw/gum tooth implants, heart, and eye.

We now present some typical applications of the finite element method. These applica-
tions will illustrate the variety, size, and complexity of problems that can be solved using the 
method and the typical discretization process and kinds of elements used.

Figure 1–3 illustrates a control tower for a railroad. The tower is a three-dimensional 
frame comprising a series of beam-type elements. The 48 elements are labeled by the circled 
numbers, whereas the 28 nodes are indicated by the uncircled numbers. Each node has three 
rotation and three displacement components associated with it. The rotations (us) and dis-
placements (u, v, w) are called the degrees of freedom. Because of the loading conditions to 
which the tower structure is subjected, we have used a three-dimensional model.

The finite element method used for this frame enables the designer/analyst quickly to 
obtain displacements and stresses in the tower for typical load cases, as required by design 
codes. Before the development of the finite element method and the computer, even this rela-
tively simple problem took many hours to solve.

The next illustration of the application of the finite element method to problem solving 
is the determination of displacements and stresses in an underground box culvert subjected to 
ground shock loading from a bomb explosion. Figure 1–4 shows the discretized model, which 
included a total of 369 nodes, 40 one-dimensional bar or truss elements used to model the 
steel reinforcement in the box culvert, and 333 plane strain two-dimensional triangular and 
rectangular elements used to model the surrounding soil and concrete box culvert. With an 
assumption of symmetry, only half of the box culvert need be analyzed. This problem requires 
the solution of nearly 700 unknown nodal displacements. It illustrates that different kinds of 
elements (here bar and plane strain) can often be used in one finite element model.

Another problem, that of the hydraulic cylinder rod end shown in Figure 1–5, was mod-
eled by 120 nodes and 297 plane strain triangular elements. Symmetry was also applied to the 
whole rod end so that only half of the rod end had to be analyzed, as shown. The purpose of 
this analysis was to locate areas of high stress concentration in the rod end.

Figure 1–6 shows a chimney stack section that is four form heights high (or a total of 
9.75 m high). In this illustration, 584 beam elements were used to model the vertical and 
horizontal stiffeners making up the formwork, and 252 flat-plate elements were used to model 
the inner wooden form and the concrete shell. Because of the irregular loading pattern on the 
structure, a three-dimensional model was necessary. Displacements and stresses in the con-
crete were of prime concern in this problem.

Figure 1–7 shows the finite element discretized model of a proposed steel die used in a 
plastic film-making process. The irregular geometry and associated potential stress concentra-
tions necessitated use of the finite element method to obtain a reasonable solution. Here 240 
axisymmetric elements were used to model the three-dimensional die.
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Figure 1–8 illustrates the use of a three-dimensional solid element to model a swing cast-
ing for a backhoe frame. The three-dimensional hexahedral elements are necessary to model 
the irregularly shaped three-dimensional casting. Two-dimensional models certainly would 
not yield accurate engineering solutions to this problem.

Figure 1–9 illustrates a two-dimensional heat-transfer model used to determine the tem-
perature distribution in earth subjected to a heat source—a buried pipeline transporting a hot 
gas.

 Figure 1–3  Discretized railroad control tower (28 nodes, 48 beam elements) with typical 
degrees of freedom shown at node 1, for example (By Daryl L. Logan)

v1

u1

w1

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1  |  Introduction18

 Figure 1–4  Discretized model of an underground box culvert (369 nodes, 40 bar elements, 
and 333 plane strain elements) [39]

Figure 1–10 shows a three-dimensional model of human pelvis which can be used to 
study stresses in the bone and the cement layer between the bone and the implant.

Figure 1–11 shows a three-dimensional model of a 710G bucket, used to study stress 
throughout the bucket.

More recently, mechanical event simulation (MES), including nonlinear behavior and 
contact, such as in roll forming processes, has been studied using finite element analysis [46], 
as shown in Figure 1–12 and wind mill generator stress analysis under various loading con-
ditions, including wind, ice, and earthquake while the blades are rotating has been performed 
[46], as shown in Figure 1–13.
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 Figure 1–5  Two-dimensional analysis of a hydraulic cylinder rod end (120 nodes, 297 
plane strain triangular elements)

 Figure 1–6  Finite element model of a chimney stack section (end view rotated 458) (584 
beam and 252 flat-plate elements) (By Daryl L. Logan)
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 Figure 1–7  (a) Model of a high-strength steel die (240 axisymmetric elements) used in the 
plastic film industry (By Daryl L. Logan) and (b) the three-dimensional visual of the die as the 
elements in the plane are rotated through 3608 around the z-axis of symmetry (See the full-
color insert for a color version of this figure.) (By Daryl L. Logan)

z

y
21.5 cm

(a)

(b)
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 Figure 1–8  Three-dimensional solid element model of a swing casting for a backhoe frame

Finally, the field of computational fluid dynamics (CFD) using finite element analysis has 
recently been used to design ventilation systems, such as in large sports arenas, and to study 
air flow around race cars and around golf balls when suddenly struck by a golf club [63].

These illustrations suggest the kinds of problems that can be solved by the finite element 
method. Additional guidelines concerning modeling techniques will be provided in Chapter 7.

	 1.6	 Advantages of the Finite Element Method
As previously mentioned, the finite element method has been applied to numerous problems, 
both structural and nonstructural. This method has a number of advantages over conventional 
approximate methods, such as presented by traditional courses in mechanics of material and 
heat transfer, and for modeling and determining physical quantities, such as displacements, 
stresses, temperatures, pressures, and electric currents that have made it very popular. They 
include the ability to

	 1.	 Model irregularly shaped bodies quite easily
	 2.	 Handle general load conditions without difficulty
	 3.	 Model bodies composed of several different materials because the element equations are 

evaluated individually
	 4.	 Handle unlimited numbers and kinds of boundary conditions
	 5.	 Vary the size of the elements to make it possible to use small elements where necessary
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 Figure 1–9  Finite element model for a two-dimensional temperature distribution in the 
earth

10˚C

70˚C

4.5 m

4.5 m

4.5 m

6 m 6 m

 Figure 1–10  Finite element model of a human 
pelvis (© Studio MacBeth/Photo Researchers, 
Inc.)
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	 6.	 Alter the finite element model relatively easily and cheaply
	 7.	 Include dynamic effects
	 8.	 Handle nonlinear behavior existing with large deformations and nonlinear materials

The finite element method of structural analysis enables the designer to detect stress, 
vibration, and thermal problems during the design process and to evaluate design changes 
before the construction of a possible prototype. Thus confidence in the acceptability of the 
prototype is enhanced. Moreover, if used properly, the method can reduce the number of pro-
totypes that need to be built.

Even though the finite element method was initially used for structural analysis, it has 
since been adapted to many other disciplines in engineering and mathematical physics, such 
as fluid flow, heat transfer, electromagnetic potentials, soil mechanics, and acoustics [22–24, 
27, 42–44].

 Figure 1–12  Finite element model of contour roll forming or cold roll forming process (Courtesy of 
Valmont West Coast Engineering) (See the full-color insert for a color version of this figure.)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.7  Computer Programs for the Finite Element Method 25

	

 Figure 1–13  Finite element model showing the von Mises stress plot of a wind mill tower 
at a critical time step using a nonlinear finite element simulation (Courtesy of Valmont West 
Coast Engineering)

	 1.7	 Computer Programs for the Finite Element Method
There are two general computer methods of approach to the solution of problems by the finite 
element method. One is to use large commercial programs, many of which have been con-
figured to run on personal computers (PCs); these general-purpose programs are designed to 
solve many types of problems. The other is to develop many small, special-purpose programs 
to solve specific problems. In this section, we will discuss the advantages and disadvantages 
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of both methods. We will then list some of the available general-purpose programs and discuss 
some of their standard capabilities.

Some advantages of general-purpose programs:

	 1.	 The input is well organized and is developed with user ease in mind. Users do not need 
special knowledge of computer software or hardware. Preprocessors are readily available 
to help create the finite element model.

	 2.	 The programs are large systems that often can solve many types of problems of large or 
small size with the same input format.

	 3.	 Many of the programs can be expanded by adding new modules for new kinds of prob-
lems or new technology. Thus they may be kept current with a minimum of effort.

	 4.	 With the increased storage capacity and computational efficiency of PCs, many 
general-purpose programs can now be run on PCs.

	 5.	 Many of the commercially available programs have become very attractive in price and 
can solve a wide range of problems [45–56].

Some disadvantages of general-purpose programs:

	 1.	 The initial cost of developing general-purpose programs is high.
	 2.	 General-purpose programs are less efficient than special-purpose programs because the 

computer must make many checks for each problem, some of which would not be neces-
sary if a special-purpose program were used.

	 3.	 Many of the programs are proprietary. Hence the user has little access to the logic of the 
program. If a revision must be made, it often has to be done by the developers.

Some advantages of special-purpose programs:

	 1.	 The programs are usually relatively short, with low development costs.
	 2.	 Small computers are able to run the programs.
	 3.	 Additions can be made to the program quickly and at a low cost.
	 4.	 The programs are efficient in solving the problems they were designed to solve.

The major disadvantage of special-purpose programs is their inability to solve different 
classes of problems. Thus one must have as many programs as there are different classes of 
problems to be solved. A list of special-purpose, public-domain finite-element programs is 
given in the website [60].

There are numerous vendors supporting finite element programs, and the interested user 
should carefully consult the vendor before purchasing any software. However, to give you 
an idea about the various commercial personal computer programs now available for solving 
problems by the finite element method, we present a partial list of existing programs.

	 1.	 Autodesk Simulation Multiphysics [46]
	 2.	 Abaqus [47]
	 3.	 ANSYS [48]
	 4.	 COSMOS/M [49]
	 5.	 GT-STRUDL [50]
	 6.	 LS-DYNA [59]
	 7.	 MARC [51]
	 8.	 MSC/NASTRAN [52]
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	 9.	 NISA [53]
	10.	 Pro/MECHANICA [54]
	11.	 SAP2000 [55]
	12.	 STARDYNE [56]

Standard capabilities of many of the listed programs are provided in the preceding refer-
ences and in Reference [45]. These capabilities include information on

	 1.	 Element types available, such as beam, plane stress, and three-dimensional solid
	 2.	 Type of analysis available, such as static and dynamic
	 3.	 Material behavior, such as linear-elastic and nonlinear
	 4.	 Load types, such as concentrated, distributed, thermal, and displacement (settlement)
	 5.	 Data generation, such as automatic generation of nodes, elements, and restraints (most 

programs have preprocessors to generate the mesh for the model)
	 6.	 Plotting, such as original and deformed geometry and stress and temperature contours 

(most programs have postprocessors to aid in interpreting results in graphical form)
	 7.	 Displacement behavior, such as small and large displacement and buckling
	 8.	 Selective output, such as at selected nodes, elements, and maximum or minimum values

All programs include at least the bar, beam, plane stress, plate-bending, and three- 
dimensional solid elements, and most now include heat-transfer analysis capabilities.

Complete capabilities of the programs and their cost are best obtained through program 
reference manuals and websites, such as References [46–56, 59].
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PROBLEMS

	 1.1		  Define the term finite element.
	 1.2		  What does discretization mean in the finite element method?
	 1.3		  In what year did the modern development of the finite element method begin?
	 1.4		  In what year was the direct stiffness method introduced?
	 1.5		  Define the term matrix.
	 1.6		  What role did the computer play in the use of the finite element method?
	 1.7		  List and briefly describe the general steps of the finite element method.
	 1.8		  What is the displacement method?
	 1.9		  List four common types of finite elements.
	 1.10		  Name three commonly used methods for deriving the element stiffness matrix and 

element equations. Briefly describe each method.
	 1.11		  To what does the term degrees of freedom refer?
	 1.12		  List five typical areas of engineering where the finite element method is applied.
	 1.13		  List five advantages of the finite element method.
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Introduction to the Stiffness 
(Displacement) Method

CHAPTER OBJECTIVES

At the conclusion of this chapter, you will be able to:

■	 Define the stiffness matrix.

■	 Derive the stiffness matrix for a spring element.

■	 Demonstrate how to assemble stiffness matrices into a global stiffness matrix.

■	 Illustrate the concept of direct stiffness method to obtain the global stiffness matrix 
and solve a spring assemblage problem.

■	 Describe and apply the different kinds of boundary conditions relevant for spring 
assemblages.

■	 Show how the potential energy approach can be used to both derive the stiffness 
matrix for a spring and solve a spring assemblage problem.

Introduction
This chapter introduces some of the basic concepts on which the direct stiffness method is 
founded. The linear spring is introduced first because it provides a simple yet generally instruc-
tive tool to illustrate the basic concepts. We begin with a general definition of the stiffness 
matrix and then consider the derivation of the stiffness matrix for a linear-elastic spring ele-
ment. We next illustrate how to assemble the total stiffness matrix for a structure comprising an 
assemblage of spring elements by using elementary concepts of equilibrium and compatibility. 
We then show how the total stiffness matrix for an assemblage can be obtained by superimpos-
ing the stiffness matrices of the individual elements in a direct manner. The term direct stiffness 
method evolved in reference to this technique.

After establishing the total structure stiffness matrix, we illustrate how to impose bound-
ary conditions—both homogeneous and nonhomogeneous. A complete solution including the 
nodal displacements and reactions is thus obtained. (The determination of internal forces is 
discussed in Chapter 3 in connection with the bar element.)

We then introduce the principle of minimum potential energy, apply it to derive the spring 
element equations, and use it to solve a spring assemblage problem. We will illustrate this 
principle for the simplest of elements (those with small numbers of degrees of freedom) so 
that it will be a more readily understood concept when applied, of necessity, to elements with 
large numbers of degrees of freedom in subsequent chapters.

C H A P T E R 

2
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	 2.1 	 Definition of the Stiffness Matrix
Familiarity with the stiffness matrix is essential to understanding the stiffness method. 
We define the stiffness matrix as follows: For an element, a stiffness matrix [k] is a matrix 
such that

 	 { } { }5 [ ]f k d 	 (2.1.1)

where [k ] relates nodal displacements {d} to nodal forces { f } of a single element, such as the 
spring shown in Figure 2–1a.

For a continuous medium or structure comprising a series of elements, such as shown for 
the spring assemblage in Figure 2–1b, stiffness matrix [K ] relates global-coordinate (x, y, z) 
nodal displacements {d} to global forces {F} of the whole medium or structure. such that

 	 { }{ } 5 [ ]F K d 	 (2.1.2)

where [K] represents the stiffness matrix of the whole spring assemblage.

	 2.2 	 Derivation of the Stiffness Matrix  
for a Spring Element

Using the direct equilibrium approach, we will now derive the stiffness matrix for a one-
dimensional linear spring—that is, a spring that obeys Hooke’s law and resists forces only in 
the direction of the spring. Consider the linear spring element shown in Figure 2–2. Reference 
points 1 and 2 are located at the ends of the element. These reference points are called the nodes 
of the spring element. The local nodal forces are 1f x and 2f x for the spring element associated 
with the local axis x. The local axis acts in the direction of the spring so that we can directly 
measure displacements and forces along the spring. The local nodal displacements are 1u  and 

2u  for the spring element.
These nodal displacements are called the degrees of freedom at each node. Positive direc-

tions for the forces and displacements at each node are taken in the positive x direction as 
shown from node 1 to node 2 in the figure. The symbol k is called the spring constant or 
stiffness of the spring.

 Figure 2–1  (a) Single spring element and (b) three-spring assemblage

x x

y

z

(b)(a)
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2.2  Derivation of the Stiffness Matrix for a Spring Element 33

Analogies to actual spring constants arise in numerous engineering problems. In Chapter 3, 
we see that a prismatic uniaxial bar has a spring constant AE L/k 5 , where A represents the 
cross-sectional area of the bar, E is the modulus of elasticity, and L is the bar length. Similarly, 
in Chapter 5, we show that a prismatic circular-cross-section bar in torsion has a spring constant 

JG L/k 5 , where J is the polar moment of inertia and G is the shear modulus of the material. 
For one-dimensional heat conduction (Chapter 13), /k AK Lxx5 , where Kxx is the thermal 
conductivity of the material, and for one-dimensional fluid flow through a porous medium 
(Chapter 14), /k AK Lxx5 , where Kxx is the permeability coefficient of the material.

We will then observe that the stiffness method can be applied to nonstructural problems, 
such as heat transfer, fluid flow, and electrical networks, as well as structural problems by sim-
ply applying the proper constitutive law (such as Hooke’s law for structural problems, Fourier’s 
law for heat transfer, Darcy’s law for fluid flow, and Ohm’s law for electrical networks) and a 
conservation principle such as nodal equilibrium or conservation of energy.

We now want to develop a relationship between nodal forces and nodal displacements for 
a spring element. This relationship will be the stiffness matrix. Therefore, we want to relate 
the nodal force matrix to the nodal displacement matrix as follows:
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	 (2.2.1)

where the element stiffness coefficients kij of the [k] matrix in Eq. (2.2.1) are to be determined. 
Recall from Eqs. (1.2.5) and (1.2.6) that kij represent the force Fi in the ith degree of freedom 
due to a unit displacement dj  in the jth degree of freedom while all other displacements are 
zero. That is, when we let dj 15  and dk 05  for ?k j, force F ki ij5 .

We now use the steps outlined in Section 1.4 to derive the stiffness matrix for the spring 
element. However, for the simple one-dimensional spring element, step 2 (selecting a displace-
ment function) may be skipped using the direct method. In Section 3.2 we describe guidelines 
for selecting displacement functions and then use step 2 throughout the derivations of stiffness 
matrices for beams and two- and three-dimensional elements, as it makes the derivations based 
on the steps to follow much easier to obtain. Because our approach throughout this text is to 
derive various element stiffness matrices and then to illustrate how to solve engineering prob-
lems with the elements, step 1 now involves only selecting the element type.

Step 1 Select the Element Type
Consider the linear spring element (which can be an element in a system of springs) subjected 
to resulting nodal tensile forces T (which may result from the action of adjacent springs) 
directed along the spring axial direction x as shown in Figure 2–3, so as to be in equilibrium. 
The local x axis is directed from node 1 to node 2. We represent the spring by labeling nodes 
at each end and by labeling the element number. The original distance between nodes before 
deformation is denoted by L. The material property (spring constant) of the element is k.

 Figure 2–2  Linear spring element with positive nodal displacement and force conventions

f1x, u1 f2x, u2
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Step 2 Select a Displacement Function
For the simple one-dimensional spring element, Step 2 may be skipped using the direct method. 
In Section 3.2 we describe guidelines for selecting displacement functions and then use step 
2 throughout the derivations of stiffness matrices for beams and two- and three-dimensional 
elements.

Step 3 Define the Strain/Displacement and Stress/Strain Relationships
The tensile forces T produce a total elongation (deformation) d  of the spring. The typical 
total elongation of the spring is shown in Figure 2–4. Here 1u  is a negative value because the 
direction of displacement is opposite the positive x direction, whereas 2u  is a positive value.

The total deformation of the spring is represented by the difference in nodal displacements as

 	 2 1u ud 5 2 	 (2.2.2)

For a spring element, we can relate the force in the spring directly to the deformation. 
Therefore, the strain/displacement relationship is not necessary here.

The stress/strain relationship can be expressed in terms of the force/deformation relation-
ship instead as

 	 T kd5 	 (2.2.3)

Now, using Eq. (2.2.2) in Eq. (2.2.3), we obtain

 	 ( )2 1T k u u5 2 	 (2.2.4)

Step 4 Derive the Element Stiffness Matrix and Equations
We now derive the spring element stiffness matrix. By the sign convention for nodal forces and 
equilibrium, (see Figures 2–2 and 2–3) we have

 	 1 2f T f Tx x5 2 5 	 (2.2.5)

Using Eqs. (2.2.4) and (2.2.5), we have

 	
( )

( )
1 2 1

2 2 1

T f k u u

T f k u u
x

x

5 2 5 2

5 5 2
	 (2.2.6)

 Figure 2–4    Deformed spring

u2

x

u1

 Figure 2–3  Linear spring subjected to tensile forces

u2u1
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Rewriting Eqs. (2.2.6), we obtain

 	
f k u u

f k u u
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x
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1 1 2

2 2 1

5 2

5 2
	 (2.2.7)

Now expressing Eqs. (2.2.7) in a single matrix equation yields
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This relationship holds for the spring along the x axis. From our basic definition of a stiffness 
matrix and application of Eq. (2.2.1) to Eq. (2.2.8), we obtain
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2

2
	 (2.2.9)

as the stiffness matrix for a linear spring element. Here [k] is called the local stiffness matrix 
for the element. We observe from Eq. (2.2.9) that [k] has the following properties:

1.	 It is symmetric (that is, k kij ji5  for ?i j). This is proven by the reciprocal theorem of 
Rayleigh and Betti [4].

2.	 It is square (the number of rows equals the number of columns in [k]) as it relates the same 
number of nodal forces to nodal displacements.

3.	 It is singular. That is, the determinant of [k] is equal to zero, so [k] cannot be inverted.

Step 5  �Assemble the Element Equations to Obtain the Global Equations 
and Introduce Boundary Conditions

The global stiffness matrix and global force matrix are assembled using nodal force equilib-
rium equations, force/deformation and compatibility equations from Section 2.3, and the direct 
stiffness method described in Section 2.4. This step applies for structures composed of more 
than one element such that

 	 [ ] [ ] and { }
1

( )

1

( )∑ ∑ { }K k F f
e

N
e

e

N
e5 5

5 5

	 (2.2.10)

where [ ]( )k e  and { }( )f e  are now element stiffness and force matrices expressed in a global ref-
erence frame. This concept becomes relevant for instance when considering truss structures 
in Chapter 3. (Throughout this text, the ∑  sign used in this context does not imply a simple 
summation of element matrices but rather denotes that these element matrices must be assem-
bled properly according to the direct stiffness method described in Section 2.4.)

Step 6 Solve for the Nodal Displacements
The displacements are then determined by imposing boundary conditions, such as support 
conditions, and solving a system of equations simultaneously as

 	 { }{ } 5 [ ]F K d 	 (2.2.11)
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Step 7 Solve for the Element Forces
Finally, the element forces are determined by back-substitution, applied to each element, into 
equations similar to Eqs. (2.2.7).

	 2.3 	 Example of a Spring Assemblage
Structures such as trusses, building frames, and bridges comprise basic structural components 
connected together to form the overall structures. To analyze these structures, we must deter-
mine the total structure stiffness matrix for an interconnected system of elements. Before con-
sidering the truss and frame, we will determine the total structure stiffness matrix for a spring 
assemblage by using the force/displacement matrix relationships derived in Section 2.2 for 
the spring element, along with fundamental concepts of nodal equilibrium and compatibility. 
Step 5 will then have been illustrated.

We will consider the specific example of the two-spring assemblage shown in Figure 2–5.* 
This example is general enough to illustrate the direct equilibrium approach for obtaining the 
total stiffness matrix of the spring assemblage. Here we fix node 1 and apply axial forces for 3F x  
at node 3 and 2F x at node 2. The stiffnesses of spring elements 1 and 2 are 1k  and 2k , respectively. 
The nodes of the assemblage have been numbered 1, 3, and 2 for further generalization because 
sequential numbering between elements generally does not occur in large problems.

The x axis is the global axis of the assemblage. The local x axis of each element coincides 
with the global axis of the assemblage.

For element 1, using Eq. (2.2.8), we have
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and for element 2, we have
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Furthermore, elements 1 and 2 must remain connected at common node 3 throughout the 
displacement. This is called the continuity or compatibility requirement. The compatibility 
requirement yields

 	 5 53
(1)

3
(2)

3u u u 	 (2.3.3)

*Throughout this text, element numbers in figures are shown with circles around them.

 Figure 2–5  Two-spring assemblage
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where, throughout this text, the superscripts in parentheses above u refers to the element 
number to which they are related. Recall that the subscript to the right identifies the node of 
displacement and that 3u  is the node 3 displacement of the total or global spring assemblage.

Free-body diagrams of each element and node (using the established sign conventions for 
element nodal forces in Figure 2–2) are shown in Figure 2–6.

Based on the free-body diagrams of each node shown in Figure 2–6 and the fact that exter-
nal forces must equal internal forces at each node, we can write nodal equilibrium equations 
at nodes 3, 2, and 1 as

 	 5 13 3
(1)

3
(2)F f fx x x 	 (2.3.4)

 	 52 2
(2)F fx x 	 (2.3.5)

 	 51 1
(1)F fx x 	 (2.3.6)

where 1F x results from the external applied reaction at the fixed support.
Here Newton’s third law, of equal but opposite forces, is applied in moving from a node 

to an element associated with the node. Using Eqs. (2.3.1) through (2.3.3) in Eqs. (2.3.4) 
through (2.3.6), we obtain
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In matrix form, Eqs. (2.3.7) are expressed by
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Rearranging Eq. (2.3.8) in numerically increasing order of the nodal degrees of freedom, we 
have
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Equation (2.3.9) is now written as the single matrix equation

 	 { }{ } 5 [ ]F K d 	 (2.3.10)

 Figure 2–6  Nodal forces consistent with element force sign convention
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is called the total or global or system stiffness matrix.
In summary, to establish the stiffness equations and stiffness matrix, Eqs. (2.3.9) and 

(2.3.11), for a spring assemblage, we have used force/deformation relationships Eqs. (2.3.1) 
and (2.3.2), compatibility relationship Eq. (2.3.3), and nodal force equilibrium Eqs. (2.3.4) 
through (2.3.6). We will consider the complete solution to this example problem after con-
sidering a more practical method of assembling the total stiffness matrix in Section 2.4 and 
discussing the support boundary conditions in Section 2.5.

	 2.4 	 Assembling the Total Stiffness Matrix 
by Superposition (Direct Stiffness Method)

We will now consider a more convenient method for constructing the total stiffness matrix. This 
method is based on proper superposition of the individual element stiffness matrices making 
up a structure (also see References [1] and [2]).

Referring to the two-spring assemblage of Section 2.3, the element stiffness matrices are 
given in Eqs. (2.3.1) and (2.3.2) as
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Here the uis written above the columns and next to the rows in the [k]s indicate the degrees of 
freedom associated with each element row and column.

The two element stiffness matrices, Eqs. (2.4.1), are not associated with the same degrees 
of freedom; that is, element 1 is associated with axial displacements at nodes 1 and 3, whereas 
element 2 is associated with axial displacements at nodes 2 and 3. Therefore, the element stiff-
ness matrices cannot be added together (superimposed) in their present form. To superimpose 
the element matrices, we must expand them to the order (size) of the total structure (spring 
assemblage) stiffness matrix so that each element stiffness matrix is associated with all the 
degrees of freedom of the structure. To expand each element stiffness matrix to the order of 
the total stiffness matrix, we simply add rows and columns of zeros for those displacements 
not associated with that particular element.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



392.4  Assembling the Total Stiffness Matrix by Superposition (Direct Stiffness Method)

For element 1, we rewrite the stiffness matrix in expanded form so that Eq. (2.3.1) becomes
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where, from Eq. (2.4.2), we see that 2
(1)u  and 2

(1)f x  are not associated with [ ](1)k . Similarly, for 
element 2, we have

 	 2

2

5
0 0 0
0 1 1
0 1 1

2

1 2 3
1
(2)

2
(2)

3
(2)

1
(2)

2
(2)

3
(2)





















































k

u u u
u

u

u

f

f

f

x

x

x

	 (2.4.3)

Now, considering force equilibrium at each node results in
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where Eq. (2.4.4) is really Eqs. (2.3.4) through  (2.3.6) expressed in matrix form. Using Eqs. 
(2.4.2) and (2.4.3) in Eq. (2.4.4), we obtain
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where, again, the superscripts on the u’s indicate the element numbers. Simplifying Eq. (2.4.5) 
results in
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Here the superscripts indicating the element numbers associated with the nodal displacements 
have been dropped because 1

(1)u  is really 1u , 2
(2)u  is really 2u , and, by Eq. (2.3.3), 3

(1)
3
(2)

3u u u5 5 ,  
the node 3 displacement of the total assemblage. Equation (2.4.6), obtained through superpo-
sition, is identical to Eq. (2.3.9).
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The expanded element stiffness matrices in Eqs. (2.4.2) and (2.4.3) could have been added 
directly to obtain the total stiffness matrix of the structure, given in Eq. (2.4.6). This reliable 
method of directly assembling individual element stiffness matrices to form the total structure 
stiffness matrix and the total set of stiffness equations is called the direct stiffness method. It 
is the most important step in the finite element method.

For this simple example, it is easy to expand the element stiffness matrices and then 
superimpose them to arrive at the total stiffness matrix. However, for problems involving a 
large number of degrees of freedom, it will become tedious to expand each element stiffness 
matrix to the order of the total stiffness matrix. To avoid this expansion of each element 
stiffness matrix, we suggest a direct, or shortcut, form of the direct stiffness method to obtain 
the total stiffness matrix. For the spring assemblage example, the rows and columns of each 
element stiffness matrix are labeled according to the degrees of freedom associated with them 
as follows:
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[K ] is then constructed simply by directly adding terms associated with degrees of freedom 
in [ ](1)k  and [ ](2)k  into their corresponding identical degree-of-freedom locations in [K ] as 
follows. The 1u  row, 1u  column term of [K ] is contributed only by element 1, as only element 
1 has degree of freedom 1u  [Eq. (2.4.7)], that is, k k11 15 . The 3u  row, 3u  column of [K ] has 
contributions from both elements 1 and 2, as the 3u  degree of freedom is associated with both 
elements. Therefore, k k k33 1 25 1 . Similar reasoning results in [K] as
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(2.4.8)

Here elements in [K ] are located on the basis that degrees of freedom are ordered in 
increasing node numerical order for the total structure. Section 2.5 addresses the com-
plete solution to the two-spring assemblage in conjunction with discussion of the support 
boundary conditions.

	 2.5 	 Boundary Conditions
We must specify boundary (or support) conditions for structure models such as the spring 
assemblage of Figure 2–5, or [K ] will be singular; that is, the determinant of [K ] will be zero, 
and its inverse will not exist. This means the structural system is unstable. Without our speci-
fying adequate kinematic constraints or support conditions, the structure will be free to move 
as a rigid body and not resist any applied loads. In general, the number of boundary conditions 
necessary to make [K ] nonsingular is equal to the number of possible rigid body modes.
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Boundary conditions relevant for spring assemblages are associated with nodal displace-
ments. These conditions are of two types. Homogeneous boundary conditions—the more 
common—occur at locations that are completely prevented from movement; nonhomogeneous 
boundary conditions occur where finite nonzero values of displacement are specified, such as 
the settlement of a support.

In the mathematical sense in regard to solving boundary value problems, we encounter two 
general classifications of boundary conditions when imposed on an ordinary or partial differ-
ential equation or derived upon taking the first variation of a functional as shown in References 
[4, 5, 8], but these are avoided in this more basic textbook.

The first type—primary, essential, or Dirichlet—boundary condition [named after Johann 
Dirichlet (1805–1859)], specifies the values a solution, such as the displacement, must satisfy 
on the boundary of the domain.

The second type—natural or Neumann—boundary condition [named after Carl Neumann 
(1832–1925)], specifies the values that the derivatives of a solution must satisfy on the bound-
ary of the domain.

To illustrate the two general displacement types of boundary conditions, let us consider 
Eq. (2.4.6), derived for the spring assemblage of Figure 2–5. which has a single rigid body 
mode in the direction of motion along the spring assemblage.

Homogeneous Boundary Conditions
We first consider the case of homogeneous boundary conditions. Hence all boundary conditions 
are such that the displacements are zero at certain nodes. Here we have 01u 5  because node 
1 is fixed. Therefore, Eq. (2.4.6) can be written as
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Equation (2.5.1), written in expanded form, becomes
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where 1F x is the unknown reaction and 2F x and 3F x  are known applied loads.
Writing the second and third of Eqs. (2.5.2) in matrix form, we have
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We have now effectively partitioned off the first column and row of [K] and the first row of 
{d} and {F} to arrive at Eq. (2.5.3).
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For homogeneous boundary conditions, Eq. (2.5.3) could have been obtained directly by 
deleting the row and column of Eq. (2.5.1) corresponding to the zero-displacement degrees 
of freedom. Here row 1 and column 1 are deleted because one is really multiplying column 1 
of [K] by 01u 5 . However, 1F x is not necessarily zero and can be determined once 2u  and 3u  
are solved for.

After solving Eq. (2.5.3) for 2u  and 3u , we have
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Now that 2u  and 3u  are known from Eq. (2.5.4), we substitute them in the first of Eqs. (2.5.2) 
to obtain the reaction 1F x as

 	 1 1 3F k ux 5 2 	 (2.5.5)

We can express the unknown nodal force at node 1 (also called the reaction) in terms of the 
applied nodal forces 2F x and 3F x  by using Eq. (2.5.4) for 3u  substituted into Eq. (2.5.5). The 
result is

 	 1 2 3F F Fx x x5 2 2 	 (2.5.6)

Therefore, for all homogeneous boundary conditions, we can delete the rows and columns 
corresponding to the zero-displacement degrees of freedom from the original set of equations 
and then solve for the unknown displacements. This procedure is useful for hand calculations. 
(However, Appendix B.4 presents a more practical, computer-assisted scheme for solving the 
system of simultaneous equations.)

Nonhomogeneous Boundary Conditions
We now consider the case of nonhomogeneous boundary conditions. Hence one or more of 
the specified displacements are nonzero. For simplicity’s sake, let 1u d5 , where d  is a known 
displacement (Figure 2–7), in Eq. (2.4.6). We now have
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Equation (2.5.7) written in expanded form becomes
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where 1F x is now a reaction from the support that has moved an amount d . Considering the 
second and third of Eqs. (2.5.8) because they have known right-side nodal forces 2F x and 3F x ,  
we obtain
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Transforming the known d  terms to the right side of Eqs. (2.5.9) yields
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Rewriting Eqs. (2.5.10) in matrix form, we have
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Therefore, when dealing with nonhomogeneous boundary conditions, we cannot initially delete 
row 1 and column 1 of Eq. (2.5.7), corresponding to the nonhomogeneous boundary condi-
tion, as indicated by the resulting Eq. (2.5.11) because we are multiplying each element by 
a nonzero number. Had we done so, the 1k d  term in Eq. (2.5.11) would have been neglected, 
resulting in an error in the solution for the displacements. For nonhomogeneous boundary 
conditions, we must, in general, transform the terms associated with the known displacements 
to the right-side force matrix before solving for the unknown nodal displacements. This was 
illustrated by transforming the 1k d  term of the second of Eqs. (2.5.9) to the right side of the 
second of Eqs. (2.5.10).

We could now solve for the displacements in Eq. (2.5.11) in a manner similar to that used 
to solve Eq. (2.5.3). However, we will not further pursue the solution of Eq. (2.5.11) because 
no new information is to be gained.

However, on substituting the displacement back into Eq. (2.5.7), the reaction now becomes

 	 1 1 1 3F k k ux d5 2 	 (2.5.12)

which is different than Eq. (2.5.5) for 1F x.
Notice that if the displacement is known at a node (say 1u d5 ), then the force 1F x at the 

node in the same direction as the displacement is not initially known and is determined using 
the global equation of Eq. (2.5.7) after solving for the unknown nodal displacements.

 Figure 2–7  Two-spring assemblage with known displacement d  at node 1

1
1

3
2

2

F3x F2xk2k1

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2  |  Introduction to the Stiffness (Displacement) Method44

At this point, we summarize some properties of the global stiffness matrix in Eq. (2.5.7) 
that are also applicable to the generalization of the finite element method.

	 1.	 [K] is square, as it relates the same number of forces and displacements.
	 2.	 [K] is symmetric, as is each of the element stiffness matrices. If you are familiar with 

structural mechanics, you will not find this symmetry property surprising. It can be proved 
by using the reciprocal laws described in such References as [3] and [4].

	 3.	 [K] is singular (its determinant is equal to zero), and thus, no inverse exists until sufficient 
boundary conditions are imposed to remove the singularity and prevent rigid body motion.

	 4.	 The main diagonal terms of [K] are always positive. Otherwise, a positive nodal force Fi 
could produce a negative displacement di —a behavior contrary to the physical behavior 
of any actual structure.

	 5.	 [K] is positive semidefinite (that is { } [ ]{ } 0x K xT .  for all non-zero vector {x} with real 
numbers). (For more about positive semidefinite matrices, see Appendix A.)

In general, specified support conditions are treated mathematically by partitioning the 
global equilibrium equations as follows:
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where we let 1{ }d  be the unconstrained or free displacements and 2{ }d  be the specified dis-
placements. From Eq. (2.5.13), we have

 	 5 2[ ] [ ]11 1 1 12 2{ } { } { }K d F K d 	 (2.5.14)

and

 	 [ ] [ ]2 21 1 22 2{ } { } { }F K d K d5 1 	 (2.5.15)

where 1{ }F  are the known nodal forces and 2{ }F  are the unknown nodal forces at the specified 
displacement nodes. 2{ }F  is found from Eq. (2.5.15) after 1{ }d  is determined from Eq. (2.5.14). 
In Eq. (2.5.14), we assume that [ ]11K  is no longer singular, thus allowing for the determination 
of 1{ }d .

To illustrate the stiffness method for the solution of spring assemblages we now present 
the following examples.

EXAMPLE 2.1

For the spring assemblage with arbitrarily numbered nodes shown in Figure 2–8, obtain  
(a) the global stiffness matrix, (b) the displacements of nodes 3 and 4, (c) the reaction 
forces at nodes 1 and 2, and (d) the forces in each spring. A force of 25 kN is applied 
at node 4 in the x direction. The spring constants are given in the figure. Nodes 1 and 2 
are fixed.
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SOLUTION:
(a) We begin by making use of Eq. (2.2.18) to express each element stiffness matrix as 
follows:

 	

5 2

2
5 2

2

5 2

2































k k

k

[ ]

1 3

200 200
200 200

1
3

[ ]

3 4

400 400
400 400

3
4

[ ]

4 2

600 600
600 600

4
2

(1) (2)

(3)

	 (2.5.16)

where the numbers above the columns and next to each row indicate the nodal degrees of free-
dom associated with each element. For instance, element 1 is associated with degrees of free-
dom 1u  and 3u . Also, the local element x axis coincides with the global x axis for each element.

Using the concept of superposition (the direct stiffness method), we obtain the global stiff-
ness matrix as

	 [ ] [ ] [ ] [ ](1) (2) (3)K k k k5 1 1 	
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	 (2.5.17)

(b) The global stiffness matrix, Eq. (2.5.17), relates global forces to global displacements 
as follows:
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	 (2.5.18)

 Figure 2–8  Spring assemblage for solution
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Applying the homogeneous boundary conditions 01u 5  and 02u 5  to Eq. (2.5.18), sub-
stituting applied nodal forces, and partitioning the first two equations of Eq. (2.5.18) (or 
deleting the first two rows of {F} and {d} and the first two rows and columns of [K ] 
corresponding to the zero-displacement boundary conditions), we obtain
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Solving Eq. (2.5.19), we obtain the global nodal displacements

 	 5 5u u
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11
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11
mm3 4 	 (2.5.20)

(c) To obtain the global nodal forces (which include the reactions at nodes 1 and 2), 
we back-substitute Eqs. (2.5.20) and the boundary conditions 01u 5  and 02u 5  into 
Eq. (2.5.18). This substitution yields
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	 (2.5.21)

Multiplying matrices in Eq. (2.5.21) and simplifying, we obtain the forces at each node
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	 (2.5.22)

From these results, we observe that the sum of the reactions 1F x and 2F x is equal in mag-
nitude but opposite in direction to the applied force 4F x. This result verifies equilibrium of 
the whole spring assemblage.

(d) Next we use local element Eq. (2.2.8) to obtain the forces in each element.

Element 1

 	 5
2

2





































f

f

x

x

200 200

200 200

01
(1)

3
(1) 250

11
	 (2.5.23)
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Simplifying Eq. (2.5.23), we obtain

 	 f 5
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5f fx x
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(1) 	 (2.5.24)

A free-body diagram of spring element 1 is shown in Figure 2–9(a). The spring is subjected 
to tensile forces given by Eqs. (2.5.24). Also, 1

(1)f x  is equal to the reaction force 1F x given in 
Eq. (2.5.22). A free-body diagram of node 1 [Figure 2–9(b)] shows this result.

 Figure 2–9  (a) Free-body diagram of element 1 and (b) free-body diagram of node 1
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	 (2.5.25)

Simplifying Eq. (2.5.25), we obtain
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A free-body diagram of spring element 2 is shown in Figure 2–10. The spring is subjected 
to tensile forces given by Eqs. (2.5.26).

 Figure 2–10  Free-body diagram of element 2
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Simplifying Eq. (2.5.27) yields
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Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2  |  Introduction to the Stiffness (Displacement) Method48

A free-body diagram of spring element 3 is shown in Figure 2–11(a). The spring is sub-
jected to compressive forces given by Eqs. (2.5.28). Also, f x2  is equal to the reaction force 
F x2  given in Eq. (2.5.22). A free-body diagram of node 2 (Figure 2–11b) shows this result.

 Figure 2–11  (a) Free-body diagram of element 3 and (b) free-body diagram of node 2

(3) F2xf2x

2

(b)(a)

225,000 225,000
1111

 Figure 2–12  Spring assemblage for solution

EXAMPLE 2.2

For the spring assemblage shown in Figure 2–12, obtain (a) the global stiffness matrix, 
(b) the displacements of nodes 2–4, (c) the global nodal forces, and (d) the local element 
forces. Node 1 is fixed while node 5 is given a fixed, known displacement 20.0 mmd 5 . 
The spring constants are all equal to 200 kN/mk 5 .

SOLUTION:
(a) We use Eq. (2.2.9) to express each element stiffness matrix as
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Again using superposition, we obtain the global stiffness matrix as
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(b) The global stiffness matrix, Eq. (2.5.30), relates the global forces to the global displace-
ments as follows:
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	 (2.5.31)
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Applying the boundary conditions 01u 5  and 20 mm ( 0.02 m)5u 5 5 , substituting known 
global forces 02F x 5 , 03F x 5 , and 04F x 5 , and partitioning the first and fifth equations 
of Eq. (2.5.31) corresponding to these boundary conditions, we obtain
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We now rewrite Eq. (2.5.32), transposing the product of the appropriate stiffness coefficient 
( 200)2  multiplied by the known displacement (0.02 m)  to the left side.
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	 (2.5.33)

Solving Eq. (2.5.33), we obtain

 	 0.005 m 0.01 m 0.015 m2 3 4u u u5 5 5 	 (2.5.34)

(c) The global nodal forces are obtained by back-substituting the boundary condition dis-
placements and Eqs. (2.5.34) into Eq. (2.5.31). This substitution yields
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	 (2.5.35)

The results of Eqs. (2.5.35) yield the reaction 1F x  opposite that of the nodal force 5F x  
required to displace node 5 by 20.0 mmd 5 . This result verifies equilibrium of the whole 
spring assemblage.

Remember if the displacement is known at a node in a given direction (in this example, 
20 mm5u 5 ), then the force 5F x  at that same node and in that same direction is not initially 

known. The force is determined after solving for the unknown nodal displacements.

(d) Next, we make use of local element Eq. (2.2.10) to obtain the forces in each element.
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Simplifying Eq. (2.5.36) yields
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Simplifying Eq. (2.5.38) yields
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Simplifying Eq. (2.5.40), we have
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Simplifying Eq. (2.5.42), we obtain

 	 1 kN 1 kN4
(4)

5
(4)f fx x5 2 5 	 (2.5.43)

You should draw free-body diagrams of each node and element and use the results of 
Eqs. (2.5.35) through (2.5.43) to verify both node and element equilibria.

Finally, to review the major concepts presented in this chapter, we solve the following 
example problem.
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EXAMPLE 2.3

(a) Using the ideas presented in Section 2.3 for the system of linear elastic springs shown 
in Figure 2–13, express the boundary conditions, the compatibility or continuity condi-
tion similar to Eq. (2.3.3), and the nodal equilibrium conditions similar to Eqs. (2.3.4) 
through (2.3.6). Then formulate the global stiffness matrix and equations for solution of 
the unknown global displacement and forces. The spring constants for the elements are  
k1, k2, and k3; P is an applied force at node 2.

(b) Using the direct stiffness method, formulate the same global stiffness matrix and equa-
tion as in part (a).

 Figure 2–13  Spring assemblage for solution

SOLUTION:
(a) The boundary conditions are

 	 u u u0 0 01 3 45 5 5 	 (2.5.44)

The compatibility condition at node 2 is

 	 u u u u2
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2
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2
(3)

25 5 5 	 (2.5.45)

The nodal equilibrium conditions are
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	 (2.5.46)

where the sign convention for positive element nodal forces given by Figure 2–2 was 
used in writing Eqs. (2.5.46). Figure 2–14 shows the element and nodal force free body 
diagrams.
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Using the local stiffness matrix Eq. (2.2.17) applied to each element and compatibility 
condition Eq. (2.5.45), we obtain the total or global equilibrium equations as
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In matrix form, we express Eqs. (2.5.47) as
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Therefore, the global stiffness matrix is the square, symmetric matrix on the right side of 
Eq. (2.5.48). Making use of the boundary conditions, Eqs. (2.5.44), and then considering 
the second equation of Eqs. (2.5.47) or (2.5.48), we solve for 2u  as

 	 2
1 2 3

5
1 1

u
P

k k k
	 (2.5.49)

We could have obtained this same result by deleting rows 1, 3, and 4 in the {F} and {d} 
matrices and rows and columns 1, 3, and 4 in [K ], corresponding to zero displacement, as 
previously described in Section 2.4, and then solving for 2u .

Using Eqs. (2.5.47), we now solve for the global forces as

 	 1 1 2 3 2 2 4 3 25 2 5 2 5 2F k u F k u F k ux x x 	 (2.5.50)

The forces given by Eqs. (2.5.50) can be interpreted as the global reactions in this example. 
The negative signs in front of these forces indicate that they are directed to the left (opposite 
the x axis).

 Figure 2–14  Free-body diagrams of elements and nodes of spring assemblage of 
Figure 2–13
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(b) Using the direct stiffness method, we formulate the global stiffness matrix. First, using 
Eq. (2.2.18), we express each element stiffness matrix as
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where the particular degrees of freedom associated with each element are listed in the col-
umns above each matrix. Using the direct stiffness method as outlined in Section 2.4, we 
add terms from each element stiffness matrix into the appropriate corresponding row and 
column in the global stiffness matrix to obtain

 	





















u u u u

K

k k

k k k k k k

k k

k k

[ ]

0 0

0 0

0 0

1 2 3 4

1 1

1 1 2 3 2 3

2 2

3 3

5

2

2 1 1 2 2

2

2

	 (2.5.52)

We observe that each element stiffness matrix [k] has been added into the location in the 
global [K] corresponding to the identical degree of freedom associated with the element 
[k]. For instance, element 3 is associated with degrees of freedom 2u  and 4u ; hence its 
contributions to [K] are in the 2–2, 2–4, 4–2, and 4–4 locations of [K], as indicated in  
Eq. (2.5.52) by the 3k  terms.

Having assembled the global [K] by the direct stiffness method, we then formulate the 
global equations in the usual manner by making use of the general Eq. (2.3.10), [ ]{ }{ } 5F K d .  
These equations have been previously obtained by Eq. (2.5.48) and therefore are not 
repeated.

Another method for handling imposed boundary conditions that allows for either homoge-
neous (zero) or nonhomogeneous (nonzero) prescribed degrees of freedom is called the penalty 
method. This method is easy to implement in a computer program.

Consider the simple spring assemblage in Figure 2–15 subjected to applied forces 1F x and 
2F x as shown. Assume the horizontal displacement at node 1 to be forced to be 1 d5u .

We add another spring (often called a boundary element) with a large stiffness kb  to the 
assemblage in the direction of the nodal displacement 1 d5u  as shown in Figure 2–16. This 
spring stiffness should have a magnitude about 106 times that of the largest kii term.

 Figure 2–15  Spring assemblage used to illustrate the penalty method

F1x

x

F2x
k1 k21

1 2

2 3
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Now we add the force dkb  in the direction of 1u  and solve the problem in the usual manner as 
follows.

The element stiffness matrices are

 	
























k
k k

k k
k

k k

k k
[ ] [ ](1) 1 1

1 1

(2) 2 2

2 2
5

2

2
5

2

2
	 (2.5.53)

Assembling the element stiffness matrices using the direct stiffness method, we obtain the 
global stiffness matrix as

 	

















K

k k k

k k k k
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b

[ ]

0

0

1 1

1 1 2 2

2 2

5

1 2

2 1 2

2
	 (2.5.54)

Assembling the global [ ]{ }{ } 5F K d  equations and invoking the boundary condition 03 5u ,  
we obtain
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	 (2.5.55)

Solving the first and second of Eqs. (2.5.55), we obtain

 	
( )

1
2 1 2 2

1
5

2 1

2
u

F k k u

k
x 	 (2.5.56)

and

 	
( )

2
1 2 1 1 1

1 2 1 2

d
5

1 1 1

1 1
u

k k F F k k k

k k k k k k
b x x b

b b
	 (2.5.57)

Now as kb  approaches infinity, Eq. (2.5.57) simplifies to

 	 2
2 1

1 2

d
5

1

1
u

F k

k k
x 	 (2.5.58)

 Figure 2–16  Spring assemblage with a boundary spring element added at node 1

F1x F2x

k1kb k21 2 3
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and Eq. (2.5.56) simplifies to

 	 u1 d5 	 (2.5.59)

These results match those obtained by setting 1 d5u  initially.
In using the penalty method, a very large element stiffness should be parallel to a degree 

of freedom as is the case in the preceding example. If kb  were inclined, or were placed within 
a structure, it would contribute to both diagonal and off-diagonal coefficients in the global 
stiffness matrix [K]. This condition can lead to numerical difficulties in solving the equations 

[ ]{ }{ } 5F K d . To avoid this condition, we transform the displacements at the inclined support 
to local ones as described in Section 3.9.

	 2.6 	 Potential Energy Approach to Derive Spring 
Element Equations

One of the alternative methods often used to derive the element equations and the stiffness 
matrix for an element is based on the principle of minimum potential energy. (The use of this 
principle in structural mechanics is fully described in Reference [4].) This method has the 
advantage of being more general than the method given in Section 2.2, which involves nodal 
and element equilibrium equations along with the stress/strain law for the element. Thus the 
principle of minimum potential energy is more adaptable to the determination of element 
equations for complicated elements (those with large numbers of degrees of freedom) such as 
the plane stress/strain element, the axisymmetric stress element, the plate bending element, 
and the three-dimensional solid stress element.

Again, we state that the principle of virtual work (Appendix E) is applicable for any 
material behavior, whereas the principle of minimum potential energy is applicable only 
for elastic materials. However, both principles yield the same element equations for linear-
elastic materials, which are the only kind considered in this text. Moreover, the principle of 
minimum potential energy, being included in the general category of variational methods 
(as is the principle of virtual work), leads to other variational functions (or functionals) 
similar to potential energy that can be formulated for other classes of problems, primarily of 
the nonstructural type. These other problems are generally classified as field problems and 
include, among others, torsion of a bar, heat transfer (Chapter 13), fluid flow (Chapter 14), 
and electric potential (Chapter 14).

Still other classes of problems, for which a variational formulation is not clearly defin-
able, can be formulated by weighted residual methods. We will describe Galerkin’s method 
in Section 3.12, along with collocation, least squares, and the subdomain weighted residual 
methods in Section 3.13. In Section 3.13, we will also demonstrate these methods by solving 
a one-dimensional bar problem using each of the four residual methods and comparing each 
result to an exact solution. (For more information on weighted residual methods, also consult 
References [5–7].)

Here we present the principle of minimum potential energy as used to derive the spring 
element equations. We will illustrate this concept by applying it to the simplest of elements in 
hopes that the reader will then be more comfortable when applying it to handle more compli-
cated element types in subsequent chapters.
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2  |  Introduction to the Stiffness (Displacement) Method56

The total potential energy π p of a structure is expressed in terms of displacements. 
In the finite element formulation, these will generally be nodal displacements such that 

( , , , )1 2π π …5 d d dp p n . When p p is minimized with respect to these displacements, equilib-
rium equations result. For the spring element, we will show that the same nodal equilibrium 
equations [ ] { }{ } 5k d f  result as previously derived in Section 2.2.

We first state the principle of minimum potential energy as follows:

Of all the geometrically possible shapes that a body can assume, the true one, 
corresponding to the satisfaction of stable equilibrium of the body, is identified by 
a minimum value of the total potential energy.

To explain this principle, we must first explain the concepts of potential energy and of a 
stationary value of a function. We will now discuss these two concepts.

 Total potential energy is defined as the sum of the internal strain energy U and the 
potential energy of the external forces Ω; that is,

 	 π Ω5 1Up 	 (2.6.1)

Strain energy is the capacity of internal forces (or stresses) to do work through deformations 
(strains) in the structure; Ω is the capacity of forces such as body forces, surface traction forces, 
and applied nodal forces to do work through deformation of the structure.

To understand the concept of internal strain energy, we first describe the concept of exter-
nal work. In this section, we consider only the external work due to an applied nodal force. In 
Chapter 3, Section 10, we consider work due to body forces (typically self weight) and surface 
tractions (distributed forces). External work is done on a linear-elastic behaving member [here 
we consider an elastic spring shown in Figure 2–17(a)] by applying a gradually increasing 
magnitude force F to the end of the spring up to some maximum value maxF  less than that which 
would cause permanent deformation in the spring. The maximum deformation maxX  occurs 
when the maximum force occurs as shown in Figure 2–17(b). The external work is given by 
the area under the force-deformation curve shown in Figure 2–17(b), where the slope of the 
straight line is equal to the spring constant k. The external work We is then given from basic 
mechanics principles as the integral of the dot product of vector force F with the differential 
displacement dx. This expression is represented by Eq. (2.6.2) as

 Figure 2–17  (a) Spring subjected to gradually increasing force F (b) Force/deformation 
curve for linear spring

F

F

max

X
x

max

(a) (b)

k

F

kx
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 	 2max
max0

max max
max

∫ ∫ 





5 ? 5 5W F dx F
x

x
dx F xe

x
	 (2.6.2)

where F in Eq. (2.6.2) is given by

 	 ( )max max5F F x x 	 (2.6.3)

In Eq. (2.6.2), we note that F and dx are in the same direction when expressing the second 
integral on the right side of Eq. (2.6.2).

By the conservation of mechanical energy principle, the external work due to the applied 
force F is transformed into the internal strain energy U of the spring. This strain energy is then 
given by

 	 2max max5 5W U F xe 	 (2.6.4)

Upon gradual reduction of the force to zero, the spring returns to its original undeformed state. 
This returned energy that is stored in the deformed elastic spring is called internal strain energy 
or just strain energy. Also

 	 max max5F kx 	 (2.6.5)

By substituting Eq. (2.6.5) into Eq. (2.6.4), we can express the strain energy as

 	 2max
25U kx 	 (2.6.6)

The potential energy of the external force, being opposite in sign from the external work 
expression because the potential energy of the external force is lost when the work is done by 
the external force, is given by

 	 max maxΩ 5 2F x 	 (2.6.7)

Therefore, substituting Eqs. (2.6.6) and (2.6.7) into (2.6.1), yields the total potential 
energy as

 	
1

2
max
2

max maxπ 5 2kx F xp 	 (2.6.8)

In general for any deformation x of the spring corresponding to force F, we replace maxx  
with x and maxF  with F and express U and Ω  as

 	 ( ) 225U x kx 	 (2.6.8a)

 	 ( )Ω 5 2x Fx	 (2.6.8b)

Substituting Eq. (2.6.8a) and (2.6.8b) into Eq. (2.6.1), we express the total potential energy as
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 	 ( )
1

2
2π 5 2x kx Fxp 	 (2.6.9)

The concept of a stationary value of a function G (used in the definition of the principle of 
minimum potential energy) is shown in Figure 2–18. Here G is expressed as a function of the 
variable x. The stationary value can be a maximum, a minimum, or a neutral point of G(x). To 
find a value of x yielding a stationary value of G(x), we use differential calculus to differentiate 
G with respect to x and set the expression equal to zero, as follows:

 	 05
dG

dx
	 (2.6.10)

An analogous process will subsequently be used to replace G with πp  and x with discrete 
values (nodal displacements) di. With an understanding of variational calculus (see Reference 
[8]), we could use the first variation of π p (denoted by dπ p, where d  denotes arbitrary change 
or variation) to minimize π p. However, we will avoid the details of variational calculus and 
show that we can really use the familiar differential calculus to perform the minimization of 
π p . To apply the principle of minimum potential energy—that is, to minimize π p—we take the 
variation of pπ , which is a function of nodal displacements di defined in general as

 	
1

1
2

2π
π π π

�d
d

d
d

d

d
d

d

d
d5 1 1 1

d
d

d
d

d
dp

p p p

n
n	 (2.6.11)

The principle states that equilibrium exists when the di define a structure state such that 
0 (change in potential energy 0)πd 5 5p  for arbitrary admissible variations in displacement 

ddi from the equilibrium state. An admissible variation is one in which the displacement 
field still satisfies the boundary conditions and interelement continuity. Figure 2–19(a) 
shows the hypothetical actual axial displacement and an admissible one for a spring with 
specified boundary displacements 1u  and 2u . Figure 2–19(b) shows inadmissible functions 
due to slope discontinuity between endpoints 1 and 2 and due to failure to satisfy the right 
end boundary condition of ( ) 25u L u . Here du represents the variation in u. In the general 

 Figure 2–18  Stationary values of a function
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finite element formulation, du would be replaced by ddi. This implies that any of the ddi 
might be nonzero. Hence, to satisfy 0dp 5p , all coefficients associated with the ddi must 
be zero independently. Thus,

 	 0 ( 1, 2, 3, , ) or 0
∂π
∂

∂π
∂{ }

…5 5 5
d

i n
d

p

i

p 	 (2.6.12)

where n equations must be solved for the n values of di that define the static equilib-
rium state of the structure. Equation (2.6.12) shows that for our purposes throughout this 
text, we can interpret the variation of π p  as a compact notation equivalent to differenti-
ation of π p  with respect to the unknown nodal displacements for which π p  is expressed. 
For linear-elastic materials in equilibrium, the fact that π p  is a minimum is shown, for 
instance, in Reference [4].

Before discussing the formulation of the spring element equations, we now illustrate 
the concept of the principle of minimum potential energy by analyzing a single-degree-of-
freedom spring subjected to an applied force, as given in Example 2.4. In this example, we 
will show that the equilibrium position of the spring corresponds to the minimum potential 
energy.

 Figure 2–19  (a) Actual and admissible displacement functions and (b) inadmissible displacement 
functions

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2  |  Introduction to the Stiffness (Displacement) Method60

EXAMPLE 2.4

For the linear-elastic spring subjected to a force of 5000 N shown in Figure 2–20, evaluate 
the potential energy for various displacement values and show that the minimum potential 
energy also corresponds to the equilibrium position of the spring.

 Figure 2–20  Spring subjected to force; load/displacement curve

5000 N

125 N/mm

SOLUTION:
We evaluate the total potential energy as

	 π Ω5 1Up 	

where 		
1

2
( )5U kx x     and    Ω 5 2Fx

We now illustrate the minimization of π p  through standard mathematics. Taking the 
variation of π p  with respect to x, or, equivalently, taking the derivative of π p  with 
respect to x (as π p  is a function of only one displacement x), as in Eqs. (2.6.11) and 
(2.6.12), we have

	 0π
∂π
∂

d d5 5
x

xp
p 	

or, because dx is arbitrary and might not be zero,

	 0
∂π
∂

5
x
p 	
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Using our previous expression for π p , we obtain

	 5 2 5
∂π
∂ x

xp 125 5000 0 	

or				    5x 40 mm	

This value for x is then back-substituted into π p  to yield

	 5 2 5 2π p 62.5(40) 5000(40) 100,000 N-mm2 	

which corresponds to the minimum potential energy obtained in Table 2–1 by the follow-

ing searching technique. Here ( )1
25U kx x  is the strain energy or the area under the load/

displacement curve shown in Figure 2–20, and Ω 5 2Fx is the potential energy of load F. 
For the given values of F and k, we then have

	 5 2 5 2π x x x xp
1

2
(125) 5000 62.5 50002 2 	

We now search for the minimum value of π p  for various values of spring deformation x.  
The results are shown in Table 2–1. A plot of π p  versus x is shown in Figure 2–21, 

 Table 2-1  Total potential energy for various spring deformations

Deformation  
x, in.

Total Potential Energy 
op, N-m

–80 800

–60 525

–40 300

–20 125

 0.00    0

 20 – 75

 40 –100

 60 –75

 80 0

 100 125
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where we observe that π p  has a minimum value at 5x 40 mm. This deformed position 
also corresponds to the equilibrium position because 5 2 5∂π ∂ xp( ) 125(40) 5000 0.

 Figure 2–21  Variation of potential energy with spring deformation

N-m

800

600

400

200

mm
–40 40–80 80

We now derive the spring element equations and stiffness matrix using the principle of 
minimum potential energy. Consider the linear spring subjected to nodal forces shown in 
Figure 2–22. Using Eq. (2.6.9) reveals that the total potential energy is

 	 1

2
( )2 1

2
1 1 2 2π 5 2 2 2k u u f u f up x x 	 (2.6.13)

where 2 12u u  is the deformation of the spring in Eq. (2.6.9). The first term on the right in Eq. 
(2.6.13) is the strain energy in the spring. Simplifying Eq. (2.6.13), we obtain

 	
1

2
( 2 )2

2
2 1 1

2
1 1 2 2π 5 2 1 2 2k u u u u f u f up x x 	 (2.6.14)

The minimization of p p with respect to each nodal displacement requires taking partial deriv-
atives of p p with respect to each nodal displacement such that

 	

1

2
( 2 2 ) 0

1

2
(2 2 ) 0

1
2 1 1

2
2 1 2

∂π
∂
∂π
∂

5 2 1 2 5

5 2 2 5

u
k u u f

u
k u u f

p
x

p
x

	 (2.6.15)
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Simplifying Eqs. (2.6.15), we have

 	
( )

( )
2 1 1

2 1 2

2 1 5

2 5

k u u f

k u u f
x

x

	 (2.6.16)

In matrix form, we express Eq. (2.6.16) as

 	 

































k k
k k

u

u

f

f
x

x

1

2

1

2

2

2
5 	 (2.6.17)

Because [ ]{ } { }5f k d , we have the stiffness matrix for the spring element obtained from  
Eq. (2.6.17):

 	








k

k k
k k

[ ] 5
2

2
	 (2.6.18)

As expected, Eq. (2.6.18) is identical to the stiffness matrix obtained in Section 2.2, Eq. (2.2.9).
We considered the equilibrium of a single spring element by minimizing the total 

potential energy with respect to the nodal displacements (see Example 2.4). We also devel-
oped the finite element spring element equations by minimizing the total potential energy 
with respect to the nodal displacements. We now show that the total potential energy of an 
entire structure (here an assemblage of spring elements) can be minimized with respect to 
each nodal degree of freedom and that this minimization results in the same finite element 
equations used for the solution as those obtained by the direct stiffness method.

 Figure 2–22  Linear spring subjected to nodal forces

 Figure 2–23  Spring assemblage

200 N/mm 400 N/mm 600 N/mm

25 kN

EXAMPLE 2.5

Obtain the total potential energy of the spring assemblage (Figure 2–23) for Example 2.1 
and find its minimum value. The procedure of assembling element equations can then be 
seen to be obtained from the minimization of the total potential energy.
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SOLUTION:
Using Eq. (2.6.8a), the strain energy stored in spring 1 is given by

 	 ( ) 2(1)
1 3 1

25 2U k u u 	 (2.6.19)

where the difference in nodal displacements 3 12u u  is the deformation x in spring 1. 
Eq. (2.6.19) can be written in matrix form as

 	 { } { }























U u u

k k

k k

u

u
d K d

1

2
[ ]

1

2
[ ](1)

3 1
1 1

1 1

3

1

T5
2

2
5 	 (2.6.20)

We observe from Eq. (2.6.20) that the strain energy U is a quadratic function of the nodal 
displacements.

Similar strain energy expressions for springs 2 and 3 are given by

 	 ( ) 2 and ( ) 2(2)
2 4 3

2 (3)
3 2 4

25 2 5 2U k u u U k u u 	 (2.6.21)

with similar matrix expressions as given by Eq. (2.6.20) for spring 1.

Since the strain energy is a scalar quantity, we can add the energy in each spring to 
obtain the total strain energy in the system as

 	 ( )
1

3∑5
5

U U e
i

	 (2.6.22)

The potential energy of the external nodal forces given in the order of the node numbering 
for the spring assemblage is

 	 ( )1 1 3 3 4 4 2 2Ω 5 2 1 1 1F u F u F u F ux x x x 	 (2.6.23)

Equation (2.6.23) can be expressed in matrix form as

 	 [ ]1 2 3 4

1

2

3

4

Ω





















5 2 u u u u

F

F

F

F

x

x

x

x

	 (2.6.24)

The total potential of the assemblage is the sum of the strain energy and the potential energy 
of the external forces given by adding Eqs. (2.6.19), (2.6.21) and (2.6.23) together as

 	
1

2
( )

1

2
( )

1

2
( )1 3 1

2
2 4 3

2
3 2 4

2

1 1 2 2 3 3 4 4

Π Ω5 1 5 2 1 2 1 2

2 2 2 2

U k u u k u u k u u

F u F u F u F u

p

x x x x

	

(2.6.25)
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65Summary Equations

Upon minimizing π p  with respect to each nodal displacement, we obtain
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	 (2.6.26)

In matrix form, Eqs. (2.6.26) become
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Substituting numerical values for 1k , 2k , and 3k  into Eq. (2.6.27), we obtain
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	 (2.6.28)

Equation (2.6.28) is identical to Eq. (2.5.18), which was obtained through the direct stiff-
ness method as described in Section 2.4. Hence the assembled equations using the principle 
of minimum potential energy result in the same equations obtained by the direct stiffness 
assembly method.

SUMMARY EQUATIONS

Definition of an element stiffness matrix:

 	 [ ]{ } { }5f k d 	 (2.1.1)

Definition of global or total stiffness matrix for a structure:

 	 [ ]{ }{ } 5F K d 	 (2.1.2)
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Basic matrix equation relating nodal forces to nodal displacement for spring element:
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	 (2.2.10)

Stiffness matrix for linear spring element:

 	








k

k k
k k

[ ] 5
2

2
	 (2.2.11)

Global equations for a spring assemblage:

 	 [ ] [ ]{ }5F K d 	 (2.2.13)

Total potential energy:

 	 Ωp 5 1Up 	 (2.6.1)

For a system of springs:

 	 1

2
[ ]{ } { }5U d K dT 	 (2.6.20)
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PROBLEMS

	 2.1	 a.	 Obtain the global stiffness matrix [K ] of the assemblage shown in Figure P2–1 by 
superimposing the stiffness matrices of the individual springs. Here k1, k2, and k3 
are the stiffnesses of the springs as shown.
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		  b.	 If nodes 1 and 2 are fixed and a force P acts on node 4 in the positive x direction, 
find an expression for the displacements of nodes 3 and 4.

		  c.	 Determine the reaction forces at nodes 1 and 2.
			   (Hint: Do this problem by writing the nodal equilibrium equations and then making 

use of the force/displacement relationships for each element as done in the first part 
of Section 2.4. Then solve the problem by the direct stiffness method.)

 Figure P2–1

	 2.2		  For the spring assemblage shown in Figure P2–2, determine the displacement at 
node 2 and the forces in each spring element. Also determine the force 3F . Given: 
Node 3 displaces an amount d 5 20 mm in the positive x direction because of the 
force 3F  and 5 5k k 100 N/mm1 2 .

 Figure P2–2

	 2.3	 a.	 For the spring assemblage shown in Figure P2–3, obtain the global stiffness matrix 
by direct superposition.

		  b.	 If nodes 1 and 5 are fixed and a force P is applied at node 3, determine the nodal 
displacements.

		  c.	 Determine the reactions at the fixed nodes 1 and 5.

 Figure P2–3

	 2.4		  Solve Problem 2.3 with 5 0P  (no force applied at node 3) and with node 5 given 
a fixed, known displacement of d  as shown in Figure P2–4.

 Figure P2–4

Problems
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2  |  Introduction to the Stiffness (Displacement) Method68

	 2.5		  For the spring assemblage shown in Figure P2–5, obtain the global stiffness 
matrix by the direct stiffness method. Let 5k 200 N mm(1) , 5k 400 N mm(2) , 

5k 600 N mm(3) , 5k 800 N/mm(4) , and 5k 1000 N/mm(5) .

 Figure P2–5

x
1

2

53

4

3
2 4

1

	 2.6		  For the spring assemblage in Figure P2–5, apply a concentrated force of 10,000 N 
at node 2 in the positive x direction and determine the displacements at nodes 2 and 
4.

	 2.7		  Instead of assuming a tension element as in Figure P2–3, now assume a compres-
sion element. That is, apply compressive forces to the spring element and derive the 
stiffness matrix.

	2.8–2.16		 For the spring assemblages shown in Figures P2–8 through P2–16, determine the 
nodal displacements, the forces in each element, and the reactions. Use the direct 
stiffness method for all problems.

 Figure P2–8

100 kN/m 100 kN/m
2.5 kN

 Figure P2–9

5 kN 20 kN
200 kN/m200 kN/m 200 kN/m

 Figure P2–10

200 kN/m

100 kN/m

100 kN/m

20 kN
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	 2.17		  For the five-spring assemblage shown in Figure P2–17, determine the displacements 
at nodes 2 and 3 and the reactions at nodes 1 and 4. Assume the rigid vertical bars 
at nodes 2 and 3 connecting the springs remain horizontal at all times but are free 
to slide or displace left or right. There is an applied force at node 3 of 1000 N to the 
right.

 Figure P2–11

 Figure P2–12

 Figure P2–13

 Figure P2–14

 Figure P2–16

k  = 20 kN/m k  = 20 kN/m k  = 20 kN/m

500 N 500 N
1 2 43

 Figure P2–15

Problems
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2  |  Introduction to the Stiffness (Displacement) Method70

Let 500 N mm(1) 5k , 300 N mm(2) (3)5 5k k , and 400 N mm(4) (5)5 5k k .

	 2.18		  Use the principle of minimum potential energy developed in Section 2.6 to solve 
the spring problems shown in Figure P2–18. That is, plot the total potential energy 
for variations in the displacement of the free end of the spring to determine the 
minimum potential energy. Observe that the displacement that yields the minimum 
potential energy also yields the stable equilibrium position.

5000 N

5000 N
200 kN/m 50 kN/m

 Figure P2–17

1000 N

5

3
32

2

1

1

4

4

5

 Figure P2–18

	 2.19		  Reverse the direction of the load in Example 2.4 and recalculate the total potential 
energy. Then use this value to obtain the equilibrium value of displacement.
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		 2.20		 The nonlinear spring in Figure P2–20 has the force/deformation relationship 2d5f k .  
Express the total potential energy of the spring, and use this potential energy to 
obtain the equilibrium value of displacement.

 Figure P2–20

250 N/mm

2500 N

	2.21–2.22		 Solve Problems 2.10 and 2.15 by the potential energy approach (see Example 2.5).

		 2.23		 Resistor type elements are often used in electrical circuits. Consider the typical 
resistor element shown in Figure P2–23 with nodes 1 and 2. One form of Ohm’s 
law says that the potential voltage difference across two points is equal to the 
current I through the conductor times the resistance R between the two points. 
In equation form, 5V IR where I denotes the current in units of amperes (amps) 
and V is the potential or voltage drop in units of volts (V) across the conductor 
of resistance R in units of ohms ( )Ω . Use the method in Section 2.2 to derive the 
“stiffness” matrix relating potential drop to current at the nodes shown as

	 1 1
1 1

or { } [ ]{ }1
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 Figure P2–23

Problems
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Chapter Objectives

At the conclusion of this chapter, you will be able to:

■	 Derive the stiffness matrix for a bar element.

■	 Illustrate how to solve a bar assemblage by the direct stiffness method.

■	 Introduce guidelines for selecting displacement functions.

■	 Describe the concept of transformation of vectors in two different coordinate 
systems in the plane.

■	 Derive the stiffness matrix for a bar arbitrarily oriented in the plane.

■	 Demonstrate how to compute stress for a bar in the plane.

■	 Show how to solve a plane truss problem.

■	 Develop the transformation matrix in three-dimensional space and show how to use 
it to derive the stiffness matrix for a bar arbitrarily oriented in space.

■	 Demonstrate the solution of space trusses.

■	 Define symmetry and describe the use of symmetry to solve a problem.

■	 Introduce and solve problems with inclined supports.

■	 Derive the bar equations using the theorem of minimum potential energy.

■	 Compare the finite element solution to an exact solution for a bar.

■	 Introduce Galerkin’s residual method to derive the bar element stiffness matrix and 
equations.

■	 Introduce other residual methods and their application to the one-dimensional bar.

■	 Create a flow chart of a finite element computer program for truss analysis and 
describe a step-by-step solution from a commercial program.

Introduction
Having set forth the foundation on which the direct stiffness method is based, we will now 
derive the stiffness matrix for a linear-elastic bar (or truss) element using the general steps 
outlined in Chapter 1. We will include the introduction of both a local coordinate system, 
chosen with the element in mind, and a global or reference coordinate system, chosen to be 

Development of Truss 
Equations

C h a p t e r

3
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3.1  Derivation of the Stiffness Matrix for a Bar Element in Local Coordinates 73

convenient (for numerical purposes) with respect to the overall structure. We will also discuss 
the transformation of a vector from the local coordinate system to the global coordinate system, 
using the concept of transformation matrices to express the stiffness matrix of an arbitrarily 
oriented bar element in terms of the global system. We will solve three example plane truss 
problems (see Figure 3–1 for a typical railroad trestle plane truss and a lift bridge truss over the 
Illinois River) to illustrate the procedure of establishing the total stiffness matrix and equations 
for solution of a structure.

Next we extend the stiffness method to include space trusses. We will develop the trans-
formation matrix in three-dimensional space and analyze two space trusses. Then we describe 
the concept of symmetry and its use to reduce the size of a problem and facilitate its solution. 
We will use an example truss problem to illustrate the concept and then describe how to handle 
inclined, or skewed, supports.

We will then use the principle of minimum potential energy and apply it to rederive the 
bar element equations. We then compare a finite element solution to an exact solution for 
a bar subjected to a linear varying distributed load. We will introduce Galerkin’s residual 
method and then apply it to derive the bar element equations. Finally, we will introduce other 
common residual methods—collocation, subdomain, and least squares—to merely expose 
you to them. We illustrate these methods by solving a problem of a bar subjected to a linear 
varying load.

	 3.1 	 Derivation of the Stiffness Matrix for a Bar Element 
in Local Coordinates

We will now consider the derivation of the stiffness matrix for the linear-elastic, constant 
cross-sectional area (prismatic) bar element shown in Figure 3–2. The derivation here will 
be directly applicable to the solution of pin-connected trusses. The bar is subjected to tensile 
forces T directed along the local axis of the bar and applied at nodes 1 and 2.

The bar element is assumed to have constant cross-sectional area A, modulus of elasticity 
E, and initial length L. The nodal degrees of freedom are local axial displacements (longitudinal 
displacements directed along the length of the bar) represented by 1u  and 2u  at the ends of the 
element as shown in Figure 3–2.

From Hooke’s law [Eq. (3.1.1)] and the strain/displacement relationship [Eq. (3.1.2) or 
Eq. (1.4.1)], we write

	 Ex xs «5 	 (3.1.1)

	
du

dx
x« 5 	 (3.1.2)

From force equilibrium, we have

	 A Tx constants 5 5 	 (3.1.3)

for a bar with loads applied only at the ends. (We will consider distributed loading in 
Section  3.10.) Using Eq. (3.1.2) in Eq. (3.1.1) and then Eq. (3.1.1) in Eq. (3.1.3) and 
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3  |  Development of Truss Equations74

■■ Figure 3–1  (a) A typical railroad trestle plane truss By Daryl L. Logan; (b) lift bridge truss 
over the Illinois River (By Daryl L. Logan) 
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differentiating with respect to x, we obtain the differential equation governing the linear-elastic 
bar behavior as

	
d

dx
AE

du

dx
0



 5 	 (3.1.4)

where u is the axial displacement function along the element in the x direction and A and E are 
written as though they were functions of x in the general form of the differential equation, even 
though A and E will be assumed constant over the whole length of the bar in our derivations to 
follow.

The following assumptions are used in deriving the bar element stiffness matrix:

1.	 The bar cannot sustain shear force or bending moment, that is,  
5 01f y , 5 02f y , 5 01m  and 5 02m .

2.	 Any effect of transverse displacement is ignored.
3.	 Hooke’s law applies; that is, axial stress s x is related to axial strain «x by s «5 Ex x.
4.	 No intermediate applied loads.

The steps previously outlined in Chapter 1 are now used to derive the stiffness matrix for 
the bar element and then to illustrate a complete solution for a bar assemblage.

Step 1 Select the Element Type
Represent the bar by labeling nodes at each end and in general by labeling the element number 
(Figure 3–2).

As in deriving the spring element stiffness matrix, step 2 can be skipped at this time in 
deriving the one-dimensional bar element stiffness matrix. To facilitate the derivation, we can 
proceed directly to step 3

Step 3 Define the Strain/Displacement and Stress/Strain Relationships
The strain/displacement relationship is

	 « 5
2u u

L
x

2 1 	 (3.1.5)

and the stress/strain relationship by Hooke’s law is

	 Ex xs «5 	 (3.1.6)

Step 4 Derive the Element Stiffness Matrix and Equations
The element stiffness matrix is derived as follows. From elementary mechanics, we have

	 T A xs5 	 (3.1.7)

■■ Figure 3–2  Bar subjected to tensile forces T; positive nodal displacements and forces are 
all in the local x direction

u1, f1x

x, u

u2, f2x

TT
L 21
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Now, using Eqs. (3.1.5) and (3.1.6) in Eq. (3.1.7), we obtain

	




5

2
T AE

u u

L
2 1

	 (3.1.8)

Also, by the nodal force sign convention of Figure 3–2,

	 f Tx1 5 2 	 (3.1.9)

When we substitute Eq. (3.1.8), Eq. (3.1.9) becomes

	 f
AE

L
u ux 5

2
2( )1 2 1 	 (3.1.10)

Similarly,

	 f Tx2 5 	 (3.1.11)

or, by Eq. (3.1.8), Eq. (3.1.11) becomes

	 f
AE

L
u ux 5 2( )2 2 1 	 (3.1.12)

Expressing Eqs. (3.1.10) and (3.1.12) together in matrix form, we have
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	 (3.1.13)

Now, because { } { }5 [ ]f k d , we have, from Eq. (3.1.13),

	 [ ] 1 1
1 1









5

2

2
k

AE

L
	 (3.1.14)

Equation (3.1.14) represents the stiffness matrix for a bar element in local coordinates. 
In Eq. (3.1.14), AE/L for a bar element is analogous to the spring constant k for a spring element.

Step 5 Assemble Element Equations to Obtain Global or Total Equations
Assemble the global stiffness and force matrices and global equations using the direct stiffness 
method described in Chapter 2 (see Section 3.6 for an example truss). This step applies for 
structures composed of more than one element such that (again)

	 K k F f
e

N
e

e

N
e[ ] [ ] and { } { }

1

( )

1

( )∑ ∑5 5
5 5

	 (3.1.15)

where now all local element stiffness matrices [ ]( )k e  must be transformed to global element 
stiffness matrices [k] (unless the local axes coincide with the global axes) before the direct 
stiffness method is applied as indicated by Eq. (3.1.15). (This concept of coordinate and stiff-
ness matrix transformations is described in Sections 3.3 and 3.4.)

Step 6 Solve for the Nodal Displacements
Determine the displacements by imposing boundary conditions and simultaneously solving a 
system of equations, { }5{ } [ ]F K d .
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Step 7 Solve for the Element Forces
Finally, determine the strains and stresses in each element by back-substitution of the displace-
ments into equations similar to Eqs. (3.1.5) and (3.1.6).

We will now illustrate a solution for a one-dimensional bar problem.

Example 3.1

For the three-bar assemblage shown in Figure 3–3 determine (a) the global stiffness matrix, 
(b) the displacements of nodes 2 and 3, and (c) the reactions at nodes 1 and 4. A force of 
15,000 N is applied in the x direction at node 2. The length of each element is 0.6 m. Let 

5 32.0 10 Pa11E  and 5 36 10 m4 2A −  for elements 1 and 2, and let 5 31 10 Pa11E  and 
5 312 10 m4 2A −  for element 3. Nodes 1 and 4 are fixed.

■■ Figure 3–3  Three-bar assemblage

SOLUTION:
(a) Using Eq. (3.1.14), we find that the element stiffness matrices are
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	 (3.1.16)

where, again, the numbers above the matrices in Eqs. (3.1.16) indicate the displacements 
associated with each matrix. Assembling the element stiffness matrices by the direct stiff-
ness method, we obtain the global stiffness matrix as

	
5 3

2

2 1 2

2 1 2

2

[ ] 2 10

1 1 0 0
1 1 1 1 0
0 1 1 1 1
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	 (3.1.17)
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(b) Equation (3.1.17) relates global nodal forces to global nodal displacements as follows:

	 5 3

2

2 2

2 2

2

2 10

1 1 0 0
1 2 1 0
0 1 2 1
0 0 1 1

1

2

3

4

8

1

2

3

4

F

F

F

F

u

u

u

u

x

x

x

x

























































	 (3.1.18)

Invoking the boundary conditions, we have

	 u u0 01 45 5 	 (3.1.19)

Using the boundary conditions, substituting known applied global forces into Eq. (3.1.18), 
and partitioning equations 1 and 4 of Eq. (3.1.18), we solve equations 2 and 3 of Eq. (3.1.18) 
to obtain

	 5 3
2

2

15000
0

2 10 2 1
1 2

8 2

3

u

u






























	 (3.1.20)

Solving Eq. (3.1.20) simultaneously for the displacements yields

	 5 5u u5 10 m = 0.05 mm 2.5 10 m = 0.025 mm2
5

3
5× ×− − 	 (3.1.21)

(c) Back-substituting Eqs. (3.1.19) and (3.1.21) into Eq. (3.1.18), we obtain the global nodal 
forces, which include the reactions at nodes 1 and 4, as follows:

5 3 2 5 3 2 3 5 2

5 3 2 1 2 5 3 1 3 2 3 5

5 3 2 1 2 5 3 2 3 1 3 2 5

5 3 2 1 5 3 2 3 1 5 2

2 10 ( ) 2 10 (0 5 10 ) 10,000 N

2 10 ( 2 ) 2 10 [0 2(5 10 ) 2.5 10 ] 15,000 N

2 10 ( 2 ) 2 10 [ 5 10 2(2.5 10 ) 0] 0

2 10 ( ) 2 10 ( 2.5 10 0) 5000 N

1
8

1 2
8 5

2
8

1 2 3
8 5 5

3
8

2 3 4
8 5 5

4
8

3 4
8 5

F u u

F u u u

F u u u

F u u

x

x

x

x

−

− −

− −

−� (3.1.22)

The results of Eqs. (3.1.22) show that the sum of the reactions 1F x and 4F x is equal in magnitude 
but opposite in direction to the applied nodal force of 15,000 N at node 2. Equilibrium of 
the bar assemblage is thus verified. Furthermore, Eqs. (3.1.22) show that 5F x 15,0002  N 
and F x 5 03  are merely the applied nodal forces at nodes 2 and 3, respectively, which further 
enhances the validity of our solution.

	 3.2 	S electing a Displacement Function in Step 2  
of the Derivation of Stiffness Matrix for the  
One-Dimensional Bar Element

Consider the following guidelines, as they relate to the one-dimensional bar element, when 
selecting a displacement function. (Further discussion regarding selection of displacement func-
tions and other kinds of approximation functions (such as temperature functions) will be pro-
vided in Chapter 4 for the beam element, in Chapter 6 for the constant-strain triangular element, 
in Chapter 8 for the linear-strain triangular element, in Chapter 9 for the axisymmetric element, 
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793.2  Selecting a Displacement Function in Step 2 of the Derivation of Stiffness Matrix

in Chapter 10 for the three-noded bar element and the plane quadrilateral element, in Chapter 
11 for the three-dimensional stress element, in Chapter 12 for the plate bending element, and in 
Chapter 13 for the heat transfer problem. More information is also provided in References [1–3].

Guidelines for Selecting Displacement Functions
1. 	We must choose in advance the mathematical function to represent the deformed shape of the 
bar element under loading. Because it is difficult, if not impossible at times, to obtain a closed 
form or exact solution, we assume a solution shape or distribution of displacement within the 
element by using an appropriate mathematical function. The most common functions used are 
polynomials.

Because the bar element resists axial loading only with the local degrees of freedom for 
the element being displacement 1u  and 2u  along the x direction, we choose a displacement func-
tion u to represent the axial displacement throughout the element. Here a linear displacement 
variation along the x axis of the bar is assumed [Figure 3–4(b)], because a linear function with 
specified endpoints has a unique path. Therefore,

	 u a a x1 25 1 	 (3.2.1)

In general, the total number of coefficients a is equal to the total number of degrees of freedom 
associated with the element. Here the total number of degrees of freedom is two—an axial 
displacement at each of the two nodes of the element. In matrix form, Eq. (3.2.1) becomes

	 [1 ] 1

2












5u x

a

a
	 (3.2.2)

We now want to express u as a function of the nodal displacements 1u  and 2u , as this will allow 
us to apply the physical boundary conditions on nodal displacements directly as indicated in 

■■ Figure 3–4  (a) Bar element showing plots of (b) displacement function u and shape 
functions, (c) 1N  and, (d) 2N  over domain of element

−

u1 u2

x

x

1 2

–
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step 3 and to then relate the nodal displacements to the nodal forces in step 4. We achieve this 
by evaluating u at each node and solving for 1a  and 2a  from Eq. (3.2.1) as follows:

	 u u a(0) 1 15 5 	 (3.2.3)

	 u L u a L u( ) 2 2 15 5 1 	 (3.2.4)

or, solving Eq. (3.2.4) for 2a ,

	 a
u u

L
2

2 1
5

2
	 (3.2.5)

Upon substituting Eqs. (3.2.3) and (3.2.5) into Eq. (3.2.1), we have

	 u
u u

L
x u2 1

1




5

2
1 	 (3.2.6)

In matrix form, we express Eq. (3.2.6) as

	 1 1

2


















5 2u

x

L

x

L

u

u
	 (3.2.7)

or

	 [ ]1 2
1

2












5u N N

u

u
	 (3.2.8)

Here

	 N
x

L
N

x

L
1 and1 25 2 5 	 (3.2.9)

are called the shape functions because the Ni’s express the shape of the assumed displacement 
function over the domain (x coordinate) of the element when the ith element degree of freedom 
has unit value and all other degrees of freedom are zero. In this case, 1N  and 2N  are linear func-
tions that have the properties that 5 11N  at node 1 and 5 01N  at node 2, whereas 5 12N  at 
node 2 and 5 02N  at node 1. See Figure 3–4(c) and (d) for plots of these shape functions over 
the domain of the spring element. Also, 1 5 11 2N N  for any axial coordinate along the bar.

The significance of the shape functions summing to one is described more fully under 
Guideline 4. In addition, the Ni’s are often called interpolation functions because we are 
interpolating to find the value of a function between given nodal values. The interpolation 
function may be different from the actual function except at the endpoints or nodes, where the 
interpolating function and actual function must be equal to specified nodal values.

2. 	The approximation function should be continuous within the bar element. The simple linear 
function for u of Eq. (3.2.1) certainly is continuous within the element. Therefore, the linear 
function yields continuous values of u within the element and prevents openings, overlaps, and 
jumps because of the continuous and smooth variation in u (Figure 3–5).
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813.2  Selecting a Displacement Function in Step 2 of the Derivation of Stiffness Matrix

3. 	The approximating function should provide interelement continuity for all degrees of free-
dom at each node for discrete line elements and along common boundary lines and surfaces 
for two- and three-dimensional elements. For the bar element, we must ensure that nodes 
common to two or more elements remain common to these elements upon deformation and 
thus prevent overlaps or voids between elements. For example, consider the two-bar structure 
shown in Figure 3–5. For the two-bar structure, the linear function for u [Eq. (3.2.1)] within 
each element will ensure that elements 1 and 2 remain connected; the displacement at node 2 
for element 1 will equal the displacement at the same node 2 for element 2; that is, 52

(1)
2
(2)u u . 

This rule was also illustrated by Eq. (2.3.3). The linear function is then called a conforming, or 
compatible, function for the bar element because it ensures the satisfaction both of continuity 
between adjacent elements and of continuity within the element.

In general, the symbol Cm is used to describe the continuity of a piecewise field (such as 
axial displacement), where the superscript m indicates the degree of derivative that is interele-
ment continuous. A field is then 0C  continuous if the function itself is interelement continuous. 
For instance, for the field variable being the axial displacement illustrated in Figure 3–5, the dis-
placement is continuous across the common node 2. Hence the displacement field is said to be 

0C  continuous. Bar elements, plane elements (see Chapter 7), and solid elements (Chapter 11) 
are 0C  elements in that they enforce displacement continuity across the common boundaries.

If the function has both its field variable and its first derivative continuous across the 
common boundary, then the field variable is said to be 1C  continuous. We will later see that 
the beam (see Chapter 4) and plate (see Chapter 12) elements are 1C  continuous. That is, they 
enforce both displacement and slope continuity across common boundaries.

4. 	The approximation function should allow for rigid-body displacement and for a state of 
constant strain within the element. The one-dimensional displacement function [Eq. (3.2.1)] 
satisfies these criteria because the 1a  term allows for rigid-body motion (constant motion of the 
body without straining) and the 2a x term allows for constant strain because « 5 5 2du dx ax  
is a constant. (This state of constant strain in the element can, in fact, occur if elements are 
chosen small enough.) The simple polynomial Eq. (3.2.1) satisfying this fourth guideline is 
then said to be complete for the bar element.

This idea of completeness also means in general that the lower-order term cannot be omitted 
in favor of the higher-order term. For the simple linear function, this means 1a  cannot be omitted 
while keeping 2a x. Completeness of a function is a necessary condition for convergence to the 
exact answer, for instance, for displacements and stresses (Figure 3–6) (see Reference [3]). Figure 
3–6 illustrates monotonic convergence toward an exact solution for displacement as the number 
of elements in a finite element solution is increased. Monotonic convergence is then the process in 
which successive approximation solutions (finite element solutions) approach the exact solution 
consistently without changing sign or direction.

■■ Figure 3–5  Interelement continuity of a two-bar structure
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L 2
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L
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3  |  Development of Truss Equations82

The idea that the interpolation (approximation) function must allow for a rigid-body 
displacement means that the function must be capable of yielding a constant value (say, 1a ), 
because such a value can, in fact, occur. Therefore, we must consider the case

	 u a15 	 (3.2.10)

For 5 1u a  requires nodal displacements 51 2u u  to obtain a rigid-body displacement.  
Therefore

	 a u u1 1 25 5 	 (3.2.11)

Using Eq. (3.2.11) in Eq. (3.2.8), we have

	 u N u N u N N a( )1 1 2 2 1 2 15 1 5 1 	 (3.2.12)

From Eqs. (3.2.10) and (3.2.12), we then have

	 u a N N a( )1 1 2 15 5 1 	 (3.2.13)

Therefore, by Eq. (3.2.13), we obtain

	 N N 11 21 5 	 (3.2.14)

Thus Eq. (3.2.14) shows that the displacement interpolation functions must add to unity at every 
point within the element so that u will yield a constant value when a rigid-body displacement 
occurs.

	 3.3 	T ransformation of Vectors in Two Dimensions
In many problems it is convenient to introduce both local x y( )9 92  and global (or reference) 

2( )x y  coordinates. Local coordinates are always chosen to represent the individual element 
conveniently. Global coordinates are chosen to be convenient for the whole structure.

Given the nodal displacement of an element, represented by the vector d in Figure 3–7, we 
want to relate the components of this vector in one coordinate system to components in another. 
For general purposes, we will assume in this section that d is not coincident with either the local or 
the global axis. In this case, we want to relate global displacement components to local ones. In so 
doing, we will develop a transformation matrix that will subsequently be used to develop the global 
stiffness matrix for a bar element. We define the angle u  to be positive when measured counterclock-
wise from x to 9x . We can express vector displacement d in both global and local coordinates by

	 u v u vd i j i j5 1 5 9 9 1 9 9	 (3.3.1)

■■ Figure 3–6  Convergence to the exact solution for displacement as the number of elements 
of a finite element solution is increased
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3.3  Transformation of Vectors in Two Dimensions 83

where i and j are unit vectors in the x and y global directions and i9  and j9 are unit vectors 
in the x9  and y9  local directions. From Figure 3–7, we have the following vectors in terms of 
reference letters as

	 u OA v AB u OC v CB, , ,9 95 5 5 5 	 (3.3.2)

From Figure 3–7, we can observe by vector addition along the x9 axis, the relationship

	 5 1OC OD DC 	 (3.3.3)

Using standard trigonometric relations in Figure 3–7 and use of Eq. (3.3.2), we obtain

	 u u u5 5 5 5cos cos and sinOD OA u DC AE v 	 (3.3.4)

Using Eq. (3.3.2) for u9 and Eq. (3.3.4) in Eq. (3.3.3), we have

	 u u vcos sin9 u u5 1 	 (3.3.5)

In a similar fashion, by vector addition in the 9y  direction of Figure 3–7, we have

	 5 2 1CB AD BE 	 (3.3.6)

Again using standard trigonometric relations in Figure 3–7 and use of Eq. (3.3.2), we have

	 u u u u5 5 5 5sin sin and cos cosAD OA u BE AB v 	 (3.3.7)

Now using Eq. (3.3.2) for 9v  and Eq. (3.3.7) in Eq. (3.3.6), we obtain

	 v u vsin cos9 u u5 2 1 	 (3.3.8)

Expressing Eqs. (3.3.5) and (3.3.8) together in matrix form, we get

	


























u
v

C S
S C

u
v

9

9
5

2
	 (3.3.9)

where u5 cosC  and u5 sinS .

■■ Figure 3–7  General displacement vector d in two dimensions
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Equation (3.3.9) relates the global displacement matrix {d} to the local displacement { }9d  as

	 d T d{ } [ ]{ }9 5 	 (3.3.10)

where

	 { } { }















 








d

u
v

d
u
v

T
C S
S C

, ,9
9

9
5 5 5

2
	 (3.3.11)

The matrix [T] is called the transformation (or rotation) matrix. For an additional description 
of this matrix, see Appendix A. It will be used in Section 3.4 to develop the global stiffness 
matrix for an arbitrarily oriented bar element and to transform global nodal displacements and 
forces to local ones.

Example 3.2

The global nodal displacements at node 2 have been determined to be 5u 2.52  mm and 
5v 52  mm for the bar element shown in Figure 3–8. Determine the local x displacement 

at node 2.

■■ Figure 3–8  Bar element with local axis 9x  acting along the element

y x'

x1

2

60°

SOLUTION:
Using Eq. (3.3.5), we obtain

	 9 5 8 1 8 5u (cos60 )(2.5) (sin60 )(5) 5.58 mm2

	 3.4 	 Global Stiffness Matrix for Bar Arbitrarily Oriented in 
the Plane

We now consider a bar inclined at an angle u  from the global x axis identified by the local axis 
9x  directed from node 1 to node 2 along the direction of the bar, as shown in Figure 3–9. Here 

positive angle u  is taken counterclockwise from x to x9.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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We now use Eq. (3.1.13) where a prime notation is used to denote the local element stiff-
ness matrix { }k9  which relates the local coordinate nodal forces { }9f  to local nodal displace-
ments d9{ } as shown by Eq. (3.4.1).

	
f

f

AE

L

u

u

x

x

9

9

9

9
5

2

2

1 1
1 1

1
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2
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





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















	 (3.4.1)

or

	 { } { }f k d[ ]9 9 95 	 (3.4.2)

We now want to relate the global element nodal forces {f} to the global nodal displacements 
{d} for a bar element arbitrarily oriented with respect to the global axes as shown in Figure 3–9. 
This relationship will yield the global stiffness matrix [k] of the element. That is, we want to 
find a matrix [k] such that

	 [ ]

1

1

2

2

1

1

2

2
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

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
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
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y

	 (3.4.3)

or, in simplified matrix form, Eq. (3.4.3) becomes

	 f k d[ ]{ } { }5 	 (3.4.4)

We observe from Eq. (3.4.3) that a total of four components of force and four of displacement 
arise when global coordinates are used. However, a total of two components of force and two 
of displacement appear for the local-coordinate representation of a spring or a bar, as shown 
by Eq. (3.4.1). By using relationships between local and global force components and between 
local and global displacement components, we will be able to obtain the global stiffness matrix. 
We know from transformation relationship Eq. (3.3.5) that

	
u u v

u u v

9 u u

9 u u

5 1

5 1

cos sin

cos sin

1 1 1

2 2 2
	 (3.4.5)

■■ Figure 3–9  Bar element arbitrarily oriented in the global x – y plane
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In matrix form, Eqs. (3.4.5) can be written as

	
u

u

C S
C S

u

v

u

v

9

9
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0 0
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


	 (3.4.6)

or as

	 d T dp[ ]{ } { }9 5 	 (3.4.7)

where

	 [ ]
0 0

0 0









5pT

C S
C S

	 (3.4.8)

Similarly, because forces transform in the same manner as displacements, we replace local and 
global displacements in Eq. (3.4.6) with local and global forces and obtain
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y

	 (3.4.9)

Similar to Eq. (3.4.7), we can write Eq. (3.4.9) as

	 f T fp[ ]{ } { }9 5 	 (3.4.10)

Now, substituting Eq. (3.4.7) into Eq. (3.4.2), we obtain

	 f k T dp[ ][ ]{ } { }9 5 9 	 (3.4.11)

and using Eq. (3.4.10) in Eq. (3.4.11) yields

	 T f k T dp p[ ] [ ][ ]{ } { }5 9 	 (3.4.12)

However, to write the final expression relating global nodal forces to global nodal displace-
ments for an element, we must invert p[ ]T  in Eq. (3.4.12). This is not immediately possible 
because p[ ]T  is not a square matrix. Therefore, we must expand { }9d , { }9f , and 9[ ]k  to the order 
that is consistent with the use of global coordinates even though 9f y1  and 9v y2  are zero. Using 
Eq. (3.3.9) for each nodal displacement, we thus obtain
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	 (3.4.13)
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or	 d T d[ ]{ } { }9 5 	 (3.4.14)

where
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	 (3.4.15)

Similarly, we can write

	 f T f[ ]{ } { }9 5 	 (3.4.16)

because forces are like displacements—both are vectors. Also, 9[ ]k  must be expanded to a 
34 4 matrix. Therefore, Eq. (3.4.1) in expanded form becomes
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	 (3.4.17)

In Eq. (3.4.17), because 91f y and 92f y are zero, rows of zeros corresponding to the row numbers 
91f y and 92f y appear in 9[ ]k . Now, using Eqs. (3.4.14) and (3.4.16) in Eq. (3.4.2), we obtain

	 T f k T d[ ] [ ][ ]{ } { }5 9 	 (3.4.18)

Equation (3.4.18) is Eq. (3.4.12) expanded. Premultiplying both sides of Eq. (3.4.18) by 2[ ] 1T ,  
we have

	 f T k T d1{ } [ ][ ] [ ]{ }5 92 	 (3.4.19)

where [ ]21T  is the inverse of [T]. However, it can be shown (see Problem 3.28) that

	 T T T1[ ] [ ]52 	 (3.4.20)

where [ ]T T is the transpose of [T]. The property of square matrices such as [T] given by 
Eq. (3.4.20) defines [T] to be an orthogonal matrix. For more about orthogonal matrices, 
see Appendix A. The transformation matrix [T] between rectangular coordinate frames is 
orthogonal. This property of [T] is used throughout this text. Substituting Eq. (3.4.20) into 
Eq. (3.4.19), we obtain

	 f T k T dT{ } [ ] [ ][ ]{ }5 9 	 (3.4.21)

Equating Eqs. (3.4.4) and (3.4.21), we obtain the global stiffness matrix for an element as

	 k T k TT [ ][ ] [ ] [ ]5 9 	 (3.4.22)

Substituting Eq. (3.4.15) for [T] and the expanded form of [ ]9k  given in Eq. (3.4.17) into 
Eq. (3.4.22), we obtain [k] given in explicit form by
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	 (3.4.23)

Equation (3.4.23) is the explicit stiffness matrix for a bar arbitrarily oriented in the x – y plane.
Now, because the trial displacement function Eq. (3.2.6) and Figure 3–5 was assumed 

piece-wise-continuous element by element, the stiffness matrix for each element can be 
summed by using the direct stiffness method to obtain

	 k K
e

N
e

1

( )∑[ ] [ ]5
5

	 (3.4.24)

where [K] is the total stiffness matrix and N is the total number of elements. Similarly, each 
element global nodal force matrix can be summed such that

	 f F
e

N
e{ } { }

1

( )∑ 5
5

	 (3.4.25)

[K] now relates the global nodal forces {F} to the global nodal displacements {d} for the 
whole structure by

	 F K d[ ]{ }{ } 5 	 (3.4.26)

Example 3.3

For the bar element shown in Figure 3–10, evaluate the global stiffness matrix with respect 
to the x – y coordinate system. Let the bar’s cross-sectional area equal 36 10 m4 2− , length 
equal 1.2 m, and modulus of elasticity equal 32 1011 Pa. The angle the bar makes with the  
x axis is 830 .

■■ Figure 3–10  Bar element for stiffness matrix evaluation

y

x'

x

30°

SOLUTION:
To evaluate the global stiffness matrix [k] for a bar, we use Eq. (3.4.23) with angle u  defined 
to be positive when measured counterclockwise from x to x9. Therefore,
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	 (3.4.27)

Simplifying Eq. (3.4.27), we have
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	 (3.4.28)

	 3.5 	 Computation of Stress for a Bar in the x – y Plane
We will now consider the determination of the stress in a bar element. For a bar, the local forces 
are related to the local displacements by Eq. (3.4.1) or Eq. (3.4.17). This equation is repeated 
here for convenience.
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	 (3.5.1)

The usual definition of axial tensile stress is axial force divided by cross-sectional area. 
Therefore, axial stress is

	
f

A
x2s

9
5 	 (3.5.2)

where 92f x is used because it is the axial force that pulls on the bar as shown in Figure 3–11. 
By Eq. (3.5.1),
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AE

L
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u
x 	 (3.5.3)

Therefore, combining Eqs. (3.5.2) and (3.5.3) yields
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E

L
d1 1 { }{ }  s 5 2 9 	 (3.5.4)

Now, using Eq. (3.4.7), we obtain

	
E

L
T dp1 1 [ ]{ }{ }  s 5 2 	 (3.5.5)

Equation (3.5.5) can be expressed in simpler form as

	 C d[ ]{ }{ }s 5 9 	 (3.5.6)

where, when we use Eq. (3.4.8) for [ ]pT ,
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E

L
C S

C S
	 (3.5.7)

After multiplying the matrices in Eq. (3.5.7), we have

	 C
E

L
C S C S[ ] [ ]9 5 2 2 	 (3.5.8)

Example 3.4

For the bar shown in Figure 3–12, determine the axial stress. Let 5 3 24 10 m4 2A , 
5 210E  GPa, and 5 2L  m, and let the angle between x and x9 be 860 . Assume the global dis-

placements have been previously determined to be 5 0.251u  mm, 5 0.01v , 5 0.502u  mm,  
and 5 0.752v  mm.

SOLUTION:
We can use Eq. (3.5.6) to evaluate the axial stress. Therefore, we first calculate 9[ ]C  from 
Eq. (3.5.8) as

	 [ ]
210 10 kN m

2 m

1

2

3

2

1

2

3

2

6 2 







9 5

3 2 2
C 	 (3.5.9)

■■ Figure 3–11  Basic bar element with positive nodal forces

f ′1x

f ′2x

x ′

u
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where we have used 5 8 5cos60 1
2C  and 5 8 5sin60 3 2S  in Eq. (3.5.9). Now {d} is 

given by
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	 (3.5.10)

Using Eqs. (3.5.9) and (3.5.10) in Eq. (3.5.6), we obtain the bar axial stress as
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	 3.6 	S olution of a Plane Truss
We will now illustrate the use of equations developed in Sections 3.4 and 3.5, along with the 
direct stiffness method of assembling the total stiffness matrix and equations, to solve the fol-
lowing plane truss example problems. A plane truss is a structure composed of bar elements 
that all lie in a common plane and are connected by frictionless pins. The plane truss also must 
have loads acting only in the common plane and all loads must be applied at the nodes or joints.

Example 3.5

For the plane truss composed of the three elements shown in Figure 3–13 subjected to a 
downward force of 50 kN applied at node 1, determine the x and y displacements at node 1 
and the stresses in each element. Let 5E 200 Gpa and 5 36 10 m4 2A −  for all elements. 
The lengths of the elements are shown in the figure.

■■ Figure 3–12  Bar element for stress evaluation

x ′
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SOLUTION:
First, we determine the global stiffness matrices for each element by using Eq. (3.4.23). 
This requires determination of the angle u  between the global x axis and the local 9x  axis 
for each element. In this example, the direction of the 9x  axis for each element is taken in 
the direction from node 1 to the other node as shown in Figure 3–13. The node numbering is 
arbitrary for each element. However, once the direction is chosen, the angle u  is then estab-
lished as positive when measured counterclockwise from positive x to 9x . For element 1, 
the local x91 axis is directed from node 1 to node 2; therefore, u 5 890(1) . For element 2, the 
local x92 axis is directed from node 1 to node 3 and u 5 845(2) . For element 3, the local 93x  
axis is directed from node 1 to node 4 and u 5 80(3) . It is convenient to construct Table 3–1 
to aid in determining each element stiffness matrix.

There are a total of eight nodal components of displacement, or degrees of freedom, 
for the truss before boundary constraints are imposed. Thus the order of the total stiff-
ness matrix must be 38 8. We could then expand the [k] matrix for each element to 
the order 38 8 by adding rows and columns of zeros as explained in the first part of 
Section 2.4. Alternatively, we could label the rows and columns of each element stiffness 
matrix according to the displacement components associated with it as explained in the 
latter part of Section 2.4. Using this latter approach, we construct the total stiffness 
matrix [K] simply by adding terms from the individual element stiffness matrices into 
their corresponding locations in [K]. This approach will be used here and throughout 
this text.

■■ Figure 3–13  Plane truss

x ′1

x ′2

x ′3

13 m

50,000 N
3 m

2

3

 Table 3–1  Data for the truss of Figure 3–13

Element uu88 C S C2 S2 CS

1 890 0 1 0 1 0

2 845 2 2 2 2 1
2

1
2

1
2

3 80 1 0 1 0 0
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For element 1, using Eq. (3.4.23), along with Table 3–1 for the direction cosines, we 
obtain
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Similarly, for element 2, we have
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and for element 3, we have
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The common factor of 3 3 3 5 32 10 6 10 3 ( 4 10 )11 4 7−  can be taken from each of 
Eqs. (3.6.1) through (3.6.3), where each term in the square bracket of Eq. (3.6.2) is now 
multiplied by 1 2. After adding terms from the individual element stiffness matrices into 
their corresponding locations in [K], we obtain the total stiffness matrix as

	
5 3

2

2

2

2

2

2

2

2

2

2

2

2

u v u v u v u v

K[ ] (4 10 )

1.354
0.354
0
0
0.354
0.354
1
0

0.354
1.354
0
1
0.354
0.354
0
0

0
0
0
0
0
0
0
0

0
1
0
1
0
0
0
0

0.354
0.354
0
0
0.354
0.354
0
0

0.354
0.354
0
0
0.354
0.354
0
0

1
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0

1 1 2 2 3 3 4 4

7





























	 (3.6.4)
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The global [K] matrix, Eq. (3.6.4), relates the global forces to the global displacements. We 
thus write the total structure stiffness equations, accounting for the applied force at node 1 
and the boundary constraints at nodes 2–4 as follows:
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	(3.6.5)

We could now use the partitioning scheme described in the first part of Section 2.5 to obtain 
the equations used to determine unknown displacements 1u  and 1v —that is, partition the 
first two equations from the third through the eighth in Eq. (3.6.5). Alternatively, we could 
eliminate rows and columns in the total stiffness matrix corresponding to zero displace-
ments as previously described in the latter part of Section 2.5. Here we will use the latter 
approach; that is, we eliminate rows and column 3–8 in Eq. (3.6.5) because those rows 
and columns correspond to zero displacements. (Remember, this direct approach must be 
modified for nonhomogeneous boundary conditions as was indicated in Section 2.5.) We 
then obtain
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	 (3.6.6)

Equation (3.6.6) can now be solved for the displacements by multiplying both sides of the 
matrix equation by the inverse of the 32 2 stiffness matrix or by solving the two equations 
simultaneously. Using either procedure for solution yields the displacements

	 5 3 5 2 3 22.59075 10 m 9.90925 10 m1
4

1
4u v 	

The minus sign in the 1v  result indicates that the displacement component in the y direction 
at node 1 is in the direction opposite that of the positive y direction based on the assumed 
global coordinates, that is, a downward displacement occurs at node 1.
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Using Eq. (3.5.6) and Table 3–1, we determine the stresses in each element as follows:
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We now verify our results by examining force equilibrium at node 1; that is, summing forces 
in the global x and y directions, we obtain

	
5 3 2 3 5

5 3 1 3 2 5

0 (24.4 MPa)(6 10 m )
2

2
(17.27 MPa)(6 10 m ) 0

0 (66.06 MPa)(6 10 m ) (24.4 MPa)(6 10 m )
2

2
50,000 0

4 2 4 2

4 2 4 2

F

F

x

y

∑

∑

− −

− −

	

Example 3.6

For the two-bar truss shown in Figure 3–14, determine the displacement in the y direction 
of node 1 and the axial force in each element. A force of P 5 1000 kN is applied at node 1 
in the positive y direction while node 1 settles an amount d 5 50 mm in the negative x 
direction. Let 5 210E  GPa and 5 3 26.00 10 m4 2A  for each element. The lengths of the 
elements are shown in the figure.

SOLUTION:
We begin by using Eq. (3.4.23) to determine each element stiffness matrix.

Element 1

	 cos
3

5
0.60 sin

4

5
0.80(1) 1( )u u5 5 5 5 	
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2

k 	 (3.6.7)

Simplifying Eq. (3.6.7), we obtain

	

u v u v

k



















5

2 2

2 2[ ] (25,200)

0.36 0.48 0.36 0.48

0.64 0.48 0.64
0.36 0.48

Symmetry 0.64

1 1 2 2

(1)
	 (3.6.8)

Element 2

	 u u5 5cos 0.0 sin 1.0(2) (2) 	

	 [ ]
(6.0 10 )(210 10 )

4

0 0 0 0

1 0 1

0 0
Symmetry 1

(2)
4 6





















5
3 3 22

k 	 (3.6.9)

	

u v u v

k ( )





















5
2

[ ] 25,200

0 0 0 0

1.25 0 1.25

0 0

Symmetry 1.25

1 1 3 3

(2)
	 (3.6.10)

■■ Figure 3–14  Two-bar truss
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where, for computational simplicity, Eq. (3.6.10) is written with the same factor (25,200) 
in front of the matrix as Eq. (3.6.8). Superimposing the element stiffness matrices, 
Eqs. (3.6.8) and (3.6.10), we obtain the global [K] matrix and relate the global forces to 
global displacements by

	 (25,200)
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0 0
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	 (3.6.11)

We can again partition equations with known displacements and then simultaneously solve 
those associated with unknown displacements. To do this partitioning, we consider the 
boundary conditions given by

	 d5 5 5 5 50 0 0 01 2 2 3 3u u v u v 	 (3.6.12)

Therefore, using Eqs. (3.6.12), we partition equation 2 from equations 1, 3, 4, 5, and 6 of 
Eq. (3.6.11) and are left with

	 d5 125,200(0.48 1.89 )1P v 	 (3.6.13)

where 51F Py  and d51u  were substituted into Eq. (3.6.13). Expressing Eq. (3.6.13) 
in terms of P and d  allows these two influences on 1v  to be clearly separated. Solving 
Eq. (3.6.13) for 1v , we have

	 d5 20.000021 0.2541v P 	 (3.6.14)

Now, substituting the numerical values 5 1000P  kN and d 5 20.05 m into Eq. (3.6.14), 
we obtain

	 5 0.0337 m1v 	 (3.6.15)

where the positive value indicates horizontal displacement to the left.
The local element forces are obtained by using Eq. (3.4.11). We then have the following.

Element 1

	
f

f

u

v

u

v

x

x
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
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
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
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
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





9

9
5

2

2

5 2

5

5

5

(25,200) 1 1
1 1

0.60 0.80 0 0
0 0 0.60 0.80

0.05

0.0337

0

0

1

2

1

1

2

2

	 (3.6.16)

Performing the matrix triple product in Eq. (3.6.16) yields

	 f fx x76.6 kN 76.6 kN1 29 95 2 5 	 (3.6.17)
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Element 2

	
f

f

u

v

u

v

x

x





















































9

9
5

2

2

5 2

5

5

5

(31,500) 1 1
1 1

0 1 0 0
0 0 0 1

0.05

0.0337

0

0

1

3

1

1

3

3

	 (3.6.18)

Performing the matrix triple product in Eq. (3.6.18), we obtain

	 f fx x9 95 5 21061 kN 1061 kN1 3 	 (3.6.19)

Verification of the computations by checking that equilibrium is satisfied at node 1 is left 
to your discretion.

Example 3.7

To illustrate how we can combine spring and bar elements in one structure, we now solve 
the two-bar truss supported by a spring shown in Figure 3–15. Both bars have 5 210E  GPa 
and 5 3 25.0 10 m4 2A . Bar one has a length of 5 m and bar two a length of 10 m. The 
spring stiffness is 5 2000k  kN/m.

■■ Figure 3–15  Two-bar truss with spring support
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25 kN
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45
x ′1

x ′2 x ′3

y

x

SOLUTION:
We begin by using Eq. (3.4.23) to determine each element stiffness matrix.

Element 1

	 135 , cos 2 2, sin 2 2(1) (1) (1)u u u5 8 5 2 5 	

	 (5.0 10 m )(210 10 kN m )

5 m
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
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2

k 	 (3.6.20)
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Simplifying Eq. (3.6.20), we obtain

	

u v u v

k
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(1) 2
	 (3.6.21)

Element 2

	 180 , cos 1.0, sin 0(2) (2) (2)u u u5 8 5 2 5 	
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	 (3.6.22)

Simplifying Eq. (3.6.22), we obtain

	

u v u v
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
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(2) 2 	 (3.6.23)

Element 3

	 270 , cos 0, sin 1.0(3) (3) (3)u u u5 8 5 5 2 	

Using Eq. (3.4.23) but replacing AE/L with the spring constant k, we obtain the stiffness 
matrix of the spring as

	

u v u v
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1 1 4 4

(3) 2
	 (3.6.24)

Applying the boundary conditions, we have

	 02 2 3 3 4 45 5 5 5 5 5u v u v u v 	 (3.6.25)

Using the boundary conditions in Eq. (3.6.25), the reduced assembled global equations are 
given by:
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y
	 (3.6.26)
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Solving Eq. (3.6.26) for the global displacements, we obtain

	 1.724 10 m 3.448 10 m1
3

1
35 2 3 5 2 32 2u v 	 (3.6.27)

We can obtain the stresses in the bar elements by using Eq. (3.5.6) as

	
210 10 MN m

5 m
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3.448 10
0
0
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Simplifying, we obtain

	 51.2 MPa ( )(1)s 5 T 	

Similarly, we obtain the stress in element two as

	
210 10 MN m

10 m
1.0 0 1.0 0

1.724 10

3.448 10
0
0
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3 2
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
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2

2 3
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2
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Simplifying, we obtain

	 36.2 MPa (C)(2)s 5 2 	

	 3.7 	T ransformation Matrix and Stiffness Matrix for a Bar 
in Three-Dimensional Space

We will now derive the transformation matrix necessary to obtain the general stiffness matrix of 
a bar element arbitrarily oriented in three-dimensional space as shown in Figure 3–16. Let the 
coordinates of node 1 be taken as 1x , 1y , and 1z , and let those of node 2 be taken as 2x , 2y , and 2z .  
Also, let ux, uy, and uz be the angles measured from the global x, y, and z axes, respectively, to 
the local 9x  axis. Here 9x  is directed along the element from node 1 to node 2. We must now 
determine [ ]pT  such that [ ]{ } { }9 5 pd T d . We begin the derivation of [ ]pT  by considering the 
vector 9 5d d expressed in three dimensions as

	 i j k i j k9 9 9 9 9 91 1 5 1 1u v w u v w 	 (3.7.1)

where i9 , j9, and k9 are unit vectors associated with the local 9x , 9y , and 9z  axes, respectively, 
and i, j, and k are unit vectors associated with the global x, y, and z axes. Also w and 9w  now 
denote the displacements in the z and 9z  directions, respectively. Taking the dot product of 
Eq. (3.7.1) with i9 , we have

	 u u v w9 9 9 91 1 5 ? 1 ? 1 ?i i i j i k0 0 ( ) ( ) ( )	 (3.7.2)

and, by definition of the dot product,
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	 (3.7.3)

where

	 5 2 1 2 1 2[( ) ( ) ( ) ]2 1
2

2 1
2

2 1
2 1/2L x x y y z z 	

and

	 cos cos cosu u u5 5 5C C Cx x y y z z	 (3.7.4)

Here Cx, Cy and Cz  are the projections of i9  on i, j, and k, respectively. Therefore, using 
Eqs. (3.7.3) in Eq. (3.7.2), we have

	 9 5 1 1u C u C v C wx y z 	 (3.7.5)

For a vector in space directed along the 9x  axis, Eq. (3.7.5) gives the components of that vector 
in the global x, y, and z directions. Now, using Eq. (3.7.5), we can write the local axial displace-
ment at node 1 and 2 in explicit form as
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	 (3.7.6)

■■ Figure 3–16  Bar in three-dimensional space along with local nodal displacements
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Now
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	 (3.7.7)

Using Eq. (3.7.7), we write Eq. (3.7.6) in matrix form as

	 [ ]{ } { }9 5 pd T d 	 (a)

Here [ ]pT  is the transformation matrix, which enables the local displacement matrix { }9d  to be 
expressed in terms of the displacement matrix {d} components in the global coordinate system.

Based on Eq. (a), it will be convenient to express the global force matrix in terms of the 
local force matrix using [ ]pT  as

	 [ ]{ } 95 p [ }f T f
T

	 (b)

Now in local coordinates, the local forces are related to the local displacements by

	 { } [ ]{ }9 9 95f k d 	 (c)

Upon substituting for { }9d  from Eq. (a) into Eq. (c) and premultiplying both sides by { }pT
T

,  
we have

	 { } { }9 95p p p[ ] [ ] [ ][ ]T f T k T dT T 	 (d)

Now using Eq. (b) in the left side of Eq. (c), we obtain

	 { } { }95 p p[ ] [ ][ ]f T k T dT 	 (e)

The global forces are related to the global displacements by

	 { } [ ]{ }5f k d 	 (f)

Comparing the right sides of Eqs. (e) and (f), we then observe that the global stiffness matrix 
for a bar arbitrarily oriented in space is

	 95 p p[ ] [ ] [ ][ ]k T k TT 	 (g)

Using Eq. (3.7.7) for [ ]pT  and Eq. (3.4.2) in Eq. (3.4.1) for [ ]9k  we obtain [k] as follows:
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	 (3.7.8)
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Simplifying Eq. (3.7.8), we obtain the explicit form of [k] as
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	 (3.7.9)

Equation (3.7.9) is the basic form of the stiffness matrix for a bar element arbitrarily 
oriented in three-dimensional space. We will now analyze a simple space truss to illustrate the 
concepts developed in this section. We will show that the direct stiffness method provides a 
simple procedure for solving space truss problems.

Example 3.8

Analyze the space truss shown in Figure 3–17. The truss is composed of four nodes, whose 
coordinates (in millimeters) are shown in the figure, and three elements, whose cross-
sectional areas are given in the figure. The modulus of elasticity 5E 8 GPa for all elements. 
A load of 5000 N is applied at node 1 in the negative z direction. Nodes 2–4 are supported 
by ball-and-socket joints and thus constrained from movement in the x, y, and z directions. 
Node 1 is constrained from movement in the y direction by the roller shown in Figure 3–17.

■■ Figure 3–17  Space truss
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SOLUTION:
Using Eq. (3.7.9), we will now determine the stiffness matrices of the three elements in 
Figure 3–17. To simplify the numerical calculations, we first express [k] for each element, 
given by Eq. (3.7.9), in the form

	












l l

l l
5

2

2
[ ]

[ ] [ ]

[ ] [ ]
k

AE

L
	 (3.7.10)

where l[ ] is a 33 3 submatrix defined by

	

C C C C C

C C C C C

C C C C C

x x y x z

y x y y z

z x z y z

 
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















l 5

2

2

2

	 (3.7.11)

Therefore, determining l[ ] will sufficiently describe [k].

Element 3
The direction cosines of element 3 are given, in general, by

	 4 1
(3)

4 1
(3)

4 1
(3)

5
2

5
2

5
2

C
x x

L
C

y y

L
C

z z

L
x y z 	 (3.7.12)

where the notation xi, yi, and zi is used to denote the coordinates of each node, and ( )L e  
denotes the element length. From the coordinate information given in Figure 3–17, we 
obtain the length and the direction cosines as

	
5 2 1 2 5

5
2

5 2 5 5
2

5 2

L

C C Cx y z

[( 1.8 m) ( 1.2 m) ] 2.16 m

1.8

2.16
0.833 0

1.2

2.16
0.550

(3) 2 2 1/2

	 (3.7.13)

Using the results of Eqs. (3.7.13) in Eq. (3.7.11) yields

	
0.69 0 0.46
0 0 0
0.46 0 0.30

 















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l 5 	 (3.7.14)

and, from Eq. (3.7.10),

	 l l

l l
5

3 3 2
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[ ]

(12.5 10 )(8 10 )

2.16
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[ ] [ ]

1 1 1 4 4 4

(3)
6 9
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k












− 	 (3.7.15)
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Element 1
Similarly, for element 1, we obtain

	

l

5

5 2 5 5

5

2
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L
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and
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− 	 (3.7.16)

Element 2
Finally, for element 2, we obtain

	

l
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5 2 5 5
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and
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5
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− 	 (3.7.17)

Using the zero-displacement boundary conditions 5 01v , u v w u5 5 5 50,2 2 2 3  
v w5 5 03 3 , and 5 5 5 04 4 4u v w , we can cancel the corresponding rows and columns of 
each element stiffness matrix. After canceling appropriate rows and columns in Eqs. (3.7.15) 
through (3.7.17) and then superimposing the resulting element stiffness matrices, we have 
the total stiffness matrix for the truss as

	
5

2

2

u w

K 10
1615 453
453 805

1 1

3  ×









	 (3.7.18)
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The global stiffness equations are then expressed by

	
2

5
2

2

u

w
0
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1615 453
453 805
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
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


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













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	 (3.7.19)

Solving Eq. (3.7.19) for the displacements, we obtain

	
5 2

5 2

u

w

2.07 10 m 2.07 mm

7.38 10 m 7.38 mm

1
3

1
3

× = −

× = −

−

−
	 (3.7.20)

where the minus signs in the displacements indicate these displacements to be in the 
negative x and z directions.

We will now determine the stress in each element. The stresses are determined by using 
Eq. (3.5.6) expanded to three dimensions. Thus, for an element with first node i and second 
node j, Eq. (3.5.6) expanded to three dimensions becomes
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

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	 (3.7.21)

Derive Eq. (3.7.21) in a manner similar to that used to derive Eq. (3.5.6) (see Problem 3.44, 
for instance). For element 3, using Eqs. (3.7.13) for the direction cosines, along with the 
proper length and modulus of elasticity, we obtain the stress as

	 s 5
3

2 2

2

28 10

2.16
0.83 0 0.55 0.83 0 0.55

0.00207
0

0.00738
0
0
0

(3)
9

{ }  




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



















	 (3.7.22)

Simplifying Eq. (3.7.22), we find that the result is

	 s 5 221.4 Mpa(3) 	

where the negative sign in the answer indicates a compressive stress. The stresses in the 
other elements can be determined in a manner similar to that used for element 3.

For brevity’s sake, we will not show the calculations but will merely list these stresses:

	 s s5 2 57.1 Mpa 10.8 Mpa(1) (2) 	
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Example 3.9

Analyze the space truss shown in Figure 3–18. The truss is composed of four nodes, whose 
coordinates (in meters) are shown in the figure, and three elements, whose cross-sectional 
areas are all 3 210 10 m4 2. The modulus of elasticity 5 210E  GPa for all the elements.  
A load of 20 kN is applied at node 1 in the global x-direction. Nodes 2–4 are pin supported 
and thus constrained from movement in the x, y, and z directions.

■■ Figure 3–18  Space truss

(0, 0, 0)

(12, −3, −4)

(12, −3, −7)

2

z

y

x

1
3

2

3

20 kN

(14, 6, 0)

1

4

SOLUTION:
First calculate the element lengths using the distance formula and coordinates given in 
Figure 3–18 as

	

[(0 12) (0 ( 3)) (0 ( 4)) ] 13 m

[(12 12) ( 3 3) ] ( 7 4) ] 3 m

[(14 12) (6 3) (0 4) ] 10.05 m

(1) 2 2 2 1/2

(2) 2 2 2 1/2

(3) 2 2 2 1/2

5 2 1 2 2 1 2 2 5

5 2 1 2 1 1 2 1 5

5 2 1 1 1 1 5

L

L

L

	

For convenience, set up a table of direction cosines, where the local 9x  axis is taken from 
node 1 to 2, from 1 to 3 and from 1 to 4 for elements 1, 2, and 3, respectively.

Element Number Cx
x x

L
j i

(1)55
22 Cy

y y
L

j i
(2)55
22 Cz

z z
L

j i
(3)55
22

1 12/13 3/13 4/13

2 0 0 1

3 2/10.05 9/10.05 4/10.05

Now set up a table of products of direction cosines as indicated by the definition of l[ ] 
defined by Eq. (3.7.11) as
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Applying the boundary conditions and canceling appropriate rows and columns associated 
with each zero displacement boundary condition in Eqs. (3.7.25) and then superimposing 
the resulting element stiffness matrices, we have the total stiffness matrix for the truss as

	 210
69.519 1.327 13.985

1.327 83.879 40.885
13.985 40.885 356.363

kN m 
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
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2
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K 	 (3.7.26)

The global stiffness equations are then expressed by
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	 (3.7.27)

Solving for the displacements, we obtain

	

u

v

w

5 3

5 2 3

5 3

2

2

2

1.383 10 m

5.119 10 m

6.015 10 m

1
3

1
5

1
5

	 (3.7.28)

Element Number Cx
2 C Cx y C Cx z C y

2 C Cy z Cz
2

1 0.852 −0.213 −0.284 0.053 −0.071 0.095

2 0 0 0 0 0 1

3 0.040 0.178 0.079 0.802 0.356 0.158

Using Eq. (3.7.11), we express l[ ] for each element as

	  [ ]
0.852 0.213 0.284
0.213 0.053 0.071
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(3.7.23)

The boundary conditions are given by

	 0, 0, 02 2 2 3 3 3 4 4 45 5 5 5 5 5 5 5 5u v w u v w u v w 	 (3.7.24)

Using the stiffness matrix expressed in terms of l[ ] in the form of Eq. (3.7.10), we obtain 
each stiffness matrix as
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(3.7.25)
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We now determine the element stresses using Eq. (3.7.21) as
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2210 10

13
[12 13 3 13 4 13 12 13 3 13 4 13]

1.383 10

5.119 10

6.015 10
0
0
0

(1)
6

3

5

5 	

(3.7.29)

Simplifying Eq. (3.7.29), we obtain upon converting to MPa units

	 s 5 20.51 MPa(1) 	 (3.7.30)

The stress in the other elements can be found in a similar manner as

	 s s5 5 24.21 MPa 5.29 MPa(2) (3) 	 (3.7.31)

The negative sign in Eq. (3.7.31) indicates a compressive stress in element 3.

	 3.8 	 Use of Symmetry in Structures
Different types of symmetry may exist in a structure. These include reflective or mirror, skew, 
axial, and cyclic. Here we introduce the most common type of symmetry, reflective symme-
try. Axial symmetry occurs when a solid of revolution is generated by rotating a plane shape 
about an axis in the plane. These axisymmetric bodies are common, and hence their analysis 
is considered in Chapter 9.

In many instances, we can use reflective symmetry to facilitate the solution of a problem. 
Reflective symmetry means correspondence in size, shape, and position of loads; material 
properties; and boundary conditions that are on opposite sides of a dividing line or plane. 
The use of symmetry allows us to consider a reduced problem instead of the actual problem. 
Thus, the order of the total stiffness matrix and total set of stiffness equations can be reduced. 
Longhand solution time is then reduced, and computer solution time for large-scale problems is 
substantially decreased. Example 3.10 will be used to illustrate reflective symmetry. Additional 
examples of the use of symmetry are presented in Chapter 4 for beams and in Chapter 7 for 
plane problems.

Example 3.10

Solve the plane truss problem shown in Figure 3–19. The truss is composed of eight elements 
and five nodes as shown. A vertical load of 2P is applied at node 4. Nodes 1 and 5 are pin 
supports. Bar elements 1, 2, 7, and 8 have axial stiffnesses of 2AE, and bars 3–6 have 
axial stiffness of AE. Here again, A and E represent the cross-sectional area and modulus 
of elasticity of a bar.
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In this problem, we will use a plane of symmetry. The vertical plane perpendicular to 
the plane truss passing through nodes 2, 4, and 3 is the plane of reflective symmetry because 
identical geometry, material, loading, and boundary conditions occur at the corresponding 
locations on opposite sides of this plane. For loads such as 2P, occurring in the plane of 
symmetry, half of the total load must be applied to the reduced structure. For elements 
occurring in the plane of symmetry, half of the cross-sectional area must be used in the 
reduced structure. Furthermore, for nodes in the plane of symmetry, the displacement com-
ponents normal to the plane of symmetry must be set to zero in the reduced structure; that 
is, we set 5 02u , 5 03u , and 5 04u . Figure 3–20 shows the reduced structure to be used 
to analyze the plane truss of Figure 3–19.

■■ Figure 3–20  Truss of Figure 
3–19 reduced by symmetry

x ′3

x ′5

x ′4x ′1

x ′2

■■ Figure 3–19  Plane truss

SOLUTION:
We begin the solution of the problem by determining the angles u  for each bar element. 
For instance, for element 1, assuming 9x  to be directed from node 1 to node 2, we obtain 
u 5 845(1)  as measured from the global x to the local 9x  axis. Table 3–2 is used in deter-
mining each element stiffness matrix based on the 9x  axes shown in Figure 3–20 for each 
element.

There are a total of eight nodal components of displacement for the truss before bound-
ary constraints are imposed. Therefore, [K] must be of order 38 8. For element 1, using 
Eq. (3.4.23) along with Table 3–2 for the direction cosines, we obtain

Table 3–2  Data for the truss of Figure 3–20

Element uu88 C S 2C 2S CS

1 845 2 2 2 2 1/2 1/2 1/2

2 8315 2 2 2 2 2 1/2 1/2 -1/2

3 80 1 0 1 0 0

4 890 0 1 0 1 0

5 890 0 1 0 1 0
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Similarly, for elements 2–5, we obtain
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	 (3.8.2)
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where, in Eqs. (3.8.1) through (3.8.5), the column labels indicate the degrees of freedom 
associated with each element. Also, because elements 4 and 5 lie in the plane of symmetry, 
half of their original areas have been used in Eqs. (3.8.4) and (3.8.5).

We will limit the solution to determining the displacement components. Therefore, 
considering the boundary constraints that result in zero-displacement components, we can 
immediately obtain the reduced set of equations by eliminating rows and columns in each 
element stiffness matrix corresponding to a zero-displacement component. That is, because 

5 01u  and 5 01v  (owing to the pin support at node 1 in Figure 3–20) and 5 02u , 5 03u ,  
and 5 04u  (owing to the symmetry condition), we can cancel rows and columns corre-
sponding to these displacement components in each element stiffness matrix before assem-
bling the total stiffness matrix. The resulting set of stiffness equations is

	





















































AE

L

v

v

v P

2

2

2 2

5

2

1 0
1

2

0 1
1

2
1

2

1

2
1

0
0

2

3

4

	 (3.8.6)

On solving Eq. (3.8.6) for the displacements, we obtain

	 v
PL

AE
v

PL

AE
v

PL

AE
5

2
5

2
5

22
2 3 4 	 (3.8.7)

The ideas presented regarding the use of symmetry should be used sparingly and cautiously 
in problems of vibration and buckling. For instance, a structure such as a simply supported 
beam has symmetry about its center but has antisymmetric vibration modes as well as sym-
metric vibration modes. This will be shown in Chapter 16. If only half the beam were modeled 
using reflective symmetry conditions, the support conditions would permit only the symmetric 
vibration modes.

	 3.9 	I nclined, or Skewed, Supports
In the preceding sections, the supports were oriented such that the resulting boundary condi-
tions on the displacements were in the global directions, x and y.

However, if a support is inclined, or skewed, at an angle α from the global x axis, as shown 
at node 3 in the plane truss of Figure 3–21, the resulting boundary conditions on the displace-
ments are not in the global x – y directions but are in the local −9 9x y  directions. We will now 
describe two methods used to handle inclined supports. 

In the first method, to account for inclined boundary conditions, we must perform a trans-
formation of the global displacements at node 3 only into the local nodal coordinate system 

−9 9x y , while keeping all other displacements in the x – y global system. We can then enforce 
the zero-displacement boundary condition 9

3v  in the force/displacement equations and, finally, 
solve the equations in the usual manner.
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The transformation used is analogous to that for transforming a vector from local to global 
coordinates. For the plane truss, we use Eq. (3.3.16) applied to node 3 as follows:
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v
	 (3.9.1)

Rewriting Eq. (3.9.1), we have

	 { } [ ]{ }9 53 3 3d t d 	 (3.9.2)

where

	  








t

a a

a a
5

2

cos sin
sin cos3 	 (3.9.3)

We now write the transformation for the entire nodal displacement vector as

	 [ ]{ } { }d T d9 5 1 	 (3.9.4)

or

	 [ ] { }{ }d T dT 95 1 	 (3.9.5)

where the transformation matrix for the entire truss is the 36 6 matrix
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3

	 (3.9.6)

Each submatrix in Eq. (3.9.6) (the identity matrix [I  ], the null matrix [0], and matrix [t3] has 
the same 32 2 order, that order in general being equal to the number of degrees of freedom 
at each node.

■■ Figure 3–21  Plane truss with inclined boundary conditions at node 3

x ′, u ′
y ′, v ′
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To obtain the desired displacement vector with global displacement components at nodes 
1 and 2 and local displacement components at node 3, we use Eq. (3.9.5) to obtain
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	 (3.9.7)

In Eq. (3.9.7), we observe that only the node 3 global components are transformed, as indicated 
by the placement of the [ ]3t

T  matrix. We denote the square matrix in Eq. (3.9.7) by [ ]1T T. In 
general, we place a 32 2 [ ]t  matrix in [ ]1T  wherever the transformation from global to local 
displacements is needed (where skewed supports exist).

Upon considering Eqs. (3.9.5) and (3.9.6), we observe that only node 3 components of 
{ }d  are really transformed to local (skewed) axes components. This transformation is indeed 
necessary whenever the local axes −9 9x y  fixity directions are known.

Furthermore, the global force vector can also be transformed by using the same transfor-
mation as for { }9d :

	 { } { }[ ]9 5 1f T f 	 (3.9.8)

In global coordinates, we then have

	 { } [ ]{ }5f K d 	 (3.9.9)

Premultiplying Eq. (3.9.9) by [ ]1T , we have

	 { }[ ] [ ][ ]{ }51 1T f T K d 	 (3.9.10)

For the truss in Figure 3–21, the left side of Eq. (3.9.10) is
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	 (3.9.11)

where the fact that local forces transform similarly to Eq. (3.9.2) as

	 { } { }[ ]9 53 3 3f t f 	 (3.9.12)
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has been used in Eq. (3.9.11). From Eq. (3.9.11), we see that only the node 3 components 
of { }f  have been transformed to the local axes components, as desired. Using Eq. (3.9.5) in 
Eq. (3.9.10), we have

	 { } { }95[ ] [ ][ ][ ]1 1 1T f T K T dT 	 (3.9.13)

Using Eq. (3.9.11), we find that the form of Eq. (3.9.13) becomes

	

F

F

F

F

F

F

T K T

u

v

u

v

u

v

x

y

x

y

x

y

T

9

9

9

9

5

1

1

2

2

3

3

1 1

1

1

2

2

3

3

[ ] [ ][ ]































































	 (3.9.14)

as 951 1u u , 951 1v v , 952 1u u , and 952 2v v  from Eq. (3.9.7). Equation (3.9.14) is the desired form 
that allows all known global and inclined boundary conditions to be enforced. The global forces 
now result in the left side of Eq. (3.9.14). To solve Eq. (3.9.14), first perform the matrix triple prod-
uct [ ] [ ][ ]1 1T K T T . Then invoke the following boundary conditions (for the truss in Figure 3–21):

	 u v v95 5 50 0 01 1 3 	 (3.9.15)

Then substitute the known value of the applied force 2F x along with 5 02F y  and F x 039 5  into 
Eq. (3.9.14). Finally, partition the equations with known displacements— here equations 1, 2,  
and 6 of Eq. (3.9.14)—and then simultaneously solve those associated with the unknown 
displacements , ,2 2u v  and u39 .

After solving for the displacements, return to Eq. (3.9.14) to obtain the global reactions 
1F x and 1F y and the inclined roller reaction F y39 .

Example 3.11

For the plane truss shown in Figure 3–22, determine the displacements and reactions. Let 
5 210 GPaE , 5 3 26.00 10 m4 2A  for elements 1 and 2, and 5 3 26 2 10 m4 2A  for 

element 3.

■■ Figure 3–22  Plane truss with inclined support

x ′1

x ′2

x ′3

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3  |  Development of Truss Equations116

SOLUTION:
We will solve this problem by two methods: (1) using the Eq. (3.9.14) outlined in this 
section to transform the node 3 boundary condition to its actual local y9  direction, thus 
making 9 5 03v  and (2) by using the displacements in the global reference frame without 
transforming to the local frame for node 3 components. Both methods begin by obtaining 
the element stiffness matrices and then assembling the global stiffness matrix by the direct 
stiffness method.

We begin by using Eq. (3.4.23) to determine each element stiffness matrix.

Element 1
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	 (3.9.16)

Element 2
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	 (3.9.18)
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Using the direct stiffness method on Eqs. (3.9.16) through (3.9.18), we obtain the global 
[ ]K  matrix as

	 5 3

2 2

2 2 2
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K 	 (3.9.19)

Next, using the first method, we obtain the transformation matrix [ ]1T  using Eq. (3.9.6) to 
transform the global displacements at node 3 into local nodal coordinates −9 9x y . In using 
Eq. (3.9.6), the angle a is 845 .
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Next we use Eq. (3.9.14) (in general, we would use Eq. (3.9.13)) to express the assembled 
equations. First define 5p[K] [T ][K][T ]1 1

T  and evaluate in steps as follows:
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Notice in comparing p[ ]K  in Eq. (3.9.22) to [K] from Eq. (3.9.19) that only the stiffness 
terms associated with skewed node 3 degrees of freedom have changed as expected.

Applying the boundary conditions, u v v v95 5 5 5 01 1 2 3  to Eq. (3.9.22), we obtain
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	 (3.9.23)

Solving Eq. (3.9.23) for the displacements yields
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	 (3.9.24)

Postmultiplying the known displacement vector times Eq. (3.9.22) (see Eq. (3.9.14), we 
obtain the reactions as
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	 (3.9.25)

The free-body diagram of the truss with the reactions is shown in Figure 3–23. You can 
easily verify that the truss is in equilibrium.

Now using the second method, we initially express the global equations without transform-
ing to the local node 3 components as follows:

Using the global stiffness matrix, Eq. (3.9.19), the global matrix equation is written as
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	 (3.9.26)

Now applying the boundary conditions, we have

	 95 5 5 5u v v 0 and 01 1 2 3v 	 (3.9.27)

We also use the applied forces as 5 1000 kN2F x  and 9 5 03F x .
From the transformation relation, Eq. (3.3.16) for the 93v  displacement at node 3, we have
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	 (3.9.28)
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Equation (3.9.28) is sometimes called a multipoint constraint. We can also write Eq (3.9.28) as

	 u 5 v3 3	 (3.9.29)

Similarly, as forces transform just like displacements (both being vectors), from the transfor-
mation relation for the force at node 3 (See Eq. (3.3.16) but replace 9u  with 93F x), we obtain
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	 (3.9.30)

Applying the boundary conditions into the global Eq. (3.9.26) and eliminating the first, 
second, and fourth rows and columns in the usual manner, we obtain the reduced set of 
equations as
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	 (3.9.31)

Now using the Eq. (3.9.29) and the force relation at node 3, Eq. (3.9.30), Eq. (3.9.31) 
becomes
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	 (3.9.32)

Equation (3.9.32) can be simplified to
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The third equation of Eq. (3.9.33) yields

	 5 2 3F u1260 10x3
5

3	 (3.9.34)

Using the first and second equations of Eq. (3.9.33) and substituting in Eq. (3.9.34) for F x3 ,  
we obtain
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	 (3.9.35)

Solving Eq. (3.9.35) for u2 and u3

	 5 3 5 3w2 2u u11.91 10 m and 3.97 10 m2
3

3
3 	 (3.9.36)
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From Eq. (3.9.29), we have

	 5 5 3 2v u 3.97 10 m3 3
3 	 (3.9.37)

From the transformation equation, Eq. (3.3.16), we obtain the local displacement, 9u3 in the 
9x  direction along the slope as

	
9 5 8 1 8

5 3 8 1 3 8 5 32 2 2

u vcos 45 sin 45

3.97 10 cos 45 3.97 10 sin 45 5.614 10 m

3 3 3

3 3 3

u
	 (3.9.38)

This is the same magnitude of local displacement 9u3 as found directly by method 1 [See 
Eq. (3.9.24)].

From the global equation, Eq. (3.9.26), we calculate the reaction forces as
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	 (3.9.39)

Again using the transformation equation, Eq. (3.3.16), where we substitute F y39  for 9v , we 
obtain the local F y39  force as

	 F y F Fsin 45 cos 45 707 kNx y3 3 39 5 2 8 1 8 5 	 (3.9.40)

This force is the same magnitude of local force F y39  as found directly by method 1  
[See Eq. (3.9.25)].

In yet another method used to handle skewed boundary conditions, we use a boundary 
element of large stiffness to constrain the desired displacement. This is the method used in 
some computer programs [9].

■■ Figure 3–23  Free-body diagram of the truss of Figure 3–22
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Boundary elements are used to specify nonzero displacements and rotations to nodes. 
They are also used to evaluate reactions at rigid and flexible supports. Boundary elements 
are two-node elements. The line defined by the two nodes specifies the direction along 
which the force reaction is evaluated or the displacement is specified. In the case of moment 
reaction, the line specifies the axis about which the moment is evaluated and the rotation 
is specified.

We consider boundary elements that are used to obtain reaction forces (rigid boundary 
elements) or specify translational displacements (displacement boundary elements) as truss 
elements with only one nonzero translational stiffness. Boundary elements used to either 
evaluate reaction moments or specify rotations behave like beam elements with only one 
nonzero stiffness corresponding to the rotational stiffness about the specified axis.

The elastic boundary elements are used to model flexible supports and to calculate 
reactions at skewed or inclined boundaries. Consult Reference [9] for more details about 
using boundary elements.

	3.10 	P otential Energy Approach to Derive  
Bar Element Equations

We now present the principle of minimum potential energy to derive the bar element equations. 
Recall from Section 2.6 that the total potential energy π p was defined as the sum of the internal 
strain energy U and the potential energy of the external forces Ω:

	 π ΩUp 5 1 	 (3.10.1)

To evaluate the strain energy for a bar,we consider only the work done by the internal 
forces during deformation. Because we are dealing with a one-dimensional bar, the internal 
force doing work on a differential element of sides x y zD D D, , , is given in Figure 3–24 as 

( )( )s D Dy zx , due only to normal stress s x. The displacement of the x face of the element is 
( )«Dx x ; the displacement of the 1 Dx x  face is ( )« «D 1x dx x . The change in  displacement 

is then «Dx d x , where «d x is the differential change in strain occurring over length Dx. The 
differential internal work (or strain energy) dU is the internal force multiplied by the displace-
ment through which the force moves, given by

	 ( )( )( )s «5 D D DdU y z x dx x 	 (3.10.2)

■■ Figure 3–24  Internal force in a one-dimensional bar due to applied external force F

F

L

A sx (Δy)(Δz)

Δx
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Rearranging and letting the volume of the element approach zero, we obtain, from Eq. (3.10.2),

	 s «5dU d dVx x 	 (3.10.3)

For the whole bar, we then have

	 ∫∫∫∫ { }s «5
«

U d dVx x

v

x

0
	 (3.10.4)

Now, for a linear-elastic (Hooke’s law) material as shown in Figure 3–25, we see that s «5 Ex x.  
Hence substituting this relationship into Eq. (3.10.4), integrating with respect to «x, and then 
resubstituting s x for «E x, we have

	 ∫∫∫s «5U dVx x

v

1

2
	 (3.10.5a)

as the expression for the strain energy for one-dimensional stress.
For a uniform cross-sectional area A of a bar with stress and strain dependent only on the 

x coordinate, Eq. (3.10.5a) can be simplified to

	 ∫s «5U
A

dxx x

x
2

	 (3.10.5b)

We observe from the integral in Eq. (3.10.5b) that the strain energy is described as the area 
under the stress/strain curve.

The potential energy of the external forces, being opposite in sign from the external work 
expression because the potential energy of external forces is lost when the work is done by the 
external forces, is given by

	 ∫∫∫ ∫∫ ∑Ω 5 2 2 2
5

X u dV T u dS f ub

v

x s

S i

M

ix i
11

	 (3.10.6)

where the first, second, and third terms on the right side of Eq. (3.10.6) represent the poten-
tial energy of (1) body forces Xb, typically from the self-weight of the bar (in units of force 
per unit volume) moving through displacement function u, (2) surface loading or traction Tx, 

■■ Figure 3–25  Stress/strain curve for linear-elastic (Hooke’s law) material
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typically from distributed loading acting along the surface of the element (in units of force per 
unit surface area) moving through displacements us, where us are the displacements occurring 
over surface 1S , and (3) nodal concentrated forces fix moving through nodal displacements ui.  
The forces Xb, Tx, and fix  are considered to act in the local x direction of the bar as shown in 
Figure 3–26. In Eqs. (3.10.5) and (3.10.6), V is the volume of the body and 1S  is the part of the 
surface S on which surface loading acts. For a bar element with two nodes and one degree of 
freedom per node, 5 2M .

We are now ready to describe the finite element formulation of the bar element equations 
by using the principle of minimum potential energy.

The finite element process seeks a minimum in the potential energy within the constraint 
of an assumed displacement pattern within each element. The greater the number of degrees 
of freedom associated with the element (usually meaning increasing the number of nodes), 
the more closely will the solution approximate the true one and ensure complete equilibrium 
(provided the true displacement can, in the limit, be approximated). An approximate finite 
element solution found by using the stiffness method will always provide an approximate 
value of potential energy greater than or equal to the correct one. This method also results in 
a structure behavior that is predicted to be physically stiffer than, or at best to have the same 
stiffness as, the actual one. This is explained by the fact that the structure model is allowed to 
displace only into shapes defined by the terms of the assumed displacement field within each 
element of the structure. The correct shape is usually only approximated by the assumed field, 
although the correct shape can be the same as the assumed field. The assumed field effectively 
constrains the structure from deforming in its natural manner. This constraint effect stiffens 
the predicted behavior of the structure.

Apply the following steps when using the principle of minimum potential energy to derive 
the finite element equations.

	 1.	 Formulate an expression for the total potential energy.
	 2.	 Assume the displacement pattern to vary with a finite set of undetermined parameters (here 

these are the nodal displacements ui), which are substituted into the expression for total 
potential energy.

	 3.	 Obtain a set of simultaneous equations minimizing the total potential energy with respect 
to these nodal parameters. These resulting equations represent the element equations.

The resulting equations are the approximate (or possibly exact) equilibrium equations 
whose solution for the nodal parameters seeks to minimize the potential energy when back-
substituted into the potential energy expression. The preceding three steps will now be followed 
to derive the bar element equations and stiffness matrix.

Consider the bar element of length L, with constant cross-sectional area A, shown in  
Figure 3–26. Using Eqs. (3.10.5) and (3.10.6), we find that the total potential energy, 
Eq. (3.10.1), becomes

	 p s «5 2 2 2 2
2 0

1 1 2 2

1

A
d f u f u u T dS uX dVp x x x

L
x x s x

S

b

v
∫ ∫∫ ∫∫∫ 	 (3.10.7)

because A is a constant and variables s x and «x at most vary with x.
From Eqs. (3.2.8) and (3.2.9), we have the axial displacement function expressed in terms 

of the shape functions and nodal displacements by

	 [ ][ ]{ } { }u N d u N ds s5 5 	 (3.10.8)
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where

	 





5 2N
x

L

x

L
[ ] 1 	 (3.10.9)

[ ]Ns  is the shape function matrix evaluated over the surface that the distributed surface traction 
acts and

	 { }











5d

u

u
1

2
	 (3.10.10)

Then, using the strain/displacement relationship « 5 du dxx , we can write the axial strain in 
matrix form as

	 « 5 2
1 1{ } { }



L L

dx 	 (3.10.11)

or

	 { } { }« 5 B dx [ ] 	 (3.10.12)

where we define [B] as the gradient matrix

	 5 2[ ]
1 1





B
L L

	 (3.10.13)

The axial stress/strain relationship in matrix form is given by

	 { } { }[ ]s «5 Dx x 	 (3.10.14)

where

	 [ ] [ ]5D E 	 (3.10.15)

1

2

■■ Figure 3–26  General forces acting on a one-dimensional bar
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for the one-dimensional stress/strain relationship matrix and E is the modulus of elasticity. 
Now, by Eq. (3.10.12), we can express Eq. (3.10.14) as

	 { } [ ][ ]{ }s 5 D B dx 	 (3.10.16)

Using Eq. (3.10.7) expressed in matrix notation form, we have the total potential energy 
given by

∫ ∫∫ ∫∫∫π { } { } { } { } { }{ } { } { }A
dx d P u T dS u X dVp x

T
x

L T
s

T
x

S

T
b

v

s «5 2 2 2
2 0

1

	 (3.10.17)

where { }P  now represents the concentrated nodal loads and where in general both { }s x  and 
{ }«x  are column matrices. For proper matrix multiplication, we must place the transpose on 
{ }s x . Similarly, { }u  and { }Tx  in general are column matrices, so for proper matrix multiplica-
tion, u{ } is transposed in Eq. (3.10.17).

Using Eqs. (3.10.8), (3.10.12), and (3.10.16) in Eq. 3.10.17, we obtain

	
∫

∫∫ ∫∫∫

π

[ ] { } { }

[ ] [ ] [ ]

[ ]

{ } { } { }

{ } { }

{ }A
d B D B d dx d P

d N T dS d N X dV

p
T T TL T

T
s

T
x

S

T T
b

V

5 2

2 2

2 0

1

	 (3.10.18)

In Eq. (3.10.18), π p is seen to be a function of {d}; that is, π π ( )u up p5 ,1 2 . However, [B] and 
[D], Eqs. (3.10.13) and (3.10.15), and the nodal degrees of freedom 1u  and 2u  are not functions 
of x. Therefore, integrating the first integral in Eq. (3.10.18) with respect to x yields

	 π { }[ ] [ ] [ ]{ } { } { }AL
d B D B d d fp

T T T T5 2
2

	 (3.10.19)

where

	 ∫∫ ∫∫∫{ } [ ] { } { }[ ]{ }5 1 1f P N T dS N X dVs
T

x

s

T
b

V1

	 (3.10.20)

From Eq. (3.10.20), we observe three separate types of load contributions from concen-
trated nodal forces, surface tractions, and body forces, respectively. We define these surface 
tractions and body-force matrices as

	 ∫∫{ } [ ] { }5f N T dSs s
T

x

s1

	 (3.10.20a)

	 ∫∫∫{ } { }[ ]5f N X dVb
T

b

v

	 (3.10.20b)

The expression for [f] given by Eq. (3.10.20) then describes how certain loads can be 
considered to best advantage.

Loads calculated by Eqs. (3.10.20a) and (3.10.20b) are called consistent because they 
are based on the same shape functions [N] used to calculate the element stiffness matrix. 
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The loads calculated by Eq. (3.10.20a) and (3.10.20b) are also statically equivalent to the 
original loading; that is, both { }fs  and { }fb  and the original loads yield the same resultant 
force and same moment about an arbitrarily chosen point.

The minimization of π p with respect to each nodal displacement requires that

	
�

�

�

�

π π
u u

p P
5 50 and 0

1 2
	 (3.10.21)

Now we explicitly evaluate p p given by Eq. (3.10.19) to apply Eq. (3.10.21). We define the 
following for convenience:

	 { } [ ] [ ] [ ]{ } { }5U d B D B dT T Tp 	 (3.10.22)

Using Eqs. (3.10.10), (3.10.13), and (3.10.15) in Eq. (3.10.22) yields
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	 (3.10.23)

Simplifying Eq. (3.10.23), we obtain

	 ( )5 2 1U
E

L
u u u up 2

2 1
2

1 2 2
2 	 (3.10.24)

Also, the explicit expression for { }{ }d fT  is

	 { }{ } 5 1d f u f u fT
x x1 1 2 2 	 (3.10.25)

Therefore, using Eqs. (3.10.24) and (3.10.25) in Eq. (3.10.19) and then applying Eqs. (3.10.21), 
we obtain

	 �
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and� (3.10.26)
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In matrix form, we express Eqs. (3.10.26) as
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	 (3.10.27)
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or, because { } [ ]{ }5f k d , we have the stiffness matrix for the bar element obtained from 
Eq. (3.10.27) as

	

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


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k
AE

L
5

2

2
[ ]

1 1

1 1
	 (3.10.28a)

As expected, Eq. (3.10.28a) is identical to the stiffness matrix Eq. (3.1.14) obtained in 
Section 3.1.

Now that we have derived the bar stiffness matrix by using the theorem of minimum 
potential energy, we can observe that the strain energy U [the first term on the right side of 

Eq. (3.10.18)] can also be expressed in the quadratic form [ ]{ } { }5 1 2U d k dT  as follows:
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T 	 (3.10.28b)

Finally, instead of the cumbersome process of explicitly evaluating π p, we can use the 
matrix differentiation as given by Eq. (2.6.12) and apply it directly to Eq. (3.10.19) to obtain

	 �

�

π { }[ ] [ ][ ]{ }
{ }

d
AL B D B d fp T5 2 5 0	 (3.10.29)

where 5[ ] [ ]D DT   has been used in writing Eq. (3.10.29). The result of the evaluation of 

[ ] [ ][ ]AL B D BT   is then equal to [ ]k  given by Eq. (3.10.28a). Throughout this text, we will use 

this matrix differentiation concept (also see Appendix A), which greatly simplifies the task of 

evaluating [ ]k .
To illustrate the use of Eq. (3.10.20a) to evaluate the equivalent nodal loads for a bar 

subjected to axial loading traction Tx, we now solve Example 3.12.

Example 3.12

A bar of length L is subjected to a linearly distributed axial line loading that varies from zero 
at node 1 to a maximum of CL at node 2 (Figure 3–27). Determine the energy equivalent 
nodal loads.

■■ Figure 3–27  Element subjected to linearly varying axial line load
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SOLUTION:
Using Eq. (3.10.20a) and shape functions from Eq. (3.10.9), we solve for the energy equiv-
alent nodal forces of the distributed loading as follows:
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	 (3.10.31)

where the integration was carried out over the length of the bar, because Tx is in units of 
force/length.

Note that the total load is the area under the load distribution given by

	 ( )( )5 5F L CL
CL1

2 2

2

	 (3.10.32)

Therefore, comparing Eq. (3.10.31) with (3.10.32), we find that the equivalent nodal loads 
for a linearly varying load are

	
f F

f F

x

x

5 5

5 5

1

3
one-third of the total load

2

3
two-thirds of the total load

1

2

	 (3.10.33)

In summary, for the simple two-noded bar element subjected to a linearly varying load 
(triangular loading), place one-third of the total load at the node where the distributed load-
ing begins (zero end of the load) and two-thirds of the total load at the node where the peak 
value of the distributed load ends.

We now illustrate (Example 3.13) a complete solution for a bar subjected to a surface 
traction loading.
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Example 3.13

For the rod loaded axially as shown in Figure 3–28, determine the axial displacement and 
axial stress. Let 5 3E 2 10 N/m11 2, 5 312.5 10 m4 2A − , and 5L 1.5 m Use (a) one and 
(b) two elements in the finite element solutions. In Section 3.11, one-, two-, four-, and eight-
element solutions will be presented from the computer program Autodesk [9].

■■ Figure 3–28  Rod subjected to triangular load distribution

1.5 m

Tx = –80,000 N/m

■■ Figure 3–29  One-element model

Tx = –80,000x

–120,000

(a) One-element solution (Figure 3–31).

SOLUTION:
From Eq. (3.10.20a), the distributed load matrix is evaluated as follows:

	 ∫{ } { }5F N T dxT
x

L
[ ]0

0
	 (3.10.34)

where Tx is a line load in units of newtons per meter and { } { }50 0f F . Therefore, using  
Eq. (3.2.9) for [N] in Eq. (3.10.34), we obtain
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

	 (3.10.35)

or
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or	 5 2 5 2F Fx x30,000 N 60,000 N1 2 	 (3.10.36)

Using Eq. (3.10.33), we could have determined the same forces at nodes 1 and 2—that is, 
one-third of the total load is at node 1 and two-thirds of the total load is at node 2.

Using Eq. (3.10.28), we find that the stiffness matrix is given by

	 5 3
2

2
[ ] 16.67 10 1 1

1 1
(1) 7k









	

The element equations are then
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
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	 (3.10.37)

Solving Eq. 1 of Eq. (3.10.37), we obtain

	 5 2u 0.18 mm1 	 (3.10.38)

The stress is obtained from Eq. (3.10.14) as
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
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






	 (3.10.39)

(b) Two-element solution (Figure 3–30).

■■ Figure 3–30  Two-element model

–60,000

–120,000

We first obtain the element forces. For element 2, we divide the load into a uniform part 
and a triangular part as shown in Figure 3–30. For the uniform part, half the total uniform 
load is placed at each node associated with the element. Therefore, the total uniform part is

	 2 5 2(0.75 m)( 60,000 N/m) 45,000 N	
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and using Eq. (3.10.33) for the triangular part of the load, we have, for element 2,
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	 (3.10.40)

For element 1, the total force is from the triangle-shaped distributed load only and is given by

	 2 5 2
1

2
(0.75 m)( 60,000 N/m) 22,500 N	

On the basis of Eq. (3.10.33), this load is separated into nodal forces as shown:
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	 (3.10.41)

The final nodal force matrix is then
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	 (3.10.42)

The element stiffness matrices are now
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	 (3.10.43)

The assembled global stiffness matrix is
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	 (3.10.44)

The assembled global equations are then
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	 (3.10.45)

where the boundary condition 5 03u  has been substituted into Eq. (3.10.45). Now, solving 
equations 1 and 2 of Eq. (3.10.45), we obtain

	
5 2

5 2

u

u

0.18 mm

0.1575 mm
1

2 	 (3.10.46)
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The element stresses are as follows:

Element 1
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	 (3.10.47)

Element 2
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	3.11 	 Comparison of Finite Element Solution  
to Exact Solution for Bar

We will now compare the finite element solutions for Example 3.13 using one, two, four, and 
eight elements to model the bar element and the exact solution. The exact solution for displace-
ment is obtained by solving the equation

	 ∫5u
AE

P x dx
x1

( )
0

	 (3.11.1)

where, using the following free-body diagram,

80,000x N/m

we have	 5 5( ) (80,000 ) 40,000 N1
2

2P x x x x 	 (3.11.2)

Therefore, substituting Eq. (3.11.2) into Eq. (3.11.1), we have

	
5

5 1

u
AE

x dx

u
x

AE
C

x1
40,000

40,000

3

2
0

3

1

∫
	 (3.11.3)

Now, applying the boundary condition at 5x L, we obtain

	 5 5 1u L
L

AE
C( ) 0

40,000

3

3

1	
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or

	 5 2C
L

AE

40,000

3
1

3
	 (3.11.4)

Substituting Eq. (3.11.4) into Eq. (3.11.3) makes the final expression for displacement

	 5 2u
AE

x L
40,000

3
( )3 3 	 (3.11.5)

Substituting 5 312.5 10 m4 2A − , 5 3E 2 10 N/m11 2, and 5L 1.5 m into Eq. (3.11.5), we 
obtain

	 5 3 22u x5.333 10 0.000185 3 	 (3.11.6)

The exact solution for axial stress is obtained by solving the equation

	 s 5 5
3

5( )
( ) 40,000

12.5 10 m
32 Pa

2

4 2
2x

P x

A

x
x−

	 (3.11.7)

Figure 3–31 shows a plot of Eq. (3.11.6) along with the finite element solutions (part of 
which were obtained in Example 3.13). Some conclusions from these results follow.

1.	 The finite element solutions match the exact solution at the node points. The reason why 
these nodal values are correct is that the element nodal forces were calculated on the basis 
of being energy-equivalent to the distributed load based on the assumed linear displace-
ment field within each element. (For uniform cross-sectional bars and beams, the nodal 

■■ Figure 3–31  Comparison of exact and finite element solutions for axial displacement 
(along length of bar)
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degrees of freedom are exact. In general, computed nodal degrees of freedom are not 
exact.)

2.	 Although the node values for displacement match the exact solution, the values at loca-
tions between the nodes are poor using few elements (see one- and two-element solutions) 
because we used a linear displacement function within each element, whereas the exact 
solution, Eq. (3.11.6), is a cubic function. However, because we use increasing numbers 
of elements, the finite element solution converges to the exact solution (see the four- and 
eight-element solutions in Figure 3–31).

3.	 The stress is derived from the slope of the displacement curve as s «5 5 ( )E E du dx . 
Therefore, by the finite element solution, because u is a linear function in each element, 
axial stress is constant in each element. It then takes even more elements to model the first 
derivative of the displacement function or, equivalently, the axial stress. This is shown in 
Figure 3–32, where the best results occur for the eight-element solution.

4.	 The best approximation of the stress occurs at the midpoint of the element, not at the nodes 
(Figure 3–32). This is because the derivative of displacement is better predicted between 
the nodes than at the nodes.

5.	 The stress is not continuous across element boundaries. Therefore, equilibrium is not sat-
isfied across element boundaries. Also, equilibrium within each element is, in general, not 
satisfied. This is shown in Figure 3–33 for element 1 in the two-element solution and ele-
ment 1 in the eight-element solution [in the eight-element solution the forces are obtained 
from the Autodesk computer code [9]]. As the number of elements used increases, the 
discontinuity in the stress decreases across element boundaries, and the approximation of 
equilibrium improves.

Finally, in Figure 3–34, we show the convergence of axial stress at the fixed end 5( )x L  
as the number of elements increases.

■■ Figure 3–32  Comparison of exact and finite element solutions for axial stress (along length 
of bar)
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However, if we formulate the problem in a customary general way, as described in detail 
in Chapter 4 for beams subjected to distributed loading, we can obtain the exact stress distri-
bution with any of the models used. That is, letting { } { }{ }5 2[ ] 0f k d f , where { }0f  is the 
initial nodal replacement force system of the distributed load on each element, we subtract the 
initial replacement force system from the [k]{d} result. This yields the nodal forces in each 
element. For example, considering element 1 of the two-element model, we have [see also 
Eqs. (3.10.33) and (3.10.41)]

	 5
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Using { } { }{ }5 2[ ] 0f k d f , we obtain
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■■ Figure 3–33  Free-body diagram of element 1 in both two- and eight-element models, 
showing that equilibrium is not satisfied
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as the actual nodal forces. Drawing a free-body diagram of element 1, we have

	 5 2 1 5Fx 0 :
1

2
(60,000 N/m)(0.75 m) 22,500 N 0∑ 	

■■ Figure 3–34  Axial stress at fixed end as number of elements increases

■■ 60,000 N/m

0.75 m

22,500 N

For other kinds of elements (other than beams), this adjustment is ignored in practice. The 
adjustment is less important for plane and solid elements than for beams. Also, these adjust-
ments are more difficult to formulate for an element of general shape.

	3.12 	 Galerkin’s Residual Method and Its Use to Derive 
the One-Dimensional Bar Element Equations

General Formulation
We developed the bar finite element equations by the direct method in Section 3.1 and by the poten-
tial energy method (one of a number of variational methods) in Section 3.10. In fields other than 
structural/solid mechanics, it is quite probable that a variational principle, analogous to the principle 
of minimum potential energy, for instance, may not be known or even exist. In some flow problems 
in fluid mechanics and in mass transport problems (Chapter 13), we often have only the differential 
equation and boundary conditions available. However, the finite element method can still be applied.

The methods of weighted residuals applied directly to the differential equation can be used 
to develop the finite element equations. In this section, we describe Galerkin’s residual method 
in general and then apply it to the bar element. This development provides the basis for later 
applications of Galerkin’s method to the beam element in Chapter 4 and to the nonstructural 
heat-transfer element (specifically, the one-dimensional combined conduction, convection, and 
mass transport element described in Chapter 13). Because of the mass transport phenomena, the 
variational formulation is not known (or certainly is difficult to obtain), so Galerkin’s method 
is necessarily applied to develop the finite element equations.

There are a number of other residual methods. Among them are collocation, least squares, 
and subdomain as described in Section 3.13. (For more on these methods, see Reference [5].)
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In weighted residual methods, a trial or approximate function is chosen to approximate 
the independent variable, such as a displacement or a temperature, in a problem defined by a 
differential equation. This trial function will not, in general, satisfy the governing differential 
equation. Thus substituting the trial function into the differential equation results in a residual 
over the whole region of the problem as follows:

	 ∫∫∫ RdV
v

5 minimum	 (3.12.1)

In the residual method, we require that a weighted value of the residual be a minimum over 
the whole region. The weighting functions allow the weighted integral of residuals to go to zero. 
If we denote the weighting function by W, the general form of the weighted residual integral is

	 ∫∫∫ RW dV
v

5 0	 (3.12.2)

Using Galerkin’s method, we choose the interpolation function, such as Eq. (3.2.8), in 
terms of Ni  shape functions for the independent variable in the differential equation. In general, 
this substitution yields the residual ? 0R . By the Galerkin criterion, the shape functions Ni  
are chosen to play the role of the weighting functions W. Thus for each i, we have

	 ∫∫∫ RN dV i ni

v

5 50 ( 1,2,..., )	 (3.12.3)

Equation (3.12.3) results in a total of n equations. Equation (3.12.3) applies to points 
within the region of a body without reference to boundary conditions such as specified applied 
loads or displacements. To obtain boundary conditions, we apply integration by parts to  
Eq. (3.12.3), which yields integrals applicable for the region and its boundary.

Bar Element Formulation
We now illustrate Galerkin’s method to formulate the bar element stiffness equations. We begin 
with the basic differential equation, without distributed load, derived in Section 3.1 as

	 



 5

d

dx
AE

du

dx
0 	 (3.12.4)

where constants A and E are now assumed. The residual R is now defined to be Eq. (3.12.4). 
Applying Galerkin’s criterion [Eq. (3.12.3)] to Eq. (3.12.4), we have

	 ∫ 



 5 5

d

dx
AE

du

dx
N dx ii

L
0 ( 1,2)

0
	 (3.12.5)

We now apply integration by parts to Eq. (3.12.5). Integration by parts is given in general by

	 ∫ ∫u dv uv v du5 2 	 (3.12.6)

where u and v are simply variables in the general equation. Letting

	






u N du
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dx
dx

dv
d

dx
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du

dx
dx v AE
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i
i

5 5

5 5

	 (3.12.7)
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in Eq. (3.12.5) and integrating by parts according to Eq. (3.12.6), we find that Eq. (3.12.5) becomes

	 2 5 0
0

0∫




N AE

du

dx
AE

du

dx

dN

dx
dxi

L
L i 	 (3.12.8)

where the integration by parts introduces the boundary conditions.
Recall that, because { }5 [ ]u N d , we have
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u5 1

1
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2
2	 (3.12.9)

or, when Eqs. (3.2.9) are used for 5 211N x L and 52N x L,
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Using Eq. (3.12.10) in Eq. (3.12.8), we then express Eq. (3.12.8) as
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	 (3.12.11)

Equation (3.12.11) is really two equations (one for 5 1N Ni  and one for 5 2N Ni ). First, using 
the weighting function 5 1N Ni , we have
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Substituting for 1dN dx , we obtain

	 ∫ 
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where 5 ( )1f AE du dxx  because 5 11N  at 5 0x  and 5 01N  at 5x L. Evaluating  
Eq. (3.12.13) yields

	 2 5
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u u f x( )1 2 1 	 (3.12.14)

Similarly, using 5 2N Ni , we obtain
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Simplifying Eq. (3.12.15) yields

	 ( )2 5
AE

L
u u f x2 1 2 	 (3.12.16)
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where 52 ( )f AE du dxx  because 5 12N  at 5x L and 5 02N  at 5 0x . Equations (3.12.14) 
and (3.12.16) are then seen to be the same as Eqs. (3.1.13) and (3.10.27) derived, respectively, 
by the direct and the variational method.

	3.13 	 Other Residual Methods and Their Application to a 
One-Dimensional Bar Problem

As indicated in Section 3.12 when describing Galerkin’s residual method, weighted residual 
methods are based on assuming an approximate solution to the governing differential equa-
tion for the given problem. The assumed or trial solution is typically a displacement or a 
temperature function that must be made to satisfy the initial and boundary conditions of the 
problem. This trial solution will not, in general, satisfy the governing differential equation. 
Thus, substituting the trial function into the differential equation will result in some residuals 
or errors. Each residual method requires the error to vanish over some chosen intervals or at 
some chosen points. To demonstrate this concept, we will solve the problem of a rod subjected 
to a triangular load distribution as shown in Figure 3–28 (see Section 3.10) for which we also 
have an exact solution for the axial displacement given by Eq. (3.11.5) in Section 3.11. We 
will illustrate four common weighted residual methods: collocation, subdomain, least squares, 
and Galerkin’s method.

It is important to note that the primary intent in this section is to introduce you to the gen-
eral concepts of these other weighted residual methods through a simple  example. You should 
note that we will assume a displacement solution that will in general yield an approximate 
solution (in our example the assumed displacement function yields an exact solution) over the 
whole domain of the problem (the rod previously solved in Section 3.10). As you have seen 
already for the spring and bar elements, we have assumed a linear function over each spring or 
bar element, and then combined the element solutions as was illustrated in Section 3.10 for the 
same rod solved in this section. It is common practice to use the simple linear function in each 
element of a finite element model, with an increasing number of elements used to model the rod 
yielding a closer and closer approximation to the actual displacement as seen in Figure 3–31.

For clarity’s sake, Figure 3–35(a) shows the problem we are solving, along with a free-
body diagram of a section of the rod with the internal axial force P(x) shown in Figure 3–35(b).

■■ Figure 3–35  (a) Rod subjected to triangular load distribution and (b) free-body diagram of 
section of rod

1.5 m

80,000x N/m

(a)

x

80,000x N/m

x

P(x)

(b)
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The governing differential equation for the axial displacement, u, is given by

	 ( )



 2 5AE

du

dx
P x 0 	 (3.13.1)

where the internal axial force is 5P x x40,000 2( ) . The boundary condition is ( )5 5 0u x L .
The method of weighted residuals requires us to assume an approximation function for the 

displacement. This approximate solution must satisfy the boundary condition of the problem. 
Here we assume the following function:

	 ( ) ( ) ( ) ( )5 2 1 2 1 21 2
2

3
3u x c x L c x L c x L 	 (3.13.2)

where 1c , 2c  and 3c  are unknown coefficients. Equation (3.13.2) also satisfies the boundary 
condition given by ( )5 5 0u x L .

Substituting Eq. (3.13.2) for u into the governing differential equation, Eq. (3.13.1), results 
in the following error function, R:

	 1 2 1 2 2 5AE c c x L c x L x R[ 2 ( ) 3 ( ) ] 40,0001 2 3
2 2 	 (3.13.3)

We now illustrate how to solve the governing differential equation by the four weighted resid-
ual methods.

Collocation Method
The collocation method requires that the error or residual function, R, be forced to zero at as 
many points as there are unknown coefficients. Equation (3.13.2) has three unknown coeffi-
cients. Therefore, we will make the error function equal zero at three points along the rod. We 
choose the error function to go to zero at 5 0x , 5 3x L  and 5 2 3x L  as follows:

5 5 5 1 2 1 2 5

5 5 5 1 2 1 2 2 5

5 5 5 1 2 1 2 2 5

R c x AE c c L c L

R c x L AE c c L c L L

R c x L AE c c L c L L

, 0 0 2 3 0

, 3 0 2 2 3 3 2 3 40,000 3 0

, 2 3 0 2 3 3 3 40,000 2 3 0

1 2 3
2

1 2 3
2 2

1 2 3
2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) 












	 (3.13.4)

The three linear equations, Eq. (3.13.4), can now be solved for the unknown coefficients, 
1c , 2c  and 3c . The result is

	 5 5 5c L AE c L AE c AE40,000 40,000 40,000 31
2

2 3( ) ( ) ( )	 (3.13.5)

Substituting the numerical values, 5 312.5 10 4A − , 5 3E 2 1011 and 5L 1.5 m into Eq. 
(3.13.5), we obtain the c’s as:

	 5 3 5 3 5 32 2 2c c c3.6 10 , 2.4 10 , 5.333 101
4

2
4

3
5	 (3.13.6)

Substituting the numerical values for the coefficients given in Eq. (3.13.6) into Eq. (3.13.2), 
we obtain the final expression for the axial displacement as

	 5 3 2 1 3 2 1 3 22 2 2u x x L x L x L3.6 10 2.4 10 5.333 104 4 2 5 3( ) ( ) ( ) ( ) 	 (3.13.7)
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Because we have chosen a cubic displacement function, Eq. (3.13.2), and the exact solu-
tion, Eq. (3.11.6), is also cubic, the collocation method yields the identical solution as the exact 
solution. The plot of the solution is shown in Figure 3–31 on page 133.

Subdomain Method
The subdomain method requires that the integral of the error or residual function over some 
selected subintervals be set to zero. The number of subintervals selected must equal the number 
of unknown coefficients. Because we have three unknown coefficients in the rod example, we 
must make the number of subintervals equal to three. We choose the subintervals from 0 to L/3,  
from L/3 to 2L/3, and from 2L/3 to L as follows:

	

5 5 1 2 1 2 2

5 5 1 2 1 2 2

5 1 2 1 2 2

R dx AE c c x L c x L x dx

R dx AE c c x L c x L x dx

R dx AE c c x L c x L x dx

L L

L

L

L

L

L

L

L

L

0 { [ 2 ( ) 3 ( ) ] 40,000 }

0 { [ 2 ( ) 3 ( ) ] 40,000 }

0 { [ 2 ( ) 3 ( ) ] 40,000 }

0

3

1 2 3
2 2

0

3

3

2 3

1 2 3
2 2

3

2 3

2 3

1 2 3
2 2

2 3

∫ ∫

∫ ∫

∫ ∫

	 (3.13.8)

where we have used Eq. (3.13.3) for R in Eqs. (3.13.8).
Integration of Eqs. (3.13.8) results in three simultaneous linear equations that can be 

solved for the coefficients 1c , 2c  and 3c . Using the numerical values for A, E, and L as previ-
ously done, the three coefficients are numerically identical to those given by Eq. (3.13.6). The 
resulting axial displacement is then identical to Eq. (3.13.7).

Least Squares Method
The least squares method requires the integral over the length of the rod of the error function 
squared to be minimized with respect to each of the unknown coefficients in the assumed 
solution, based on the following:

	
�

� ∫








 …

c
R dx i N N

i

L

5 50 1,2, , (for unknown coefficients)
0

2 	 (3.13.9)

or equivalently to

	
�

�∫ 5 0
0

R
R

c
dx

i

L

	 (3.13.10)

Because we have three unknown coefficients in the approximate solution, we will 
perform the integration three times according to Eq. (3.13.10) with three resulting equa-
tions as follows:
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1 2 1 2 2 5

1 2 1 2 2 2 5

1 2 1 2 2 2 5

AE c c x L c x L x AE dx

AE c c x L c x L x AE x L dx

AE c c x L c x L x AE x L dx

L

L

L

{ [ 2 3 ] 40,000 } 0

{ [ 2 3 ] 40,000 } 2 0

{ [ 2 3 ] 40,000 } 3 0

1 2 3
2 2

0

1 2 3
2 2

0

1 2 3
2 2 2

0

∫

∫

∫

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

	 (3.13.11)

In the first, second, and third of Eqs. (3.13.11), respectively, we have used the following 
partial derivatives:

	
�

�

�

�

�

�
( ) ( )5 5 2 5 2, 2 , 3

1 2 3

2R

c
AE

R

c
AE x L

R

c
AE x L 	 (3.13.12)

where R is again the error function defined by Eq. (3.13.3).
Integration of Eqs. (3.13.11) yields three linear equations that are solved for the three coef-

ficients. The numerical values of the coefficients again are identical to those of Eq. (3.13.6). 
Hence, the solution is identical to the exact solution.

Galerkin’s Method
Galerkin’s method requires the error to be orthogonal1 to some weighting functions Wi as 
given previously by Eq. (3.12.2). For the rod example, this integral becomes

	 RW dx i Ni

L

∫ …5 50 1, 2, ,
0

	 (3.13.13)

The weighting functions are chosen to be a part of the approximate solution. Because we 
have three unknown constants in the approximate solution, we need to generate three equations. 
Recall that the assumed solution is the cubic given by Eq. (3.13.2); therefore, we select the 
weighting functions to be

	 5 2 5 2 5 2( ) ( )1 2
2

3
3W x L W x L W x L 	 (3.13.14)

Using the weighting functions from Eq. (3.13.14) successively in Eq. (3.13.13), along with 
Eq. (3.13.3) for R, we generate the following three equations:

	

1 2 1 2 2 2 5

1 2 1 2 2 2 5

1 2 1 2 2 2 5

AE c c x L c x L x x L dx

AE c c x L c x L x x L dx

AE c c x L c x L x x L dx

L

L

L

[ 2 ( ) 3 ( ) ] 40,000 ( ) 0

[ 2 ( ) 3 ( ) ] 40,000 ( ) 0

[ 2 ( ) 3 ( ) ] 40,000 ( ) 0

1 2 3
2 2

0

1 2 3
2 2 2

0

1 2 3
2 2 3

0

∫

∫

∫

{ }

{ }

{ }

	 (3.13.15)

1The use of the word orthogonal in this context is a generalization of its use with respect to vectors. Here the ordinary scalar 
product is replaced by an integral in Eq. (3.13.13). In Eq. (3.13.13)], the functions u x R5( )  and v x Wi5( )  are said to be 

orthogonal on the interval x L0 # #  if ∫ u x v x dx
L

( ) ( )
0

 equals 0.
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Integration of Eqs. (3.13.15) results in three linear equations that can be solved for the 
unknown coefficients. The numerical values are the same as those given by Eq. (3.13.6). Hence, 
the solution is identical to the exact solution.

In conclusion, because we assumed the approximate solution in the form of a cubic in x 
and the exact solution is also a cubic in x, all residual methods have yielded the exact solution. 
The purpose of this section has still been met to illustrate the four common residual methods 
to obtain an approximate (or exact in this example) solution to a known differential equation. 
The exact solution is shown by Eq. (3.11.6) and in Figure 3–31 in Section 3.11.

	3.14 	 Flowchart for Solution of  
Three-Dimensional Truss Problems

In Figure 3–36, we present a flowchart of a typical finite-element process used for the analysis 
of three-dimensional truss problems on the basis of the theory presented in Chapter 3.

■■ Figure 3–36  Flowchart of a truss finite-element program (NELE represents the number of 
elements)

START

Draw the geometry and apply forces
and boundary conditions

De�ne the element type and properties
(here the truss element is used)

DO JE = 1,NELE

Solve [K]{d} = {F} for {d}

Compute the element stiffness matrix [k]

Compute the bar element forces and stresses

View/Write output results

END

Use the direct stiffness procedure to add
[k] to the proper locations in assemblage

stiffness matrix [K]
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	3.15 	 Computer Program Assisted  
Step-by-Step Solution for Truss Problem

In this section, we present a computer-assisted step-by-step solution of a three-dimensional 
truss (space truss) problem solved using a computer program; see Reference [9].

The computer-assisted step-by-step problem uses the truss in Example 3.8 and is shown 
in Figure 3–37.

The following steps have been used to determine the x, y, and z displacement components 
at node 1 and the stresses in each truss element.

	 1.	 The first step is to draw the three truss elements using the standard drawing program in the 
finite-element program, Autodesk [9], ANSYS [10], etc. This drawing also could be done 
using other drawing programs, such as KeyCreator [11] or SOLIDWORKS [12] and then 
imported into the finite-element program. This drawing requires defining a convenient x, 
y, z coordinate system and then inputting the x, y, and z coordinates of the two nodes mak-
ing up each truss element. When we input the nodal coordinates, we are actually defining 
the description of the overall dimensions of the model truss and the individual elements 
making up the truss model. When the individual elements, with their associated nodes, are 
created, we will have defined the topology or connectivity (which nodes are connected to 
which elements). The element numbering and node numbering are done internally within 
the computer program. This drawing process is normally the most time-consuming part of 
finite-element analysis. We often use automatic mesh-generating capabilities for two-and 
three-dimensional bodies to reduce the time and error involved with modeling.

	 2.	 The second step is to select the element type for the kind of analysis to be performed. Here 
the truss element is selected.

■■ Figure 3–37  Space truss modeled in computer program Algor [9]
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	 3.	 The third step is to input the geometric properties for the element. Here the cross-sectional 
area, A, is input.

	 4.	 The fourth step is to choose the material properties (modulus of elasticity, E, for a truss 
element). Here ASTM A 36 steel is selected, which then means the modulus of elasticity 
has been input.

	 5.	 The fifth step is to apply the boundary conditions to the proper nodes using the proper 
boundary condition command. Here pinned boundary condition is appropriate and applied 
to the nodes labeled 2, 3, and 4 and roller condition preventing y displacement to node 1 
in Figure 3–37.

	 6.	 The sixth step is to apply the nodal load. Here the load of 5000 N is applied in the 
negative-z direction.

	 7.	 The seventh step is an optional check of the model. If you choose to perform this step, you 
will see the boundary conditions represented by a triangle at nodes 2, 3, and 4, a circle 
at node 1, and the load represented by an arrow pointing in the negative-z direction at 
node 1.

	 8.	 In step eight, we perform the analysis. This means the solution of simultaneous equations 
of the form { }{ } 5 [ ]F K d  for displacement components x, y, and z at node 1 are deter-
mined. The stresses in each truss element are also determined.

	 9.	 In step nine, we select the results relevant for the specific analysis. Here the displacement 
plot and axial stress plot are the relevant quantities for design. Figures 3–38(a) and (b) show 
the maximum displacement plot and axial stress plot for the truss. The largest stress of 
221.38 Mpa (negative sign indicates compressive stress) is in the lower element (element 
three). The stresses in elements one and two are 27.22 Mpa and 10.55 Mpa, respectively.

■■ Figure 3–38  (a) Displacement magnitude plot and (b) axial stress plot for truss of Figure 3–37
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Summary Equations

Stiffness matrix for bar:

	 K
AE

L
[ ]













5
2

2

1 1

1 1 	 (3.1.14)

Shape functions for bar:

	 N
x

L
N

x

L
5 2 511 2 	 (3.2.9)

Displacement function assumed for two-noded bar element:

	 5 11 2u a a x 	 (3.2.1)

Transformation matrix relating vectors in the plane in two different coordinate systems:

	 [ ] 







5

2
T

C S
S C

	 (3.3.11)

Global stiffness matrix for bar arbitrarily oriented in the plane:

	



















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5

2 2

2 2
[ ]

Symmetry

2 2

2 2

2

2

k
AE

L

C CS C CS

S CS S

C CS

S

	 (3.4.23)

Axial stress in a bar:

	 { }{ }s 95 [ ]C d 	 (3.5.6)

where

	 9 5 2 2[ ] [ ]C
E

L
C S C S 	 (3.5.8)

Transformation matrix relating vectors in three-dimensional space:

	












5p[ ]
0 0 0

0 0 0
T

C C C

C C C

x y z

x y z
	 (3.7.7)

Stiffness matrix for bar element in space:

	




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


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



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k
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C C C

C
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z

	 (3.7.9)
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Total potential energy for bar:

	 π { }[ ]{ } { } { }{ } { }AL
d B D B d d fp

T T T T5 2
2

	 (3.10.19)

where

	 5 1 1{ } { } [ ] { } [ ] { }
1

∫∫ ∫∫∫f P N T ds N X dVS
T

x

S

T
b

V

	

Quadratic form of bar strain energy:

[ ][ ] [ ]{ } { } 
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
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2
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1
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1

2
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1 1 2

21 2
1

2
1
2

1 2 2
2 	(3.10.28b)
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Problems

	 3.1	 a.	 Compute the total stiffness matrix [K] of the assemblage shown in Figure P3–1 by 
superimposing the stiffness matrices of the individual bars. Note that [K] should be 
in terms of 1A , 2A , 3A , 1E , 2E , 3E , 1L , 2L , and 3L . Here A, E, and L are generic symbols 
used for cross-sectional area, modulus of elasticity, and length, respectively.

■■ Figure P3–1
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		  b.	 Now let 5 5 51 2 3A A A A, 5 5 51 2 3E E E E , and 5 5 51 2 3L L L L. If nodes 1 
and 4 are fixed and a force P acts at node 3 in the positive x direction, find expres-
sions for the displacement of nodes 2 and 3 in terms of A, E, L, and P.

		  c.	 Now let 5 36 10 m4 2A − , 5E 70 GPa, 5L 0.25 m, and 5P 5000 N.
	 i.	 Determine the numerical values of the displacements of nodes 2 and 3.
	 ii.	 Determine the numerical values of the reactions at nodes 1 and 4.
	 iii.	 Determine the stresses in elements 1–3.
	3.2–3.11		 For the bar assemblages shown in Figures P3–2 through P3–11, determine the nodal 

displacements, the forces in each element, and the reactions. Use the direct stiffness 
method for these problems.

■■ Figure P3–2

1 m

1 2 3

1 m

10 kN E = 210 GPa
A = 4 × 10–4 m2

■■ Figure P3–3

■■ Figure P3–4

■■ Figure P3–5

■■ Figure P3–6
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■■ Figure P3–7

■■ Figure P3–8

40

■■ Figure P3–9

5 kN

■■ Figure P3–10

16 kN

■■ Figure P3–11

6

■■ Figure P3–12

	 3.12		  Solve for the axial displacement and stress in the tapered bar shown in Figure P3–12 
using one and then two constant-area elements. Evaluate the area at the center of 
each element length. Use that area for each element. Let 5 312.5 10 m0

4 2A − , 
5L 0.5 m, 5E 70 GPa, and 5P 5000 N. Compare your finite element solutions 

with the exact solution.

Problems
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	 3.13		  Determine the stiffness matrix for the bar element with end nodes and midlength 
node shown in Figure P3–13. Let axial displacement 5 1 11 2 3

2u a a x a x . (This is 
a higher-order element in that strain now varies linearly through the element.)

■■ Figure P3–13

	 3.14		  Consider the following displacement function for the two-noded bar element:

	 5 1 2u a bx

			   Is this a valid displacement function? Discuss why or why not.

	 3.15		  For each of the bar elements shown in Figure P3–15, evaluate the global x – y 
stiffness matrix.

■■ Figure P3–15

2

90º

210 GPa

0.5 m
18.75 3 10–4 m2

105 GPa

0.375 m
6.25 3 10–4 m2
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	 3.16		  For the bar elements shown in Figure P3–16, the global displacement have been 
determined to be 11 5u  cm, 5 0.01v , 0.52 5u  cm, and 1.52 5v  cm. Determine the 
local 9x  displacements at each end of the bars. Let 90 GPa5E , 5 35 10 m4 2A − , 
and 25L  m for each element.

■■ Figure P3–16

′

′

x ′
2

45º

	 3.17		  For the bar elements shown in Figure P3–17, the global displacements have 
been determined to be 5 0.01u , 5 2.51v  mm, 5 5.02u  mm, and 5 3.02v  mm. 
Determine the local 9x  displacements at the ends of each bar. Let 5 210E  GPa, 

5 3 210 10 m4 2A , and 5 3L  m for each element.

■■ Figure P3–17

x ′

x ′

Problems

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3  |  Development of Truss Equations152

	 3.18		  Using the method of Section 3.5, determine the axial stress in each of the bar ele-
ments shown in Figure P3–18.

■■ Figure P3–19

50 N

■■ Figure P3–18

u1
u2

v1
v2

u1
u2

v1
v20.25 mm 0.5 mm

210 GPa

1.5 m
12.5 3 10–4 m2

	 3.19	 a.	 Assemble the stiffness matrix for the assemblage shown in Figure P3–19 by super-
imposing the stiffness matrices of the springs. Here k is the stiffness of each spring.

		  b.	 Find the x and y components of deflection of node 1.
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	 3.20		  For the plane truss structure shown in Figure P3–20, determine the displacement 
of node 2 using the stiffness method. Also determine the stress in element 1. Let 

5 330 10 m4 2A − , 7.55E  GPa, and 2.55L  m.

■■ Figure P3–20 ■■ Figure P3–21

	 3.21		  Find the horizontal and vertical displacements of node 1 for the truss shown in 
Figure P3–21. Assume 15 10 N75 3AE  is the same for each element.

	 3.22		  For the truss shown in Figure P3–22 solve for the horizontal and vertical components 
of displacement at node 1 and determine the stress in each element. Also verify force 
equilibrium at node 1. All elements have 6 10 m4 25 3A −  and 705E  GPa. Let 

2.55L  m.

■■ Figure P3–22

Problems
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	 3.23		   For the truss shown in Figure P3–23, solve for the horizontal and vertical 
components of displacement at node 1. Also determine the stress in element 1. Let 

6 10 m4 25 3A − , 705E  GPa, and 2.55L  m.

■■ Figure P3–23 ■■ Figure P3–24

	 3.24		  Determine the nodal displacements and the element forces for the truss shown in 
Figure P3–24. Assume all elements have the same AE.

	 3.25		  Now remove the element connecting nodes 2 and 4 in Figure P3–24. Then determine 
the nodal displacements and element forces.

	 3.26		  Now remove both cross elements in Figure P3–24. Can you determine the nodal 
displacements? If not, why?

	 3.27		  Determine the displacement components at node 3 and the element forces for the 
plane truss shown in Figure P3–27. Let 50 10 m4 25 3A −  and 2105E  GPa for 
all elements. Verify force equilibrium at node 3.

■■ Figure P3–27
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	 3.28		  Show that for the transformation matrix [T] of Eq. (3.4.15), 5 2[ ] [ ] 1T TT  and hence 
Eq. (3.4.21) is indeed correct, thus also illustrating that 95[ ] [ ] [ ][ ]k T k TT  is the 
expression for the global stiffness matrix for an element.

	3.29–3.30	 For the plane trusses shown in Figures P3–29 and P3–30, determine the horizontal 
and vertical displacements of node 1 and the stresses in each element. All elements 
have 5 210E  GPa and 5 3 24.0 10 m4 2A .

■■ Figure P3–29

20

40

■■ Figure P3–30

80

	 3.31		  Remove element 1 from Figure P3–30 and solve the problem. Compare the 
displacements and stresses to the results for Problem 3.30.

	 3.32		  For the plane truss shown in Figure P3–32, determine the nodal displacements, the 
element forces and stresses, and the support reactions. All elements have 5 70E  
GPa and 5 3 23.0 10 m4 2A . Verify force equilibrium at nodes 2 and 4. Use sym-
metry in your model.

■■ Figure P3–32

	 3.33		  For the plane trusses supported by the spring at node 1 in Figure P3–33 (a) and (b), 
determine the nodal displacements and the stresses in each element. Let 5 210E  
GPa and 5 3 25.0 10 m4 2A  for both truss elements.

Problems
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	 3.34		  For the plane truss shown in Figure P3–34, node 2 settles an amount 2d 5  mm.  
Determine the forces and stresses in each element due to this settlement. Let 

210E 5  GPa and 10 10 m4 2A 5 3 −  for each element.
	 3.35		  For the symmetric plane truss shown in Figure P3–35, determine (a) the deflection 

of node 1 and (b) the stress in element 1. AE/L for element 3 is twice AE/L for the 
other elements. Let 1.5 10 N/m8AE L 5 3 . Then let 5 10 m4 2A 5 3 − , 0.25L 5  m,  
and 75E 5  GPa to obtain numerical results.

■■ Figure P3–33(a)

100 kN

■■ Figure P3–33(b)

1 2

3

4

k = 4000 N/m

2 3
100 kN

1

60 60

5 m 5 m

8 m

4 m

■■ Figure P3–34

■■ Figure P3–35

10 kN
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	3.36–3.37		 For the space truss elements shown in Figures P3–36 and P3–37, the global 
displacements at node 1 have been determined to be 2 mm1u 5 , 4 mm1v 5 , 
and 3 mm1w 5 . Determine the displacement along the local 9x  axis at node 1 
of the elements. The coordinates, in inches, are shown in the figures.

■■ Figure P3–36 ■■ Figure P3–37

■■ Figure P3–38

x ′

(1, 2, 2)

■■ Figure P3–39

x ′

	3.38–3.39	 For the space truss elements shown in Figures P3–38 and P3–39, the global 
displacements at node 2 have been determined to be 5 6 mm2u , 5 12 mm2v , 
and 5 18 mm2w . Determine the displacement along the local 9x  axis at node 2 
of the elements. The coordinates, in meters, are shown in the figures.

Problems
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	3.40–3.41	 For the space trusses shown in Figures P3–40 and P3–41, determine the 
nodal displacements and the stresses in each element. Let 5 210E  GPa and 

5 3 210 10 m4 2A  for all elements. Verify force equilibrium at node 1. The 
coordinates of each node, in meters, are shown in the figure. All supports are 
ball-and-socket joints.

■■ Figure P3–40

■■ Figure P3–41

40

	 3.42		  For the space truss subjected to a 10 kN load in the x direction, as shown in 
Figure P3–42, determine the displacement of node 5. Also determine the stresses 
in each element. Let 25 10 m4 2A 5 3 −  and 2 10 N/m11 2E 5 3  for all elements. 
The coordinates of each node, in millimeters, are shown in the figure. Nodes 1–4 
are supported by ball-and-socket joints (fixed supports).
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	 3.43		  For the space truss subjected to the 40,000 N load acting as shown in Figure P3–43 
determine the displacement of node 4. Also determine the stresses in each element. 
Let 40 10 m4 2−A 5 3  and 200 GPaE 5  for all elements. The coordinates of each 
node, in mm, are shown in the figure. Nodes 1–3 are supported by ball-and-socket 
joints (fixed supports).

Problems

■■ Figure P3–42

■■ Figure P3–43

(–1440, 720, 0)

(–1440, –720, 0)

(0, 0, 1440)

40 kN

(–360, 0, 0)
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	 3.44		  Derive Eq. (3.7.21) for stress in space truss elements by a process similar to that 
used to derive Eq. (3.5.6) for stress in a plane truss element.

	 3.45		  For the truss shown in Figure P3–45, use symmetry to determine the displacements 
of the nodes and the stresses in each element. All elements have 5 200E  GPa. Ele-
ments 1, 2, 4, and 5 have 5 3 210 10 m4 2A  and element 3 has 5 3 220 10 m4 2A .  
Let dimension 5 2a  m and 5 40P  kN. The supports at nodes 1 and 4 are pinned.

■■ Figure P3–45

3
4

a

1
4

a

P
1

a a

1

3

2

4
4

3
52

	 3.46		  For the truss shown in Figure P3–46, use symmetry to determine the displacements of 
the nodes and the stresses in each element. All elements have 200 GPaE 5 . Elements 
1, 2, 4, and 5 have 62.5 10 m4 2−A 5 3  and element 3 has 125 10 m4 2−A 5 3 .

■■ Figure P3–46

	 3.47		  All elements of the structure in Figure P3–47 have the same AE except element 1, 
which has an axial stiffness of 2AE. Find the displacements of the nodes and the 
stresses in elements 2, 3, and 4 by using symmetry. Check equilibrium at node 4. You 
might want to use the results obtained from the stiffness matrix of Problem 3.24.

■■ Figure P3–47

15 m

20 m20 m
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	 3.48		  For the roof truss shown in Figure P3–48, use symmetry to determine the displace-
ments of the nodes and the stresses in each element. All elements have 5 210E  GPa 
and 5 3 210 10 m4 2A .

Problems

■■ Figure P3–48

	3.49–3.51	 For the plane trusses with inclined supports shown in Figures P3–49 through 
P3–51, solve for the nodal displacements and element stresses in the bars. Let 

12 10 m4 2A 5 3 − , 2 10 N/m11 2E 5 3 , and 0.75 mL 5  for each truss.

■■ Figure P3–49

■■ Figure P3–50 ■■ Figure P3–51

	 3.52		  Use the principle of minimum potential energy developed in Section 3.10 to solve 
the bar problems shown in Figure P3–52. That is, plot the total potential energy for 
variations in the displacement of the free end of the bar to determine the minimum 
potential energy. Observe that the displacement that yields the minimum potential 
energy also yields the stable equilibrium position. Use displacement increments of 
0.5 mm, beginning with 0.1 mmx 5 2 . Let 2 10 Pa11E 5 3  and 12 10 m4 2A 5 3 −  
for the bars.
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	 3.53		  Derive the stiffness matrix for the nonprismatic bar shown in Figure P3–53 using 
the principle of minimum potential energy. Let E be constant.

■■ Figure P3–52

■■ Figure P3–53

■■ Figure P3–54

Tx = 80x kN/m

1.5 m

	 3.54		  For the bar subjected to the linear varying axial load shown in Figure P3–54, deter-
mine the nodal displacements and axial stress distribution using (a) two equal-
length elements and (b) four equal-length elements. Let 12.5 10 m4 2A 5 3 −  and 

2 10 N/m11 2E 5 3 . Compare the finite element solution with an exact solution.

	 3.55		  For the bar subjected to the uniform line load in the axial direction shown in 
Figure P3–55, determine the nodal displacements and axial stress distribution using (a) 
two equal-length elements and (b) four equal-length elements. Compare the finite ele-
ment results with an exact solution. Let 12.5 10 m4 2A 5 3 −  and 2 10 N/m11 2E 5 3 .

	 3.56		  For the bar fixed at both ends and subjected to the uniformly distributed loading 
shown in Figure P3–56, determine the displacement at the middle of the bar and the 
stress in the bar. Let 12.5 10 m4 2A 5 3 −  and 2 10 N/m11 2E 5 3 .

■■ Figure P3–55 ■■ Figure P3–56
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	 3.57		  For the bar hanging under its own weight shown in Figure P3–57, determine the nodal 
displacements using (a) two equal-length elements and (b) four equal-length elements. 
Let 12 10 m4 2A 5 3 − , 2 10 N/m11 2E 5 3 , and weight density 7800 kg/m3

wr 5 . 
(Hint: The internal force is a function of x. Use the potential energy approach.)

Problems

■■ Figure P3–57

1.5 m

	 3.58		  Determine the energy equivalent nodal forces for the axial distributed loading shown 
acting on the bar elements in Figure P3–58.

■■ Figure P3–58

Tx = 1000 1 2000x N/m

0.25 m

	 3.59		  Solve Problem 3.55 for the axial displacement in the bar using collocation, 
subdomain, least squares, and Galerkin’s methods. Choose a quadratic polynomial 

5 1( ) 1 2
2u x c x c x  in each method. Compare these weighted residual method 

solutions to the exact solution.

	 3.60		  For the tapered bar shown in Figure P3–60 with cross sectional areas 
12 10 m1

4 2A 5 3 −  and 6 10 m2
4 2A 5 3 −  at each end, use the collocation, 

subdomain, least squares, and Galerkin’s methods to obtain the displacement in the 
bar. Compare these weighted residual solutions to the exact solution. Choose a cubic 
polynomial 5 1 1( ) 1 2

2
3

3u x c x c x c x .

■■ Figure P3–60

L = 0.5 m

x
A2

A1
P = 5000 N

E = 70 GPa

	 3.61		  For the bar shown in Figure P3–61 subjected to the linear varying axial load, deter-
mine the displacements and stresses using (a) one and then two finite element 
models and (b) the collocation, subdomain, least squares, and Galerkin’s methods 
assuming a cubic polynomial of the form 5 1 1( ) 1 2

2
3

3u x c x c x c x .
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	3.62–3.63	 For the plane stairway truss shown in Figure P3–62 and the plane cantilever truss 
shown in Figure P3–63, use a computer program to determine
a.	 the largest tensile and compressive stresses and in what elements they 

occur and
b.	 the largest magnitude of displacement and at what node this occurs. 

Use  5 5E 70 GPa, A 0.003125 m2.

■■ Figure P3–61

AE = 2 × 104 kN

T(x) = 10x kN/m

3.0 m

x

	3.64–3.72	 Use a computer program to solve the truss design problems shown in Figures 
P3–64 through P3–72. Determine the single most critical cross-sectional 
area based on maximum allowable yield strength or buckling strength (based 
on either Euler’s or Johnson’s formula as relevant) using a factor of safety 
(FS) listed next to each truss. Recommend a common structural shape and 
size for each truss. List the largest three nodal displacements and their loca-
tions. Also include a plot of the deflected shape of the truss and a principal 
stress plot.

■■ Figure P3–62  Stairway truss

2m

2m

45°

1000 N

C

B

A

2m

2m

2m

2m

2m

1000 N

E

1000 N

H

F

D

G

I

500 N

■■ Figure P3–63  Cantilever truss

2m

3m
2m

1m
2m 2m 2m

1000 N

1000 N

1000 N

500 N
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■■ Figure P3–64  Derrick truss (FS 4.0)5

3 m 8 m

8 m

F = 100 kN

3 m

■■ Figure P3–65  Truss bridge (FS 3.0)5

■■ Figure P3–68  Howe scissors roof truss (FS 2.0)5 ■■ Figure P3–69  Stadium roof truss (FS 3.0)5

■■ Figure P3–66  Tower (FS 2.5)5

4 m

M

K

H

E

B

N

L

I

F

CA

D

G

J

60 kN

50 kN

100 kN

100 kN

100 kN

60 kN

4 m

4 m

4 m

4 m

4 m 4 m

■■ Figure P3–67  Boxcar lift (FS 3.0)5
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E

3 m

1.5 m

1.5 m

G

D F = 10 kN

B

C

A

3 m

2.25 m y

x

z

■■ Figure P3–70  Space truss with ball-and-socket 
joints at C, D, E, and G (FS 3.0)5

250 kg

y

z

A

B

C

D

20 m

20 m

20 m20 m

■■ Figure P3–71  Space truss with ball-and-
socket joints at A, B, and D (FS 2.0)5

■■ Figure P3–72  Space truss (FS 2.0)5

y
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■■ Figure 3–73  Bridge truss

4
6 101

3 7 8

95
(2)

(3)

5 kN 5 kN
10 kN

(4)3 m 3 m

2 m
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D

A
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B

x

z

C

G
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■■ Figure P3–72  Continued

	 3.73		  For the bridge truss shown, determine a recommended single size square box sec-
tion for all members that most closely satisfy the stress requirements stated below. 
Assume the material is ASTM A500 Cold Formed with Grade B. So the yield 
strength is 315 MPa and tensile strength is 400 MPa. Assume a factor of safety of 
3 based on both yielding in tension and buckling in compression. Use a computer 
program to aid you in solving this problem. Base your final recommendation on the 
most critical compression member unless allowable tensile stress based on yielding 
of the material occurs.

	P3.74		  For the barrel vault truss shown, use a computer program to design the truss. 
That is, based on the most critical compression member and most critical tension 
member, select a square box ASTM A36 steel cross section based on either Euler’s 
or Johnson’s formula for buckling as relevant or maximum allowable yield strength 
in tension. Use a factor of safety of 3 based on yield strength or critical buckling 
load or stress. Document your work and show critical hand calculations. Also list 
the largest three nodal displacements and their locations on the truss. Include a plot 
of the deflected shape of the truss and of the principal stress, both in color.
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(8, 0)

(8, 4)

4′

4′

(14, 0)

(16, 7)
(20, 8)

(26, 7)

(27, 4)(22, 8)

(28, 0)
(34, 0)

(42, 0)

(34, 4)

(21, 10.5)

10 kN

10 kN

10 kN

10 kN

10 kN

5 kN
5 kN

(27.5, 7.25)

(25.5, 8.25)
(16.5, 8.25)

(14.5, 7.25)

(15, 4)

■■ Figure P3–74  Barrel vault truss (coordinates are shown in units of meters)

	P3.75		  Rework problem 3.74, but select a standard pipe cross section instead of a square 
box cross section.
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Development of Beam 
Equations

CHAPTER OBJECTIVES

At the conclusion of this chapter, you will be able to:

■	 Review basic concepts of beam bending.

■	 Derive the stiffness matrix for a beam element.

■	 Demonstrate beam analysis using the direct stiffness method.

■	 Illustrate the effects of shear deformation in shorter beams.

■	 Introduce the work-equivalence method for replacing distributed loading by a set of 
discrete loads.

■	 Introduce the general formulation for solving beam problems with distributed load-
ing acting on them.

■	 Analyze beams with distributed loading acting on them.

■	 Compare the finite element solution to an exact solution for a beam.

■	 Derive the stiffness matrix for the beam element with nodal hinge.

■	 Show how the potential energy method can be used to derive the beam element 
equations.

■	 Apply Galerkin’s residual method for deriving the beam element equations.

Introduction
We begin this chapter by developing the stiffness matrix for the bending of a beam element, the 
most common of all structural elements, as evidenced by its prominence in buildings, bridges, 
towers, and many other structures. The beam element is considered to be straight and to have 
constant cross-sectional area. We will first derive the beam element stiffness matrix by using 
the principles developed for simple beam theory.

We will then present simple examples to illustrate the assemblage of beam element stiff-
ness matrices and the solution of beam problems by the direct stiffness method presented in 
Chapter 2. The solution of a beam problem illustrates that the degrees of freedom associated 
with a node are a transverse displacement and a rotation. We will include the nodal shear forces 
and bending moments and the resulting shear force and bending moment diagrams as part of 
the total solution.

C H A P T E R

4
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4  |  Development of Beam Equations170

Next, we will discuss procedures for handling distributed loading, because beams and 
frames are often subjected to distributed loading as well as concentrated nodal loading. We will 
follow the discussion with solutions of beams subjected to distributed loading and compare a 
finite element solution to an exact solution for a beam subjected to a distributed loading.

We will then develop the beam element stiffness matrix for a beam element with a nodal 
hinge and illustrate the solution of a beam with an internal hinge.

To further acquaint you with the potential energy approach for developing stiffness matri-
ces and equations, we will again develop the beam bending element equations using this 
approach. We hope to increase your confidence in this approach. It will be used throughout 
much of this text to develop stiffness matrices and equations for more complex elements, such 
as two-dimensional (plane) stress, axisymmetric stress, and three-dimensional stress.

Finally, the Galerkin residual method is applied to derive the beam element equations.
The concepts presented in this chapter are prerequisite to understanding the concepts for 

frame analysis presented in Chapter 5.

	 4.1 	 Beam Stiffness
In this section, we will derive the stiffness matrix for a simple beam element. A beam is a long, 
slender structural member generally subjected to transverse loading that produces significant 
bending effects as opposed to twisting or axial effects. This bending deformation is measured 
as a transverse displacement and a rotation. Hence, the degrees of freedom considered per node 
are a transverse displacement and a rotation (as opposed to only an axial displacement for the 
bar element of Chapter 3).

Consider the beam element shown in Figure 4–1. The beam is of length L with axial local 
coordinate x and transverse local coordinate y. The local transverse nodal displacements are 
given by vi’s and the rotations by if ’s. The local nodal forces are given by fiy’s and the bending 
moments by mi’s as shown. We initially neglect all axial effects.

At all nodes, the following sign conventions are used:

	 1.	 Moments are positive in the counterclockwise direction.
	 2.	 Rotations are positive in the counterclockwise direction.
	 3.	 Forces are positive in the positive y direction.
	 4.	 Displacements are positive in the positive y direction.

■■ Figure 4–1  Beam element with positive nodal displacements, rotations, forces, and 
moments

v2v1
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4.1  Beam Stiffness 171

Figure 4–2 indicates the sign conventions used in simple beam theory for positive shear forces 
V and bending moments m.

Beam Stiffness Matrix Based on Euler-Bernoulli Beam Theory 
(Considering Bending Deformations Only)
The differential equation governing elementary linear-elastic beam behavior [1] (called the 
Euler-Bernoulli beam as derived by Euler and Bernoulli) is based on plane cross sections 
perpendicular to the longitudinal centroidal axis of the beam before bending occurs remain-
ing plane and perpendicular to the longitudinal axis after bending occurs. This is illustrated 
in Figure 4–3, where a plane through vertical line a c2  [Figure 4–3(a)] is perpendicular to 
the longitudinal x axis before bending, and this same plane through a c9 92  [rotating through 
angle f  in Figure 4–3(b)] remains perpendicular to the bent x axis after bending. This occurs 
in practice only when a pure couple or constant moment exists in the beam. However it is a 
reasonable assumption that yields equations that quite accurately predict beam behavior for 
most practical beams.

The differential equation is derived as follows. Consider the beam shown in Figure 4–3 
subjected to a distributed loading w(x) (force/length). From the force and moment equilibrium 
of a differential element of the beam, shown in Figure 4–3(c), we have

	 F V V dV w x dxyS 5 2 1 2 50 : ( ) ( ) 0	 (4.1.1a)

■■ Figure 4–2  Beam theory sign conventions for shear forces and bending moments

■■ Figure 4–3  Beam under distributed load

(c) Differential beam element

y, 

x
a

c

b

d

f

(a) Undeformed beam under load w(x) (b) Deformed beam due to applied loading

w(x)

c ′ d ′

a ′ b ′

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4  |  Development of Beam Equations172

Or, simplifying Eq. (4.1.1a), we obtain

	 w dx dV w
dV

dx
2 2 5 5 20 or 	 (4.1.1b)

	 0 : ( )
2

0 or2M Vdx dM w x dx
dx

V
dM

dx
S 5 2 1 1 5 5



 	 (4.1.1c)

The final form of Eq. (4.1.1c), relating the shear force to the bending moment, is obtained by 
dividing the left equation by dx and then taking the limit of the equation as dx approaches 0. 
The w(x) term then disappears.

Also, the curvature κ  of the beam is related to the moment by

	
1 M

EIr
5 5κ 	 (4.1.1d)

where r is the radius of the deflected curve shown in Figure 4–4b, v is the transverse displace-
ment function in the y direction (see Figure 4–4a), E is the modulus of elasticity, and I is the 
principal moment of inertia about the z axis (where the z axis is perpendicular to the x and y 
axes). (I bh5 /123  for a rectangular cross section of base b and height h shown in Figure 4–4c.)

The curvature for small slopes /dv dxf 5  is given by

	
2

2

d v

dx
5κ 	 (4.1.1e)

Using Eq. (4.1.1e) in (4.1.1d), we obtain

	
d v

dx

M

EI
5

2

2
	 (4.1.1f)

Solving Eq. (4.1.1f) for M and substituting this result into (4.1.1c) and (4.1.1b), we obtain

	






d

dx
EI

d v

dx
w x5 2 ( )

2

2

2

2
	 (4.1.1g)

For constant EI and only nodal forces and moments, Eq. (4.1.1g) becomes

	 EI
d v

dx
5 0

4

4
	 (4.1.1h)

We will now follow the steps outlined in Chapter 1 to develop the stiffness matrix and 
equations for a beam element and then to illustrate complete solutions for beams.

Step 1 Select the Element Type
Represent the beam by labeling nodes at each end and in general by labeling the element 
number (Figure 4–1).
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■■ Figure 4–4  Deflected curve of beam

Step 2 Select a Displacement Function
Assume the transverse displacement variation through the element length to be

	 ( ) 1
3

2
2

3 4v x a x a x a x a5 1 1 1 	 (4.1.2)

The complete cubic displacement function Eq. (4.1.2) is appropriate because there are four 
total degrees of freedom (a transverse displacement vi and a small rotation fi at each node). 
The cubic function also satisfies the basic beam differential equation—further justifying its 
selection. In addition, the cubic function also satisfies the conditions of displacement and slope 
continuity at nodes shared by two elements.

Using the same procedure as described in Section 2.2, we express v as a function of the 
nodal degrees of freedom v1, v2, f1, and f2 as follows:

	

(0)

(0)

( )

( )
3 2

1 4

1 3

2 1
3

2
2

3 4

2 1
2

2 3

v v a

dv

dx
a

v L v a L a L a L a

dv L

dx
a L a L a

f

f

5 5

5 5

5 5 1 1 1

5 5 1 1

	 (4.1.3)
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where dv dxf 5 /  for the assumed small rotation f . Solving Eqs. (4.1.3) for a1 through a4 in 
terms of the nodal degrees of freedom and substituting into Eq. (4.1.2), we have

	

2
( )

1
( )

3
( )

1
(2 )

3 1 2 2 1 2
3

2 1 2 1 2
2

1 1













f f

f f f

5 2 1 1

1 2 2 2 1 1 1

v
L

v v
L

x

L
v v

L
x x v

	 (4.1.4)

In matrix form, we express Eq. (4.1.4) as

	 { }v N d5 [ ] 	 (4.1.5)

where	

























d

v

v
{ }

1

1

2

2

f

f

5 	 (4.1.6a)

and where	 N N N N N5[ ] [ ]1 2 3 4 	 (4.1.6b)

and	

1
(2 3 )

1
( 2 )

1
( 2 3 )

1
( )

1 3
3 2 3

2 3
3 2 2 3

3 3
3 2

4 3
3 2 2

N
L

x x L L N
L

x L x L xL

N
L

x x L N
L

x L x L

5 2 1 5 2 1

5 2 1 5 2

	 (4.1.7)

N1, N2, N3, and N4 are called the shape functions for a beam element. These cubic shape (or 
interpolation) functions are known as Hermite cubic interpolation (or cubic spline) functions. 
For the beam element, N 5 11  when evaluated at node 1 and N 5 01  when evaluated at node 2. 
Because N2 is associated with f1, we have, from the second of Eqs. (4.1.7), dN dx 5( / ) 12  when 
evaluated at node 1. Shape functions N3 and N4 have analogous results for node 2.

Step 3 �Define the Strain/Displacement  
and Stress/Strain Relationships

Assume the following axial strain/displacement relationship to be valid:

	 x y
du

dx
x« 5( , ) 	 (4.1.8)

where u is the axial displacement function. From the deformed configuration of the beam 
shown in Figure 4–5, we relate the axial displacement to the transverse displacement by

	 u y
dv

dx
5 2 	 (4.1.9)
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where we should recall from elementary beam theory [1] the basic assumption that cross sec-
tions of the beam (such as cross section ABCD) that are planar before bending deformation 
remain planar after deformation and, in general, rotate through a small angle dv dx( / ). Using 
Eq. (4.1.9) in Eq. (4.1.8), we obtain

	 x y y
d v

dx
x« 5 2( , )

2

2
	 (4.1.10a)

Also using Hooke’s law Ex xs «5( ) and substituting Eq. (4.1.1f) for d v dx/2 2 into  
Eq. (4.1.10a), we obtain the beam flexure or bending stress formula as

	
My

I
xs 5

2
	 (4.1.10b)

From elementary beam theory, the bending moment and shear force are related to the transverse 
displacement function. Because we will use these relationships in the derivation of the beam 
element stiffness matrix, we now present them as

	 m x EI
d v

dx
V EI

d v

dx
5 5( )

2

2

3

3
	 (4.1.11)

Step 4 Derive the Element Stiffness Matrix and Equations
First, derive the element stiffness matrix and equations using a direct equilibrium approach. We 
now relate the nodal and beam theory sign conventions for shear forces and bending moments 
(Figures 4–1 and 4–2), along with Eqs. (4.1.4) and (4.1.11), to obtain

■■ Figure 4–5  Beam segment (a) before deformation and (b) after deformation;  
(c) Angle of rotation of cross section ABCD
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	 (4.1.12)

where the minus signs in the second and third of Eqs. (4.1.12) are the result of opposite nodal 
and beam theory positive bending moment conventions at node 1 and opposite nodal and beam 
theory positive shear force conventions at node 2 as seen by comparing Figures 4–1 and 4–2. 
Equations (4.1.12) relate the nodal forces to the nodal displacements. In matrix form, Eqs. 
(4.1.12) become
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	 (4.1.13)

where the stiffness matrix is then

	 [ ]

12 6 12 6

6 4 6 2
12 6 12 6

6 2 6 4

3

2 2

2 2

k
EI

L

L L

L L L L
L L

L L L L

5

2

2

2 2 2

2



















	 (4.1.14)

Equation (4.1.13) indicates that [k] relates transverse forces and bending moments to transverse 
displacements and rotations, whereas axial effects have been neglected.

In the beam element stiffness matrix [Eq. (4.1.14)] derived in this section, it is assumed 
that the beam is long and slender; that is, the length, L, to depth, h, dimension ratio of the 
beam is large. In this case, the deflection due to bending that is predicted by using the stiffness 
matrix from Eq. (4.1.14) is quite adequate. However, for short, deep beams the transverse shear 
deformation can be significant and can have the same order of magnitude contribution to the 
total deformation of the beam. This is seen by the expressions for the bending and shear contri-
butions to the deflection of a beam, where the bending contribution is of order L h( / )3, whereas 
the shear contribution is only of order (L/h). A general rule for rectangular cross-section beams 
is that for a length at least eight times the depth, the transverse shear deflection is less than 
five percent of the bending deflection [4]. Castigliano’s method for finding beam and frame 
deflections is a convenient way to include the effects of the transverse shear term as shown in 
Reference [4]. The derivation of the stiffness matrix for a beam including the transverse shear 
deformation contribution is given in a number of references [5–8].
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4.1  Beam Stiffness 177

The inclusion of the shear deformation in beam theory with application to vibration problems 
was developed by Timoshenko and is known as the Timoshenko beam [9–10].

Beam Stiffness Matrix Based on Timoshenko Beam Theory (Including 
Transverse Shear Deformation)
The shear deformation beam theory is derived as follows. Instead of plane sections remaining 
plane after bending occurs as shown previously in Figure 4–5, the shear deformation (deforma-
tion due to the shear force V) is now included. Referring to Figure 4–6, we observe a section of 
a beam of differential length dx with the cross section assumed to remain plane but no longer 
perpendicular to the neutral axis (x axis) due to the inclusion of the shear force resulting in a 
rotation term indicated by b . The total deflection of the beam at a point x now consists of two 
parts, one caused by bending and one by shear force, so that the slope of the deflected curve 
at point x is now given by

	
dv

dx
x xf b5 1( ) ( )	 (4.1.15a)

where rotation due to bending moment and due to transverse shear force are given, respectively, 
by xf( ) and xb( ).

■■ Figure 4–6  (a) Element of Timoshenko beam showing shear deformation. Cross sections are 
no longer perpendicular to the neutral axis line. (b) Two beam elements meeting at node 2
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We assume as usual that the linear deflection and angular deflection (slope) are small.
The relation between bending moment and bending deformation (curvature) is now

	 M x EI
d x

dx

f
5( )

( )
	 (4.1.15b)

and the relation between the shear force and shear deformation (rotation due to shear) (shear 
strain) is given by

	 V x k AG xs b5( ) ( )	 (4.1.15c)

The difference in dv/dx and f  represents the shear strain ( )g b5yz  of the beam as

	
dv

dx
yzg f5 2 	 (4.1.15d)

Now consider the differential element in Figure 4–3(c) and Eqs. (4.1.1b) and (4.1.1c) obtained 
from summing transverse forces and then summing bending moments. We now substitute 
Eq. (4.1.15c) for V and Eq. (4.1.15b) for M into Eqs. (4.1.1b) and (4.1.1c) along with b from 
Eq. (4.1.15a) to obtain the two governing differential equations as

	 











d

dx
k AG

dv

dx
ws f2 5 2 	 (4.1.15e)

	 











d

dx
EI

d

dx
k AG

dv

dx
s

f
f1 2 5 0	 (4.1.15f)

To derive the stiffness matrix for the beam element including transverse shear deformation, 
we assume the transverse displacement to be given by the cubic function in Eq. (4.1.2). In a 
manner similar to [8], we choose transverse shear strain g consistent with the cubic polynomial 
for v(x), such that g is a constant given by

	 cg 5 	 (4.1.15g)

Using the cubic displacement function for v, the slope relation given by Eq. (4.1.15a), and the 
shear strain Eq. (4.1.15g), along with the bending moment-curvature relation, Eq. (4.1.15b) 
and the shear force-shear strain relation Eq. (4.1.15c), in the bending moment–shear force 
relation Eq. (4.1.1c), we obtain

	 c a g5 6 1 	 (4.1.15h)

where g EI k AGs5 /  and k As  is the shear area. Shear areas, As, vary with cross-section shapes. 
For instance, for a rectangular shape As is taken as 0.83 times the cross section A, for a solid 
circular cross section it is taken as 0.9 times the cross section, for a wide-flange cross section it 
is taken as the thickness of the web times the full depth of the wide-flange, and for thin-walled 
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cross sections it is taken as two times the product of the thickness of the wall times the depth 
of the cross section.
Using Eqs. (4.1.2), (4.1.15a), (4.1.15g), and (4.1.15h) allows f  to be expressed as a polynomial 
in x as follows:

	 a a x x g af 5 1 1 12 (3 6 )3 2
2

1	 (4.1.15i)

Using Eqs. (4.1.2) and (4.1.15i), we can now express the coefficients a1 through a4 in terms of 
the nodal displacements v1 and v2 and rotations f1 and f2 of the beam at the ends x 5 0 and 
x L5  as previously done to obtain Eq. (4.1.4) when shear deformation was neglected. The 
expressions for a1 through a4 are then given as follows:

	

2 2

( 12 )

3 (2 6 ) 3 ( 6 )

( 12 )

12 ( 6 ) 12 6

( 12 )

1
1 1 2 2

2

2
1

2
1 2

2
2

2

3
1

3
1 2 2

2

4 1

a
v L v L

L L g

a
Lv L g Lv L g

L L g

a
gv L gL gv gL

L L g

a v

f f

f f

f f

5
1 2 1

1

5
2 2 1 1 1 2 1

1

5
2 1 1 1 2

1

5

	 (4.1.15j)

Substituting these a’s into Eq. (4.1.2), we obtain
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	 (4.1.15k)

In a manner similar to step 4 used to derive the stiffness matrix for the beam element without 
shear deformation included, we have
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where again the minus signs in the second and third of Eqs. (4.1.15l) are the result of opposite 
nodal and beam theory positive moment conventions at node l and opposite nodal and beam 
theory positive shear force conventions at node 2, as seen by comparing Figures 4–1 and 4–2. 
In matrix form Eqs. (4.1.15l) become
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where the stiffness matrix, including both bending and shear deformation, is then given by
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	 (4.1.15n)

In Eq. (4.1.15n) remember that g represents the transverse shear term, and if we set g 5 0, we 
obtain Eq. (4.1.14) for the beam stiffness matrix, neglecting transverse shear deformation. To 
more easily see the effect of the shear correction factor, we define the nondimensional shear 
correction term as EI k AGL g Lsw 5 512 / ( ) 12 /2 2 and rewrite the stiffness matrix as
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	 (4.1.15o)

Most commercial computer programs, such as [11], will include the shear deformation by 
having you input the shear area, A k As s5 .

	 4.2 	 Example of Assemblage of Beam Stiffness Matrices
Step 5 �Assemble the Element Equations to Obtain the Global  

Equations and Introduce Boundary Conditions
Consider the beam in Figure 4–7 as an example to illustrate the procedure for assemblage of 
beam element stiffness matrices. Assume EI to be constant throughout the beam. A force of 
5000 N and a moment of 2500 N-m are applied to the beam at midlength. The left end is a 
fixed support and the right end is a pin support.

First, we discretize the beam into two elements with nodes 1–3 as shown. We include a 
node at midlength because applied force and moment exist at midlength and, at this time, loads 
are assumed to be applied only at nodes. (Another procedure for handling loads applied on 
elements will be discussed in Section 4.4.)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4.2  Example of Assemblage of Beam Stiffness Matrices 181

Using Eq. (4.1.14), we find that the global stiffness matrices for the two elements are now 
given by
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and	
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	 (4.2.2)

where the degrees of freedom associated with each beam element are indicated by the usual 
labels above the columns in each element stiffness matrix.

The total stiffness matrix can now be assembled for the beam by using the direct stiffness 
method. When the total (global) stiffness matrix has been assembled, the external global nodal 
forces are related to the global nodal displacements. Through direct superposition and Eqs. 
(4.2.1) and (4.2.2), the governing equations for the beam are thus given by
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	 (4.2.3)

■■ Figure 4–7  Fixed hinged beam subjected to a force and a moment

2500 N-m

5000 N
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Now considering the boundary conditions, or constraints, of the fixed support at node 1 and 
the hinge (pinned) support at node 3, we have

	 v vf 5 5 50 0 01 1 3 	 (4.2.4)

On considering the third, fourth, and sixth equations of Eqs. (4.2.3) corresponding to the rows 
with unknown degrees of freedom and using Eqs. (4.2.4), we obtain
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	 (4.2.5)

where 5 250002F y  N, 5 25002M  N-m, and M 5 03  have been substituted into the reduced 
set of equations. We could now solve Eq. (4.2.5) simultaneously for the unknown nodal dis-
placement v2 and the unknown nodal rotations 2f  and f3. We leave the final solution for you 
to obtain. Section 4.3 provides complete solutions to beam problems.

	 4.3 	 Examples of Beam Analysis Using the Direct 
Stiffness Method

We will now perform complete solutions for beams with various boundary supports and loads 
to illustrate further the use of the equations developed in Section 4.1.

EXAMPLE 4.1

Using the direct stiffness method, solve the problem of the propped cantilever beam sub-
jected to end load P in Figure 4–8. The beam is assumed to have constant EI and length 2L. 
It is supported by a roller at midlength and is built in at the right end.

■■ Figure 4–8  Propped cantilever beam

SOLUTION:
We have discretized the beam and established global coordinate axes as shown in Figure 4–8. 
We will determine the nodal displacements and rotations, the reactions, and the complete 
shear force and bending moment diagrams.
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Using Eq. (4.1.14) for each element, along with superposition, we obtain the structure 
total stiffness matrix by the same method as described in Section 4.2 for obtaining the stiff-
ness matrix in Eq. (4.2.3). The [K] is
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The governing equations for the beam are then given by
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	 (4.3.2)

On applying the boundary conditions

	 v v0 0 02 3 3f5 5 5 	 (4.3.3)

and partitioning the equations associated with unknown displacements [the first, second, and 
fourth equations of Eqs. (4.3.2)] from those equations associated with known displacements 
in the usual manner, we obtain the final set of equations for a longhand solution as
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where F Py1 5 2 , M 5 01 , and M 5 02  have been used in Eq. (4.3.4). We will now solve 
Eq. (4.3.4) for the nodal displacement and nodal slopes. We obtain the transverse displace-
ment at node 1 as

	
7

12
1

3

v
PL

EI
5 2 	 (4.3.5)

where the minus sign indicates that the displacement of node 1 is downward.
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The slopes are
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where the positive signs indicate counterclockwise rotations at nodes 1 and 2.

We will now determine the global nodal forces. To do this, we substitute the known 
global nodal displacements and rotations, Eqs. (4.3.5) and (4.3.6), into Eq. (4.3.2). The 
resulting equations are
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	 (4.3.7)

Multiplying the matrices on the right-hand side of Eq. (4.3.7), we obtain the global nodal 
forces and moments as
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	 (4.3.8)

The results of Eqs. (4.3.8) can be interpreted as follows: The value of F Py1 5 2  is the 
applied force at node 1, as it must be. The values of F y2 , F y3 , and M3 are the reactions from 
the supports as felt by the beam. The moments M1 and M2 are zero because no applied or 
reactive moments are present on the beam at node 1 or node 2.

It is generally necessary to determine the local nodal forces associated with each ele-
ment of a large structure to perform a stress analysis of the entire structure. We will thus 
consider the forces in element 1 of this example to illustrate this concept (element 2 can be 
treated similarly). Using Eqs. (4.3.5) and (4.3.6) in the f k d{ } [ ]{ }5  equation for element 
1 [also see Eq. (4.1.13)], we have
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	 (4.3.9)
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Equation (4.3.9) yields

	 f P m f P m PLy y01 1 2 25 2 5 5 5 2 	 (4.3.10)

A free-body diagram of element 1, shown in Figure 4–9(a), should help you to understand 
the results of Eqs. (4.3.10). The figure shows a nodal transverse force of negative P at node 
1 and of positive P and negative moment PL at node 2. These values are consistent with 
the results given by Eqs. (4.3.10). For completeness, the free-body diagram of element 2 is 
shown in Figure 4–9(b). We can easily verify the element nodal forces by writing an equa-
tion similar to Eq. (4.3.9). From the results of Eqs. (4.3.8), the nodal forces and moments 
for the whole beam are shown on the beam in Figure 4–10. Using the beam sign 
conventions established in Section 4.1, we obtain the shear force V and bending 
moment M diagrams shown in Figures 4–11 and 4–12.

■■ Figure 4–12  Bending moment diagram for the beam of Figure 4–10

■■ Figure 4–9  Free-body diagrams showing forces and moments on (a) element 1 and  
(b) element 2

■■ Figure 4–10  Nodal forces and moment on the beam

■■ Figure 4–11  Shear force diagram for the beam of Figure 4–10
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In general, for complex beam structures, we will use the element local forces to determine 
the shear force and bending moment diagrams for each element. We can then use these values 
for design purposes. Chapter 5 will further discuss this concept as used in computer codes.

EXAMPLE 4.2

Determine the nodal displacements and rotations, global nodal forces, and element forces 
for the beam shown in Figure 4–13. We have discretized the beam as indicated by the node 
numbering. The beam is fixed at nodes 1 and 5 and has a roller support at node 3. Vertical 
loads of 50 kN each are applied at nodes 2 and 4. Let 5 210 GPaE  and 5 32 10 m4 4I −  
throughout the beam.

■■ Figure 4–13  Beam example
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SOLUTION:
We must have consistent units; therefore, the 10-ft lengths in Figure 4–13 will be con-
verted to 120 in. during the solution. Using Eq. (4.1.10), along with superposition of the 
four beam element stiffness matrices, we obtain the global stiffness matrix and the global 
equations as given in Eq. (4.3.11). Here the lengths of each element are the same. Thus, 
we can factor an L out of the superimposed stiffness matrix.

(4.3.11)

For a longhand solution, we reduce Eq. (4.3.11) in the usual manner by application 
of the boundary conditions

	 f f5 5 5 5 5 01 1 3 5 5v v v
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The resulting equation is
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	 (4.3.12)

The rotations (slopes) at nodes 2–4 are equal to zero because of symmetry in loading, 
geometry, and material properties about a plane perpendicular to the beam length and 
passing through node 3. Therefore, f f f5 5 5 02 3 4 , and we can further reduce 
Eq. (4.3.12) to
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	 (4.3.13)

Solving for the displacements using 5 3L  m, 5 210E  GPa, and 5 32 10 m4 4I −  in Eq. 
(4.3.13), we obtain

	 5 5 21.34 mm2 4v v 	 (4.3.14)

as expected because of symmetry.
As observed from the solution of this problem, the greater the static redundancy 

(degrees of static indeterminacy or number of unknown forces and moments that cannot 
be determined by equations of statics), the smaller the kinematic redundancy (unknown 
nodal degrees of freedom, such as displacements or slopes)—hence, the fewer the number 
of unknown degrees of freedom to be solved for. Moreover, the use of symmetry, when 
applicable, reduces the number of unknown degrees of freedom even further. We can now 
back-substitute the results from Eq. (4.3.14), along with the numerical values for E, I, and 
L, into Eq. (4.3.12) to determine the global nodal forces as
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y

y

y

y

y

	 (4.3.15)

Once again, the global nodal forces (and moments) at the support nodes (nodes 1, 3, and 5) 
can be interpreted as the reaction forces, and the global nodal forces at nodes 2 and 4 are 
the applied nodal forces.

However, for large structures we must obtain the local element shear force and bending 
moment at each node end of the element because these values are used in the design/analysis 
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process. We will again illustrate this concept for the element connecting nodes 1 and 2 in 
Figure 4–13. Using the local equations for this element, for which all nodal displacements 
have now been determined, we obtain
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Simplifying Eq. (4.3.16), we have
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	 (4.3.17)

If you wish, you can draw a free-body diagram to confirm the equilibrium of the element.

Finally, you should note that because of reflective symmetry about a vertical plane passing 
through node 3, we could have initially considered one-half of this beam and used the follow-
ing model. The fixed support at node 3 is due to the slope being zero at node 3 because of the 
symmetry in the loading and support conditions.

50 kN

EXAMPLE 4.3

Determine the nodal displacements and rotations and the global and element forces for the 
beam shown in Figure 4–14. We have discretized the beam as shown by the node numbering. 
The beam is fixed at node 1, has a roller support at node 2, and has an elastic spring support 
at node 3. A downward vertical force of P 5 50 kN is applied at node 3. Let E 5 210 GPa 
and I 2 10 m4 45 3 2  throughout the beam, and let k 5 200 kN/m.
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SOLUTION:
Using Eq. (4.1.14) for each beam element and Eq. (2.2.18) for the spring element as well 
as the direct stiffness method, we obtain the structure stiffness matrix as
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(4.3.18a)

where the spring stiffness matrix ks[ ] given below by Eq. (4.3.18b) has been directly added 
into the global stiffness matrix corresponding to its degrees of freedom at nodes 3 and 4.
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	 (4.3.18b)

It is easier to solve the problem using the general variables, later making numerical substitutions 
into the final displacement expressions. The governing equations for the beam are then given by
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	 (4.3.19)

■■ Figure 4–14  Beam example
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where k kL EI9 5 /( )3  is used to simplify the notation. We now apply the boundary conditions

	 f5 5 5 50 0 0 01 1 2 4v v v 	 (4.3.20)

We delete the first three equations and the seventh equation [corresponding to the boundary 
conditions given by Eq. (4.3.20)] of Eqs. (4.3.19). The remaining three equations are

	














































P
EI

L

L L L

L k L

L L L

v
0

0

8 6 2

6 12 6

2 6 4
3

2 2

2 2

2

3

3

f

f

2 5

2

2 1 2

2

9 	 (4.3.21)

Solving Eqs. (4.3.21) simultaneously for the displacement at node 3 and the rotations at 
nodes 2 and 3, we obtain
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	 (4.3.22)

The influence of the spring stiffness on the displacements is easily seen in Eq. (4.3.22). 
Solving for the numerical displacements using P 5 50 kN, L 5 3 m, E 210 GPa5
( 210 10 kN/m )6 25 3 , I 5 3 22 10 m4 4, and k9 5 0.129 in Eq. (4.3.22), we obtain

	 5
2

3 3 1
5 2

2

7(50 kN)(3 m)

(210 10 kN/m )(2 10 m )

1

12 7(0.129)
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3
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
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	 (4.3.23)

Similar substitutions into Eq. (4.3.26) yield

	 0.00249 rad 0.00747 rad2 3f f5 2 5 2 	 (4.3.24)

We now back-substitute the results from Eqs. (4.3.23) and (4.3.24), along with numerical 
values for P, E, I, L, and k9 , into Eq. (4.3.19) to obtain the global nodal forces as
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	 (4.3.25)

For the beam-spring structure, an additional global force F y4  is determined at the base of 
the spring as follows:

	 F v ky (0.0174)200 3.5 kN4 35 2 5 5 	 (4.3.26)

This force provides the additional global y force for equilibrium of the structure.
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A free-body diagram, including the forces and moments from Eqs. (4.3.25) and (4.3.26) 
acting on the beam, is shown in Figure 4–15.

EXAMPLE 4.4

Determine the displacement and rotation under the force and moment located at the center of 
the beam shown in Figure 4–16. The beam has been discretized into the two elements shown 
in Figure 4–16. The beam is fixed at each end. A downward force of 10 kN and an applied 
moment of 20 kN-m act at the center of the beam. Let E 5 210 GPa and I 5 3 24 10 m4 4 
throughout the beam length.

■■ Figure 4–15  Free-body diagram of beam of Figure 4–14

■■ Figure 4–16  Fixed-fixed beam subjected to applied force and moment

3 m 3 m

1 2
20 kN-m1 3

2

10 kN

Solution:
Using Eq. (4.1.14) for each beam element with L 5 3 m, we obtain the element stiffness 
matrices as follows:
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(4.3.27)

The boundary conditions are given by

	 f f5 5 5 5 01 1 3 3v v 	 (4.3.28)
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The global forces are F y 5 2 10,0002  N and M 5 20,0002  N-m.
Applying the global forces and boundary conditions, Eq. (4.3.28), and assembling the 

global stiffness matrix using the direct stiffness method and Eqs. (4.3.27), we obtain the 
global equations as:
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Solving Eq. (4.3.29) for the displacement and rotation, we obtain

	 v 1.339 10 m and 8.928 10 rad2
4

2
5f5 2 3 5 32 2 	 (4.3.30)

Using the local equations for each element, we obtain the local nodal forces and 
moments for element one as follows:
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(4.3.31)

Simplifying Eq. (4.3.31), we have

f m f my y10,000 N, 12,500 N-m, 10,000 N, 17,500 N-m1
(1)

1
(1)

2
(1)

2
(1)5 5 5 2 5 	 (4.3.32)

Similarly, for element two the local nodal forces and moments are

	 5 5 5 5 20, 2500 N-m, 0, 2500 N-m2
(2)

2
(2)

3
(2)

3
(2)f m f my y 	 (4.3.33)

Using the results from Eqs. (4.3.32) and (4.3.33), we show the local forces and moments 
acting on each element in Figure 4–17 as follows.

Using the results from Eqs. (4.3.32) and (4.3.33), or Figure 4–17, we obtain the shear 
force and bending moment diagrams for each element as shown in Figure 4–18.

■■ Figure 4–17  Nodal forces and moments acting on each element of Figure 4–16
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EXAMPLE 4.5

To illustrate the effects of shear deformation along with the usual bending deformation, we 
now solve the simple beam shown in Figure 4–19. We will use the beam stiffness matrix 
given by Eq. (4.1.15o) that includes both the bending and shear deformation contributions 
for deformation in the x – y plane. The beam is simply supported with a concentrated load 
of 10,000 N applied at mid-span. We let material properties be E 5 207 GPa and G 5 80 
GPa. The beam width and height are b 5 25 mm and h 5 50 mm, respectively.

■■ Figure 4–18  Shear force (a) and bending moment (b) diagrams for each element of 
Figure 4–17

+

17,500

−12,500
−2500

10,000

−
−
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1 2

0

+
(a)

(b)

■■ Figure 4–19  Simple beam subjected to concentrated load at center of span

P = 10,000 N

200 mm

400 mm

h

b

SOLUTION:
We will use symmetry to simplify the solution. Therefore, only one half of the beam will be 
considered with the slope at the center forced to be zero. Also, one-half of the concentrated 
load is then used. The model with symmetry enforced is shown in Figure 4–20.

The finite element model will consist of only one beam element. Using Eq. (4.1.15o) 
for the Timoshenko beam element stiffness matrix, we obtain the global equations as
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	 (4.3.34)
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Note that the boundary conditions given by v 5 01  and f 5 02  have been included in 
Eq. (4.3.34).

Using the second and third equations of Eq. (4.3.34) whose rows are associated with 
the two unknowns, f1 and v2, we obtain
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f5
2 1

5
2(4 )

24
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4
2
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2

v
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E I
	 (4.3.35)

As the beam is rectangular in cross section, the moment of inertia is

	 5 /123I bh 	

Substituting the numerical values for b and h, we obtain I as

	 5 3 20.26 10 m6 4I 	

The shear correction factor is given by

	 w 5
12

2

EI

k AGLs
	

and ks for a rectangular cross section is given by ks 5 5/6.
Substituting numerical values for E, I, G, L, and ks, we obtain

	
12 207 10 0.26 10

5/6 0.025 0.05 80 10 0.2
0.1938

9 6

9 2
w 5

3 3 3 3

3 3 3 3 3
5

2

	

Substituting for P 5 10,000 N, L 5 0.2 m, and w 5 0.1938 into Eq. (4.3.35), we obtain the 
displacement at the mid-span as

	 v 2.597 10 m2
45 2 3 2 	 (4.3.36)

If we let l 5 the whole length of the beam, then l L5 2  and we can substitute L l5 /2 into 
Eq. (4.3.35) to obtain the displacement in terms of the whole length of the beam as

	 v
Pl

EI

(4 )

192
2

3 w
5

2 1
	 (4.3.37)

For long slender beams with l about 10 or more times the beam depth, h, the transverse shear 
correction term w is small and can be neglected. Therefore, Eq. (4.3.37) becomes

	 v
Pl

EI48
2

3

5
2

	 (4.3.38)

■■ Figure 4–20  Beam with symmetry enforced
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Equation (4.3.38) is the classical beam deflection formula for a simply supported beam 
subjected to a concentrated load at mid-span.

Using Eq. (4.3.38), the deflection is obtained as

	 v 2.474 10 m2
45 2 3 2 	 (4.3.39)

Comparing the deflections obtained using the shear-correction factor with the deflection 
predicted using the beam-bending contribution only, we obtain

	 % change
2.597 2.474

2.474
100 4.97% difference5

2
3 5 	

	 4.4 	 Distributed Loading
Beam members can support distributed loading as well as concentrated nodal loading. There-
fore, we must be able to account for distributed loading. Consider the fixed-fixed beam sub-
jected to a uniformly distributed loading w shown in Figure 4–21. The reactions, determined 
from structural analysis theory [2], are shown in Figure 4–22. These reactions are called fixed-
end reactions. In general, fixed-end reactions are those reactions at the ends of an element 
if the ends of the element are assumed to be fixed—that is, if displacements and rotations are 
prevented. (Those of you who are unfamiliar with the analysis of indeterminate structures should 
assume these reactions as given and proceed with the rest of the discussion; we will develop 
these results in a subsequent presentation of the work-equivalence method.) Therefore, guided 
by the results from structural analysis for the case of a uniformly distributed load, we replace 
the load by concentrated nodal forces and moments tending to have the same effect on the beam 
as the actual distributed load. Figure 4–23 illustrates this idea for a beam. We have replaced the 
uniformly distributed load by a statically equivalent force system consisting of a concentrated 
nodal force and moment at each end of the member carrying the distributed load. That is, 
both the statically equivalent concentrated nodal forces and moments and the original distrib-
uted load have the same resultant force and same moment about an arbitrarily chosen point. 

■■ Figure 4–22  Fixed-end reactions for the beam of Figure 4–21

■■ Figure 4–21  Fixed-fixed beam subjected to a uniformly distributed load

w (N/m)
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These statically equivalent forces are always of opposite sign from the fixed-end reactions. 
If we want to analyze the behavior of loaded member 2–3 in better detail, we can place a node 
at midspan and use the same procedure just described for each of the two elements representing 
the horizontal member. That is, to determine the maximum deflection and maximum moment 
in the beam span, a node 5 is needed at midspan of beam segment 2–3, and work-equivalent 
forces and moments are applied to each element (from node 2 to node 5 and from node 5 to 
node 3) shown in Figure 4–23(c).

Work-Equivalence Method
We can use the work-equivalence method to replace a distributed load by a set of discrete 
loads. This method is based on the concept that the work of the distributed load w(x) in going 
through the displacement field v(x) is equal to the work done by nodal loads fiy and mi in 
going through nodal displacements vi and if  for arbitrary nodal displacements. To illustrate 
the method, we consider the example shown in Figure 4–24. The work due to the distributed 
load is given by

	 ∫W w x v x dx
L

( ) ( )distributed
0

5 	 (4.4.1)

where v(x) is the transverse displacement given by Eq. (4.1.4). The work due to the discrete 
nodal forces is given by

	 W m m f v f vy ydiscrete 1 1 2 2 1 1 2 2f f5 1 1 1 	 (4.4.2)

We can then determine the nodal moments and forces m1, m2, f y1 , and f y2  used to replace the dis-
tributed load by using the concept of work equivalence—that is, by setting W W5distributed discrete 
for arbitrary displacements f1, f2, v1, and v2.

■■ Figure 4–23  (a) Beam with a distributed load, (b) the equivalent nodal force system, and 
(c) the enlarged beam (for clarity’s sake) with equivalent nodal force system when node 5 is 
added to the midspan
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Example of Load Replacement
To illustrate more clearly the concept of work equivalence, we will now consider a beam 
subjected to a specified distributed load. Consider the uniformly loaded beam shown in 
Figure 4–25(a). The support conditions are not shown because they are not relevant to the 
replacement scheme. By letting W W5discrete distributed and by assuming arbitrary f1, f2, v1, and 
v2, we will find equivalent nodal forces and moments m1, m2, f y1 , and f y2 . Figure 4–25(b) shows 
the nodal forces and moments directions as positive based on Figure 4–1.

Using Eqs. (4.4.1) and (4.4.2) for W W5distributed discrete, we have

	 ∫ w x v x dx m m f v f v
L

y y( ) ( )
0

1 1 2 2 1 1 2 2f f5 1 1 1 	 (4.4.3)

where m f1 1 and m f2 2 are the work due to concentrated nodal moments moving through their 
respective nodal rotations and f vy1 1 and f vy2 2 are the work due to the nodal forces moving 
through nodal displacements. Evaluating the left-hand side of Eq. (4.4.3) by substituting 
w x w( ) 5 2  and v(x) from Eq. (4.1.4), we obtain the work due to the distributed load as

	
∫







w x v x dx
Lw

v v
L w

Lw v v

L w L w
v wL

L
( ) ( )

2
( )

4
( ) ( )

3
(2 )

2
( )

0
1 2

2

1 2 2 1

2

1 2 1

2

1

f f

f f f

5 2 2 2 1 2 2

1 1 2 2

	 (4.4.4)

Now using Eqs. (4.4.3) and (4.4.4) for arbitrary nodal displacements, we let f 5 11 , f 5 02 , 
v 5 01 , and v 5 02  and then obtain

	






5 2 2 1 5 2(1)
4

2

3 2 12
1

2
2

2 2

m
L w

L w
L

w
wL

	 (4.4.5)

■■ Figure 4–25  (a) Beam subjected to a uniformly distributed loading and (b) the equivalent 
nodal forces to be determined

v1 v2

■■ Figure 4–24  (a) Beam element subjected to a general load and (b) the statically equivalent 
nodal force system

v1 v2
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Similarly, letting f 5 01 , f 5 12 , v 5 01 , and v 5 02  yields

	 5 2 2 5(1)
4 3 12

2

2 2 2

m
L w L w wL





	 (4.4.6)

Finally, letting all nodal displacements equal zero except first v1 and then v2, we obtain

	
f

Lw
Lw Lw

Lw

f
Lw

Lw
Lw

y

y

(1)
2 2

(1)
2 2

1

2

5 2 1 2 5 2

5 2 5 2

	 (4.4.7)

We can conclude that, in general, for any given load function w(x), we can multiply by 
v(x) and then integrate according to Eq. (4.4.3) to obtain the concentrated nodal forces (and/or 
moments) used to replace the distributed load. Moreover, we can obtain the load replacement 
by using the concept of fixed-end reactions from structural analysis theory. Tables of fixed-end 
reactions have been generated for numerous load cases and can be found in texts on struc-
tural analysis such as Reference [2]. A table of equivalent nodal forces has been generated in 
Appendix D of this text, guided by the fact that fixed-end reaction forces are of opposite sign 
from those obtained by the work equivalence method.

Hence, if a concentrated load is applied other than at the natural intersection of two ele-
ments, we can use the concept of equivalent nodal forces to replace the concentrated load by 
nodal concentrated values acting at the beam ends, instead of creating a node on the beam at 
the location where the load is applied. We provide examples of this procedure for handling 
concentrated loads on elements in beam Example 4.7 and in plane frame Example 5.3.

General Formulation
In general, we can account for distributed loads or concentrated loads acting on beam elements 
by starting with the following formulation application for a general structure:

	 { }{ }{ }F K d F[ ] 05 2 	 (4.4.8)

where {F} are the concentrated nodal forces and {F0} are called the equivalent nodal forces, 
now expressed in terms of global-coordinate components, which are of such magnitude that 
they yield the same displacements at the nodes as would the distributed load. Using the table 
in Appendix D of equivalent nodal forces { f0} expressed in terms of local-coordinate compo-
nents, we can express {F0} in terms of global-coordinate components.

Recall from Section 3.10 the derivation of the element equations by the principle of mini-
mum potential energy. Starting with Eqs. (3.10.19) and (3.10.20), the minimization of the total 
potential energy resulted in the same form of equation as Eq. (4.4.8) where {F0} now represents 
the same work-equivalent force replacement system as given by Eq. (3.10.20a) for surface 
traction replacement. Also, F P{ } { }5 , {P} [from Eq. (3.10.20)] represents the global nodal 
concentrated forces. Because we now assume that concentrated nodal forces are not present 

F{ } 5( 0), as we are solving beam problems with distributed loading only in this section, we 
can write Eq. (4.4.8) as

	 { } { }5 [ ]0F K d 	 (4.4.9)
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On solving for {d} in Eq. (4.4.9) and then substituting the global displacements {d} and 
equivalent nodal forces F{ }0  into Eq. (4.4.8), we obtain the actual global nodal forces {F}. 
For example, using the definition of f{ }0  and Eqs. (4.4.5), (4.4.6), (4.4.7) (or using load case 
4 in Appendix D) for a uniformly distributed load w acting over a one-element beam, we have

	 { }
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	 (4.4.10)

This concept can be applied on a local basis to obtain the local nodal forces { f} in 
individual elements of structures by applying Eq. (4.4.8) locally as

	 { } { }[ ]{ }5 2 0f k d f 	 (4.4.11)

where f{ }0  are the equivalent local nodal forces.
Examples 4.6 through 4.8 illustrate the method of equivalent nodal forces for solving beams 

subjected to distributed and concentrated loadings. We will use global-coordinate notation in 
Examples 4.6 through 4.8—treating the beam as a general structure rather than as an element.

EXAMPLE 4.6

For the cantilever beam subjected to the uniform load w in Figure 4–26, solve for the right-
end vertical displacement and rotation and then for the nodal forces. Assume the beam to 
have constant EI throughout its length.

Solution:
We begin by discretizing the beam. Here only one element will be used to represent the 
whole beam. Next, the distributed load is replaced by its work-equivalent nodal forces 
as shown in Figure 4–26(b). The work-equivalent nodal forces are those that result from 
the uniformly distributed load acting over the whole beam given by Eq. (4.4.10). (Or see 

■■ Figure 4–26  (a) Cantilever beam subjected to a uniformly distributed load and (b) the 
work equivalent nodal force system
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appropriate load case 4 in Appendix D.) Using Eq. (4.4.9) and the beam element stiffness 
matrix, we obtain
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	 (4.4.12)

where we have applied the work equivalent nodal forces and moments from Figure 4–26(b). 
Applying the boundary conditions v 5 01  and f 5 01  to Eqs (4.4.12) and then parti-

tioning off the third and fourth equations of Eq. (4.4.12), we obtain
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	 (4.4.13)

Solving Eq. (4.4.13) for the displacements, we obtain
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	 (4.4.14a)

Simplifying Eq. (4.4.14a), we obtain the displacement and rotation as
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The negative signs in the answers indicate that v2 is downward and f2 is clockwise. In this 
case, the method of replacing the distributed load by discrete concentrated loads gives exact 
solutions for the displacement and rotation as could be obtained by classical methods, such 
as double integration [1]. This is expected, as the  work-equivalence method ensures that the 
nodal displacement and rotation from the finite element method match those from an exact 
solution.

We will now illustrate the procedure for obtaining the global nodal forces. For conve-
nience, we first define the product [K]{d} to be F e{ }( ) , where F e{ }( )  are called the effective 
global nodal forces. On using Eq. (4.4.14) for {d}, we then have
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Simplifying Eq. (4.4.15), we obtain
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We then use Eqs. (4.4.10) and (4.4.16) in Eq. (4.4.8) F K d F{ }[ ]{ }{ } 5 2 0  to obtain the 
correct global nodal forces as
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In Eq. (4.4.17), yF1  is the vertical force reaction and M1 is the moment reaction as applied 
by the clamped support at node 1. The results for displacement given by Eq. (4.4.14b) and 
the global nodal forces given by Eq. (4.4.17) are sufficient to complete the solution of the 
cantilever beam problem.

A free-body diagram of the beam using the reactions from Eq. (4.4.17) verifies both 
force and moment equilibrium as shown in Figure 4–26(c).

■■ Figure 4–26  (c) Free-body diagram and equations of equilibrium for beam of Figure 4–26(a).
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The nodal force and moment reactions obtained by Eq. (4.4.17) illustrate the importance 
of using Eq. (4.4.8) to obtain the correct global nodal forces and moments. By subtracting the 
work-equivalent force matrix, F{ }0 , from the product of [K] times {d}, we obtain the correct 
reactions at node 1 as can be verified by simple static equilibrium equations. This verification 
validates the general method as follows:

1.	 Replace the distributed load by its work-equivalent as shown in Figure 4–26(b) to identify 
the nodal force and moment used in the solution.

2.	 Assemble the global force and stiffness matrices and global equations illustrated by 
Eq. (4.4.12).

3.	 Apply the boundary conditions to reduce the set of equations as done in previous problems 
and illustrated by Eq. (4.4.13) where the original four equations have been reduced to two 
equations to be solved for the unknown displacement and rotation.

4.	 Solve for the unknown displacement and rotation given by Eq. (4.4.14a) and Eq. (4.4.14b).
5.	 Use Eq. (4.4.8) as illustrated by Eq. (4.4.17) to obtain the final correct global nodal forces 

and moments. Those forces and moments at supports, such as the left end of the cantilever 
in Figure 4–26(a), will be the reactions.

We will solve the following example to illustrate the procedure for handling concentrated 
loads acting on beam elements at locations other than nodes.

EXAMPLE 4.7

For the cantilever beam subjected to the concentrated load P in Figure 4–27, solve for the 
right-end vertical displacement and rotation and the nodal forces, including reactions, by 
replacing the concentrated load with equivalent nodal forces acting at each end of the beam. 
Assume EI constant throughout the beam.

■■ Figure 4–27  (a) Cantilever beam subjected to a concentrated load and (b) the equivalent 
nodal force replacement system

Solution:
We begin by discretizing the beam. Here only one element is used with nodes at each end 
of the beam. We then replace the concentrated load as shown in Figure 4–27(b) by using 
appropriate loading case 1 in Appendix D. Using Eq. (4.4.9) and the beam element stiffness 
matrix Eq. (4.1.14), we obtain
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where we have applied the nodal forces from Figure 4–27(b) and the boundary conditions 
v 5 01  and f 5 01  to reduce the number of matrix equations for the usual longhand solution. 
Solving Eq. (4.4.18) for the displacements, we obtain

	










































v L

EI

L L
L

P

PL6

2 3
3 6

2

8

2

2

2

f
5

2

	 (4.4.19)

Simplifying Eq. (4.4.19), we obtain the displacement and rotation as
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To obtain the unknown nodal forces, we begin by evaluating the effective nodal forces 
F K de{ } { }5 [ ]( )  as
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Simplifying Eq. (4.4.21), we obtain
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Then using Eq. (4.4.22) and the equivalent nodal forces from Figure 4–27(b) in Eq. (4.4.8), 
we obtain the correct nodal forces as
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We can see from Eq. (4.4.23) that F y1  is equivalent to the vertical reaction force and M1 is 
the reaction moment as applied by the clamped support at node 1.

Again, the reactions obtained by Eq. (4.4.23) can be verified to be correct by using 
static equilibrium equations to validate once more the correctness of the general formulation 
and procedures summarized in the steps given after Example 4.6.

To illustrate the procedure for handling concentrated nodal forces and distributed loads 
acting simultaneously on beam elements, we will solve the following example.

EXAMPLE 4.8

For the cantilever beam subjected to the concentrated free-end load P and the uniformly 
distributed load w acting over the whole beam as shown in Figure 4–28, determine the free-
end displacements and the nodal forces.

■■ Figure 4–28  (a) Cantilever beam subjected to a concentrated load and a distributed load 
and (b) the equivalent nodal force replacement system

Solution:
Once again, the beam is modeled using one element with nodes 1 and 2, and the distributed 
load is replaced as shown in Figure 4–28(b) using appropriate loading case 4 in Appendix D. 
Using the beam element stiffness Eq. (4.1.14), we obtain
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where we have applied the nodal forces from Figure 4–28(b) and the boundary conditions 
v 5 01  and f 5 01  to reduce the number of matrix equations for the usual longhand solu-
tion. Solving Eq. (4.4.24) for the displacements, we obtain

	
































↓v
wL

EI

PL

EI

wL

EI

PL

EI

8 3

6 2

2

2

4 3

3 2 �f
5

2
2

2
2

	 (4.4.25)

Next, we obtain the effective nodal forces using F K de{ } { }5 [ ]( )  as
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Simplifying Eq. (4.4.26), we obtain
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Finally, subtracting the equivalent nodal force matrix [see Figure 4–28(b)] from the effective 
force matrix of Eq. (4.4.27), we obtain the correct nodal forces as
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	 (4.4.28)

From Eq. (4.4.28), we see that F y1  is equivalent to the vertical reaction force, M1 is the 
reaction moment at node 1, and F y2  is equal to the applied downward force P at node 2. 
[Remember that only the equivalent nodal force matrix is subtracted, not the original con-
centrated load matrix. This is based on the general formulation, Eq. (4.4.8).]
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To generalize the work-equivalent method, we apply it to a beam with more than one 
element as shown in the following Example 4.9.

EXAMPLE 4.9

For the fixed–fixed beam subjected to the linear varying distributed loading acting over the 
whole beam shown in Figure 4–29(a) determine the displacement and rotation at the center 
and the reactions.

Solution:
The beam is now modeled using two elements with nodes 1, 2, and 3 and the distributed 
load is replaced as shown in Figure 4–29(b) using the appropriate load cases 4 and 5 in 
Appendix D. Note that load case 5 is used for element one as it has only the linear varying 
distributed load acting on it with a high end value of w/2 as shown in Figure 4–29(a), while 
both load cases 4 and 5 are used for element two as the distributed load is divided into a 
uniform part with magnitude w/2 and a linear varying part with magnitude at the high end 
of the load equal to w/2 also.

■■ Figure 4–29  (a) Fixed-fixed beam subjected to linear varying line load and (b) the 
equivalent nodal force replacement system
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Using the beam element stiffness Eq. (4.1.14) for each element, we obtain
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(4.4.28)

The boundary conditions are v 5 01 , f 5 01 , v 5 03 , and f 5 03 . Using the direct 
stiffness method and Eqs. (4.4.28) to assemble the global stiffness matrix, and applying the 
boundary conditions, we obtain
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Solving Eq. (4.4.29) for the displacement and slope, we obtain
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Next, we obtain the effective nodal forces using { } { }F K de [ ]( ) 5  as
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Solving for the effective forces in Eq. (4.4.31), we obtain
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Finally, using Eq. (4.4.8) we subtract the equivalent nodal force matrix based on the equiv-
alent load replacement shown in Figure 4–29(b) from the effective force matrix given by 
the results in Eq. (4.4.32), to obtain the correct nodal forces and moments as
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We used symbol L to represent one-half the length of the beam. If we replace L with the 
actual length l L5 2 , we obtain the reactions for case 5 in Appendix D, thus verifying the 
correctness of our result.

In summary, for any structure in which an equivalent nodal force replacement is made, 
the actual nodal forces acting on the structure are determined by first evaluating the effective 
nodal forces F{ }0  for the structure and then subtracting the equivalent nodal forces F e{ }( )  
for the structure, as indicated in Eq. (4.4.8). Similarly, for any element of a structure in 
which equivalent nodal force replacement is made, the actual local nodal forces acting on 
the element are determined by first evaluating the effective local nodal forces f e{ }( )  for the 
element and then subtracting the equivalent local nodal forces f{ }0  associated only with 
the element, as indicated in Eq. (4.4.11). We provide other examples of this procedure in 
plane frame Examples 5.2 and 5.3.

	 4.5 	 Comparison of the Finite Element Solution to the 
Exact Solution for a Beam

We will now compare the finite element solution to the exact classical beam theory solution 
for the cantilever beam shown in Figure 4–30 subjected to a uniformly distributed load. Both 
one- and two-element finite element solutions will be presented and compared to the exact solu-
tion obtained by the direct double-integration method. Let 5 210 GPaE , −5 34 10 m5 4I ,  

5 2.5 mL , and uniform load 5 4 kN/mw .

■■ Figure 4–30  Cantilever beam subjected to uniformly distributed load

4 kN/m

2.5 m

SOLUTION:
To obtain the solution from classical beam theory, we use the double-integration method [1]. 
Therefore, we begin with the moment-curvature equation

	 0 5
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M x

EI
	 (4.5.1)

where the double prime superscript indicates differentiation twice with respect to x and M is 
expressed as a function of x by using a section of the beam as shown:
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Using Eq. (4.5.2) in Eq. (4.5.1), we have
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On integrating Eq. (4.5.3) with respect to x, we obtain an expression for the slope of the 
beam as
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Integrating Eq. (4.5.4) with respect to x, we obtain the deflection expression for the beam as

	
1

4 6 24

2 2 3 4

1 2y
EI

wL x wLx wx
C x C5

2
1 2 1 1







	 (4.5.5)

Applying the boundary conditions y 5 0 and y9 5 0 at x 5 0, we obtain
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Using Eq. (4.5.6) in Eqs. (4.5.4) and (4.5.5), the final beam theory solution expressions for y9  
and y are then
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and
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The one-element finite element solution for slope and displacement is given in variable form 
by Eqs. (4.4.14b). Using the numerical values of this problem in Eqs. (4.4.14b), we obtain the 
slope and displacement at the free end (node 2) as
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	 (4.5.9)

The slope and displacement given by Eq. (4.5.9) identically match the beam theory values, 
as Eqs. (4.5.7) and (4.5.8) evaluated at x L5  are identical to the variable form of the finite 
element solution given by Eqs. (4.4.14b). The reason why these nodal values from the finite 
element solution are correct is that the element nodal forces were calculated on the basis of 
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4  |  Development of Beam Equations210

being energy or work equivalent to the distributed load based on the assumed cubic displace-
ment field within each beam element.

Values of displacement and slope at other locations along the beam for the finite element 
solution are obtained by using the assumed cubic displacement function [Eq. (4.1.4)] as

	 f5 2 1 1 2( )
1

( 2 3 )
1

( )
3

3 2
2 3

3 2 2
2v x

L
x x L v

L
x L x L 	 (4.5.10)

where the boundary conditions v f5 5 01 1  have been used in Eq. (4.5.10). Using the numer-
ical values in Eq. (4.5.10), we obtain the displacement at the midlength of the beam as
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(4.5.11)

Using the beam theory [Eq. (4.5.8)], the deflection is
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(4.5.12)

We conclude that the beam theory solution for midlength displacement, 5 2 0.823 mmy ,  
is greater than the finite element solution for displacement, 5 2 0.788 mmv . In general, 
the displacements evaluated using the cubic function for v are lower as predicted by the finite 
element method than by the beam theory except at the nodes. This is always true for beams 
subjected to some form of distributed load that are modeled using the cubic displacement 
function. The exception to this result is at the nodes, where the beam theory and finite element 
results are identical because of the work-equivalence concept used to replace the distributed 
load by work-equivalent discrete loads at the nodes.

The beam theory solution predicts a quartic (fourth-order) polynomial expression for y 
[Eq. (4.5.5)] for a beam subjected to uniformly distributed loading, while the finite element 
solution v(x) assumes a cubic displacement behavior in each beam element under all load 
conditions. The finite element solution predicts a stiffer structure than the actual one. This is 
expected, as the finite element model forces the beam into specific modes of displacement and 
effectively yields a stiffer model than the actual structure. However, as more and more elements 
are used in the model, the finite element solution converges to the beam theory solution.

For the special case of a beam subjected to only nodal concentrated loads, the beam theory 
predicts a cubic displacement behavior, as the moment is a linear function and is integrated 
twice to obtain the resulting cubic displacement function. A simple verification of this cubic 
displacement behavior would be to solve the cantilevered beam subjected to an end load. In this 
special case, the finite element solution for displacement matches the beam theory solution for 
all locations along the beam length, as both functions y(x) and v(x) are then cubic functions.
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4.5  Comparison of the Finite Element Solution to the Exact Solution for a Beam 211

Monotonic convergence of the solution of a particular problem is discussed in Reference [3], 
and proof that compatible and complete displacement functions (as described in Section 3.2) used 
in the displacement formulation of the finite element method yield an upper bound on the true 
stiffness, hence a lower bound on the displacement of the problem, is discussed in Reference [3].

Under uniformly distributed loading, the beam theory solution predicts a quadratic moment 
and a linear shear force in the beam. However, the finite element solution using the cubic dis-
placement function predicts a linear bending moment and a constant shear force within each 
beam element used in the model.

We will now determine the bending moment and shear force in the present problem based 
on the finite element method. The bending moment is given by

	 05 5 5
([ ] ) ( [ ])2

2

2

2
M EIv EI

d N d

dx
EI

d N

dx
d

{ } { }	 (4.5.13)

as {d} is not a function of x. Or in terms of the gradient matrix [B] we have
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The shape functions given by Eq. (4.1.7) are used to obtain Eq. (4.5.15) for the [B] matrix. For 
the single-element solution, the bending moment is then evaluated by substituting Eq. (4.5.15) 
for [B] into Eq. (4.5.14) and multiplying [B] by {d} to obtain
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(4.5.16)

Evaluating the moment at the wall, x 5 0, with v f5 5 01 1 , and v2 and f2 given by Eq. 
(4.4.14) in Eq. (4.5.16), we have

	 5 5 2 5 2( 0)
10

24
10,416.7 N-m

2

M x
wL 	 (4.5.17)

Using Eq. (4.5.16) to evaluate the moment at 5 1.25 mx , we have

	 5 5 2( 1.25 m) 4166.7 N-mM x 	 (4.5.18)

Evaluating the moment at 5 2.5 mx  by using Eq. (4.5.16) again, we obtain

	 5 5 2( 2.5 m) 2083.3 N-mM x 	 (4.5.19)

The beam theory solution using Eq. (4.5.2) predicts

	
5 5

2
5 2

5 5 2

( 0)
2

12,500 N-m

( 1.25 m) 3125 N-m

2

M x
wL

M x
	 (4.5.20)
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4  |  Development of Beam Equations212

and	 5 5( 2.5 m) 0M x 	

Figures 4–31(a) through (c) show the plots of the displacement variation, bending moment 
variation, and shear force variation through the beam length for the beam theory and the one-
element finite element solutions. Again, the finite element solution for displacement matches 
the beam theory solution at the nodes but predicts smaller displacements (less deflection) at 
other locations along the beam length.

■■ Figure 4–31  Comparison of beam theory and finite element results for a cantilever beam 
subjected to a uniformly distributed load: (a) displacement diagrams, (b) bending moment 
diagrams, and (c) shear force diagrams
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The bending moment is derived by taking two derivatives on the displacement function. 
It then takes more elements to model the second derivative of the displacement function. 
Therefore, the finite element solution does not predict the bending moment as well as it does 
the displacement. For the uniformly loaded beam, the finite element model predicts a linear 
bending moment variation as shown in Figure 4–31(b). The best approximation for bending 
moment appears at the midpoint of the element.

The shear force is derived by taking three derivatives on the displacement function. For 
the uniformly loaded beam, the resulting shear force shown in Figure 4–31(c) is a constant 
throughout the single-element model. Again, the best approximation for shear force is at the 
midpoint of the element.

It should be noted that if we use Eq. (4.4.11), that is, f k d f{ } { }[ ]{ }5 2 0 , and subtract 
off the f{ }0  matrix, we also obtain the correct nodal forces and moments in each element. For 
instance, from the one-element finite element solution we have for the bending moment at node 1
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and at node 2	 5 02
(1)m

To improve the finite element solution we need to use more elements in the model (refine 
the mesh) or use a higher-order element, such as a fifth-order approximation for the displace-
ment function, that is, v x a a x a x a x a x a x5 1 1 1 1 1( ) 1 2 3

2
4

3
5

4
6

5, with three nodes (with 
an extra node at the middle of the element).

We now present the two-element finite element solution for the cantilever beam subjected 
to a uniformly distributed load. Figure 4–32 shows the beam discretized into two elements 
of equal length and the work-equivalent load replacement for each element. Using the beam 
element stiffness matrix [Eq. (4.1.13)], we obtain the element stiffness matrices as follows:
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	 (4.5.21)

where 5 1.25 ml  is the length of each element and the numbers above the columns indicate 
the degrees of freedom associated with each element.

■■ Figure 4–32  Beam discretized into two elements and work-equivalent load replacement for 
each element

l 51.25 m l 51.25 m
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Applying the boundary conditions v 5 01  and f 5 01  to reduce the number of equations 
for a normal longhand solution, we obtain the global equations for solution as

	
f

f

2

2

2 2 2

2

5

2

2

24 0 12 6

0 8 6 2
12 6 12 6

6 2 6 4

0
/ 2

/ 12

3

2 2

2 2

2

2

3

3
2

EI

l

l

l l l
l l

l l l l

v

v

wl

wl

wl





























































	 (4.5.22)

Solving Eq. (4.5.22) for the displacements and slopes, we obtain
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	 (4.5.23)

Substituting the numerical values 5 4000 N/mw , 5 1.25 ml , 5 3210 10 N/m9 2E , and 
−5 34 10 m5 4I  into Eq. (4.5.23), we obtain

	
f

f

5 2 5 2 5 2

5 2

0.823 mm 2.35 mm 0.001085 rad

0.00124 rad

2 3 2

3

v v
	

The two-element solution yields nodal displacements that match the beam theory results 
exactly [see Eqs. (4.5.9) and (4.5.12)]. A plot of the two-element displacement throughout the 
length of the beam would be a cubic displacement within each element. Within element 1, the 
plot would start at a displacement of 0 at node 1 and finish at a displacement of 20.823 mm 
at node 2. A cubic function would connect these values. Similarly, within element 2, the plot 
would start at a displacement of 20.823 mm and finish at a displacement of 22.35 mm at 
node 2 [see Figure 4–31(a)]. A cubic function would again connect these values.

	 4.6 	 Beam Element with Nodal Hinge
In some beams an internal hinge may be present. In general, this internal hinge causes a 
discontinuity in the slope or rotation of the deflection curve at the hinge. Consider the beam 
shown with two elements and a nodal hinge at node 2 separating the two elements as shown 
in Figure 4–33(a). In general, f2

(1) for element 1 is not equal to f 2
(2) for element 2, as shown in 

Figures 4–33(b) and (c). At hinge nodes, rotations are said to be double valued. To model the 
hinge, we consider the hinge to be placed on either the right end of element 1 or on the left end 
of element 2 but not on both elements at node 2. Examples 4.10 and 4.11 will illustrate how to 
solve beam problems with nodal hinges.

Also, the bending moment is zero at the hinge. We could construct other types of connec-
tions that release other generalized end forces; that is, connections can be designed to make 
the shear force or axial force zero at the connection. These special conditions can be treated by 
starting with the generalized unreleased beam stiffness matrix [Eq. (4.1.14)] and eliminating 
the known zero force or moment. This yields a modified stiffness matrix with the desired force 
or moment equal to zero and the corresponding displacement or slope eliminated.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4.6  Beam Element with Nodal Hinge 215

We now consider the most common cases of a beam element with a nodal hinge at the right 
end or left end, as shown in Figure 4–33. For the beam element with a hinge at its right end, 
the moment m2 is zero and we partition the [k] matrix [Eq. (4.1.14)] to eliminate the degree of 
freedom f2 (which is not zero, in general) associated with m 5 02  as follows:
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We condense out the degree of freedom f2 associated with m 5 02 . Partitioning allows 
us to condense out the degree of freedom f2 associated with m 5 02 . That is, Eq. (4.6.1) is 
partitioned as shown below:
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The condensed stiffness matrix is then found by using the equation f k d{ } [ ]{ }5  partitioned 
as follows:
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■■ Figure 4–33  (a) Beam with 2 elements and nodal hinge, (b) hinge considered to be at right 
end of element 1, and (c) hinge considered to be at left end of element 2

v1 v2 v3
v2

1 2

(a)

2

3

3

Hinge

L

1

L 2

x

1

(b) (c)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4  |  Development of Beam Equations216

where	 1
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Equations (4.6.3) in expanded form are
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Solving for d{ }2  in the second of Eqs. (4.6.5), we obtain
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Substituting Eq. (4.6.6) into the first of Eqs. (4.6.5), we obtain
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Combining the second term on the right side of Eq. (4.6.7) with f{ }1 , we obtain

	 { } [ ]{ }f K dc c5 1 	 (4.6.8)

where the condensed stiffness matrix is

	 11 12 22
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and the condensed force matrix is
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Substituting the partitioned parts of [k] from Eq. (4.6.1) into Eq. (4.6.9), we obtain the 
condensed stiffness matrix as
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(4.6.11)
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and the element equations (force/displacement equations) with the hinge at node 2 are
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The generalized rotation f2 has been eliminated from the equation and will not be calculated 
using this scheme. However, f2 is not zero in general. We can expand Eq. (4.6.12) to include f2 
by adding zeros in the fourth row and column of the [k] matrix to maintain m 5 02 , as follows:
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For the beam element with left node 1 and right node 2 with a hinge at its left end, the 
moment m1 is zero, and we partition the [k] matrix [Eq. (4.1.14)] to eliminate the zero moment 
m1 and its corresponding rotation f1 to obtain
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The expanded form of Eq. (4.6.14) including f1 is
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EXAMPLE 4.10

Determine the displacement and rotation at node 2 and the element forces for the uniform 
beam with an internal hinge at node 2 shown in Figure 4–34. Let EI be a constant.

■■ Figure 4–34  Beam with internal hinge
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SOLUTION:
We can consider the hinge as part of element 1. Therefore, with the hinge located at the 
right end of element 1, Eq. (4.6.13) contains the correct stiffness matrix for element 1. The 
stiffness matrix of element 1 with L a5  is then

	

f f
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2

2 2
[ ]

3
1 1 0
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0 0 0 0
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

	 (4.6.16)

As the hinge is considered to be part of element 1, we do not consider it again as part of 
element 2. So we use the standard beam element stiffness matrix obtained from Eq. (4.1.14) 
for element 2 as
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Superimposing Eqs. (4.6.16) and (4.6.17) and applying the boundary conditions

	 v vf f5 5 5 50, 0, 0, 01 1 3 3 	

we obtain the total stiffness matrix and total set of equations as
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Solving Eq. (4.6.18), we obtain
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3 3
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v
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	 (4.6.19)

The value f2 is actually f2
(2) that associated with element 2—that is, f2 in Eq. (4.6.19) is 

actually f2
(2). The value of f2 at the right end of element 1 f( )2

(1)  is, in general, not equal to 
f2

(2). If we had chosen to assume the hinge to be part of element 2, then we would have used 
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Eq. (4.1.14) for the stiffness matrix of element 1 and Eq. (4.6.15) for the stiffness matrix of 
element 2. This would have enabled us to obtain f2

(1), which is different from f2
(2), that is, 

the slope at node 2 is double valued.
Using Eq. (4.6.12) for element 1, we obtain the element forces as
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Simplifying Eq. (4.6.20), we obtain the forces as

	

1

3

3 3

1

3

3 3

2

3

3 3

5
1

5
1

5 2
1

f
b P

b a

m
ab P

b a

f
b P

b a

y

y

	 (4.6.21)

Using Eq. (4.6.17) and the results from Eq. (4.6.19), we obtain the element 2 forces as
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Simplifying Eq. (4.6.22), we obtain the element forces as
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It should be noted that another way to solve the nodal hinge of Example 4.10 would be 
to assume a nodal hinge at the right end of element 1 and at the left end of element 2. Hence, 
we would use the three-equation stiffness matrix of Eq. (4.6.12) for the left element and the 
three-equation stiffness matrix of Eq. (4.6.14) for the right element. This results in the hinge 
rotation being condensed out of the global equations. You can verify that we get the same result 
for the displacement as given by Eq. (4.6.19). However, we must then go back to Eq. (4.6.6) 
using it separately for each element to obtain the rotation at node 2 for each element. We leave 
this verification to your discretion.

EXAMPLE 4.11

Determine the slope at node 2 and the deflection and slope at node 3 for the beam with 
internal hinge located at node 3, as shown in Figure 4–35. Nodes 1 and 4 are fixed, and there 
is a knifeedge support at node 2. Let E 5 210 GPa and 2 10 m4 45 3 2I .

■■ Figure 4–35  Beam with internal hinge and uniformly distributed loading

2 m 1 m 1 m

3

22 3

10 kN/m

411

SOLUTION:
Discretize the beam into three elements, as shown in Figure 4–35. Use Eq. (4.1.14) to 
determine element one stiffness matrix as
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Assume the hinge as part of element 2 and use Eq. (4.6.13) to obtain the element 2 
stiffness matrix as
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As the hinge is considered to be at the right end of element 2, we do not consider it to be 
part of element 3. So we use Eq. (4.1.14) to obtain the stiffness matrix as
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Using the direct stiffness method and the element stiffness matrices in Eqs. (4.6.24 through 
4.6.26), we assemble the global stiffness matrix as
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Applying the boundary conditions v v vf f5 5 5 5 5 01 1 2 4 4 , we obtain the reduced 
stiffness matrix and equations for solution as
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where by work equivalence 
2

10(1)

2
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12
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2

Substituting numerical values for E and I into Eq. (4.6.28), and solving simultaneous, 
we obtain

f f5 2 3 5 2 3 5 32 2 22.126 10 m, 1.276 10 rad, 2.693 10 rad3
5

2
5

3
5v 	 (4.6.29)

Notice that 3f  is actually that associated with element three, that is, 3f  in Eq. (4.6.29) is 
actually 3

(3)f  as the hinge was assumed to be part of element two and 3
(2)f  was condensed 

out of the stiffness matrix for element two.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4  |  Development of Beam Equations222

	 4.7 	 Potential Energy Approach to Derive Beam  
Element Equations

We will now derive the beam element equations using the principle of minimum potential 
energy. The procedure is similar to that used in Section 3.10 in deriving the bar element equa-
tions. Again, our primary purpose in applying the principle of minimum potential energy is to 
enhance your understanding of the principle. It will be used routinely in subsequent chapters 
to develop element stiffness equations. We use the same notation here as in Section 3.10.

The total potential energy for a beam is

	 π Ω5 1Up 	 (4.7.1)

where the general one-dimensional expression for the strain energy U for a beam is given by

	 U dVx x

v
∫∫∫ s «5

1

2
	 (4.7.2)

and for a single beam element subjected to both distributed and concentrated nodal loads, the 
potential energy of forces is given by

	 f5 2 2 2
5 51

2

1

2

1

T v dS P v my

S i
iy i

i
i i∫∫ ∑ ∑Ω 	 (4.7.3)

where body forces are now neglected. The terms on the right-hand side of Eq. (4.7.3) repre-
sent the potential energy of (1) transverse surface loading Ty (in units of force per unit surface 
area, acting over surface S1 and moving through displacements over which Ty act); (2) nodal 
concentrated force Piy moving through displacements vi; and (3) moments mi moving through 
rotations if . Again, v is the transverse displacement function for the beam element of length 
L shown in Figure 4–36.

Consider the beam element to have constant cross-sectional area A. The differential vol-
ume for the beam element can then be expressed as

	 dV dA dx5 	 (4.7.4)

■■ Figure 4–36  Beam element subjected to surface loading and concentrated nodal forces
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and the differential area over which the surface loading acts is

	 5dS bdx	 (4.7.5)

where b is the constant width. Using Eqs. (4.7.4) and (4.7.5) in Eqs. (4.7.1) through (4.7.3), 
the total potential energy becomes

	 p s « f5 2 2 1
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0
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i
iy i i i∫∫∫ ∫ ∑ 	 (4.7.6)

Substituting Eq. (4.1.4) for v into the strain/displacement relationship Eq. (4.1.10), repeated 
here for convenience as
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2
« 5 2y

d v
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x 	 (4.7.7)

we express the strain in terms of nodal displacements and rotations as
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or

	 « 5 2 [ ]y B dx{ } { }	 (4.7.9)

where we define
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	 (4.7.10)

The stress/strain relationship is given by

	 Dx xs «5 [ ]{ } { } 	 (4.7.11)

where	 D E5[ ] [ ] 	 (4.7.12)

and E is the modulus of elasticity. Using Eq. (4.7.9) in Eq. (4.7.11), we obtain

	 [ ][ ]s 5 2 y D B dx{ } { }	 (4.7.13)

Next, the total potential energy Eq. (4.7.6) is expressed in matrix notation as

	 dA dx bT v dx d Pp

Ax

x
T

x y
T TL

∫∫∫ ∫{ } { }p s «5 2 2
1

2
{ } [ ] { }

0
	 (4.7.14)
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Using Eqs. (4.1.5), (4.7.9), (4.7.12), and (4.7.13), and defining w bTy5  as the line load (load 
per unit length) in the y direction, we express the total potential energy, Eq. (4.7.14), in matrix 
form as

	
2

[ ] [ ]{ } [ ] { }
0 0

5 2 2
EI

d B B d dx w d N dx d Pp
TL

T T T
L T∫ ∫π { } { } { } 	 (4.7.15)

where we have used the definition of the moment of inertia

	 I y dA
A

5 2∫∫ 	 (4.7.16)

to obtain the first term on the right-hand side of Eq. (4.7.15). In Eq. (4.7.15), π p is now 
expressed as a function of {d}.

Differentiating π p in Eq. (4.7.15) with respect to v1, f1, v2, and f2 and equating each term 
to zero to minimize π p, we obtain four element equations, which are written in matrix form as

	 EI B B dx d N w dx PT
L

T
L

2 2 5[ ] [ ] { } [ ] { } 0
0 0∫ ∫ 	 (4.7.17)

The derivation of the four element equations is left as an exercise (see Problem 4.47). 
Representing the nodal force matrix as the sum of those nodal forces resulting from distributed 
loading and concentrated loading, we have

	 f N w dx PT
L

5 1{ } [ ] { }
0∫ 	 (4.7.18)

Using Eq. (4.7.18), the four element equations given by explicitly evaluating Eq. (4.7.17) 
are then identical to Eq. (4.1.13). The integral term on the right side of Eq. (4.7.18) also rep-
resents the work-equivalent replacement of a distributed load by nodal concentrated loads. For 
instance, letting ( ) 5 2w x w  (constant), substituting shape functions from Eq. (4.1.7) into the 
integral, and then performing the integration result in the same nodal equivalent loads as given 
by Eqs. (4.4.5) through (4.4.7).

Because f k d{ } { }5 [ ] , we have, from Eq. (4.7.17),

	 k EI B B dxT
L

5[ ] [ ] [ ]
0∫ 	 (4.7.19)

Using Eq. (4.7.10) in Eq. (4.7.19) and integrating, [k] is evaluated in explicit form as
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	 (4.7.20)
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Equation (4.7.20) represents the local stiffness matrix for a beam element. As expected, Eq. 
(4.7.20) is identical to Eq. (4.1.14) developed previously.

It is worth noting that the strain energy U is the first term on the right side of Eq. (4.7.15) 
and {d} is not a function of x. If we also consider E and I to be constant over each element 
length L, we can express U as

	 U d
EI

B B dx dT T
L

5
2

[ ] [ ]
0∫{ } { } 	 (4.7.21)

By using Eq. (4.7.19), we realize the stiffness matrix, {k}, is EI times the integral in Eq. (4.7.21).
Therefore, we show U to be expressed again in quadratic form as [ ]{ }1

25U d k dT{ } :

		 4.8 	 Galerkin’s Method for Deriving  
Beam Element Equations

We will now illustrate Galerkin’s method to formulate the beam element stiffness equations. We 
begin with the basic differential Eq. (4.1.1h) with transverse loading w now included; that is,

	 EI
d v

dx
w1 5 0

4

4
	 (4.8.1)

We now define the residual R to be Eq. (4.8.1). Applying Galerkin’s criterion [Eq. (3.12.3)] to 
Eq. (4.8.1), we have
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40
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	 (4.8.2)

where the shape functions Ni  are defined by Eqs. (4.1.7).
We now apply integration by parts twice to the first term in Eq. (4.8.2) to yield
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	 (4.8.3)

where the notation of the comma followed by the subscript x indicates differentiation with 
respect to x. Again, integration by parts introduces the boundary conditions.

Because v N d{ }5 [ ]  as given by Eq. (4.1.5), we have
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	 (4.8.4)

or, using Eq. (4.7.10),

	 v B dxx 5, [ ]{ } 	 (4.8.5)
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Substituting Eq. (4.8.5) into Eq. (4.8.3), and then Eq. (4.8.3) into Eq. (4.8.2), we obtain

1 1 2 5 5( , ) [ ] { } [ ( , ) ] 0 ( 1, 2, 3, 4)
0 0 0∫ ∫ |N EI B dx d N w dx N V N m ii xx
L

i
L

i i x
L 	 (4.8.6)

where Eqs. (4.1.11) have been used in the boundary terms. Equation (4.8.6) is really four 
equations (one each for N Ni 5 1, N2, N3, and N4). Instead of directly evaluating Eq. (4.8.6) 
for each Ni , as was done in Section 3.12, we can express the four equations of Eq. (4.8.6) in 
matrix form as

	 B EI B dx d N w dx N m N VT
L

T
L

T
x

T L∫ ∫5 2 1 2[ ] [ ] { } [ ] ([ ] , [ ] ) |
0 0 0 	 (4.8.7)

where we have used the relationship N Bxx 5[ ], [ ] in Eq. (4.8.7).
Observe that the integral term on the left side of Eq. (4.8.7) is identical to the stiffness 

matrix previously given by Eq. (4.7.19) and that the first term on the right side of Eq. (4.8.7) 
represents the equivalent nodal forces due to distributed loading [also given in Eq. (4.7.18)]. 
The two terms in parentheses on the right side of Eq. (4.8.7) are the same as the concentrated 
force matrix {P} of Eq. (4.7.18). We explain this by evaluating N x[ ],  and [N], where [N] is 
defined by Eq. (4.1.6), at the ends of the element as follows:

	
N N

N N

x x L

L

5 5

5 5

|
|

[ ], | [0 1 0 0] [ ], [0 0 0 1]

[ ] | [1 0 0 0] [ ] [0 0 1 0]

0

0

	 (4.8.8)

Therefore, when we use Eqs. (4.8.8) in Eq. (4.8.7), the following terms result:

	

0
0
0
1

( )

0
1
0
0

(0)

0
0
1
0

( )

1
0
0
0

(0)









































































2 2 1m L m V L V 	 (4.8.9)

These nodal shear forces and moments are illustrated in Figure 4–37.

■■ Figure 4–37  Beam element with shear forces, moments, and a distributed load

■■ Figure 4–38  Shear forces and moments acting on adjacent elements meeting at a node
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227Summary Equations

Note that when element matrices are assembled, two shear forces and two moments from 
adjacent elements contribute to the concentrated force and concentrated moment at the node 
common to the adjacent elements as shown in Figure 4–38. These concentrated shear forces 
V V L2(0) ( ) and moments m L m2( ) (0) are often zero; that is, V V L5(0) ( ) and m L m5( ) (0) 
occur except when a concentrated nodal force or moment exists at the node. In the actual com-
putations, we handle the expressions given by Eq. (4.8.9) by including them as concentrated 
nodal values making up the matrix {P}.

SUMMARY EQUATIONS

Displacement function assumed for beam transverse displacement:

	 ( ) 1
3

2
2

3 45 1 1 1v x a x a x a x a 	 (4.1.2)

Shape functions for beam element:

	

1
(2 3 )

1
( 2 )

1
( 2 3 )

1
( )

1 3
3 2 3

2 3
3 2 2 3

3 3
3 2

4 3
3 2 2

5 2 1 5 2 1

5 2 1 5 2

N
L

x x L L N
L

x L x L xL

N
L

x x L N
L

x L x L

	 (4.1.7)

Beam bending stress or flexure formula:

	 s 5
2M y

I
x 	 (4.1.10b)

Stiffness matrix for beam element:

	 [ ]

12 6 12 6

6 4 6 2
12 6 12 6

6 2 6 4

3

2 2

2 2

5

2

2

2 2 2

2

k
EI

L

L L

L L L L
L L

L L L L



















	 (4.1.14)

Stiffness matrix including transverse shear deformation (Timoshenko beam theory):

	 [ ]
(1 )

12 6 12 6

6 (4 ) 6 (2 )

12 6 12 6

6 (2 ) 6 (4 )

3

2 2

2 2

w

w w

w w

5
1

2

1 2 2

2 2 2

2 2 1

k
EI

L

L L

L L L L

L L

L L L L





















	 (4.1.15o)

Work due to distributed loading:

	 W w x v x dx
L

5 ( ) ( )distributed
0∫ 	 (4.4.1)

Work due to discrete nodal forces:

	 discrete 1 1 2 2 1 1 2 2f f5 1 1 1W m m f v f vy y 	 (4.4.2)
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General formulation for beam with distributed loading:

	 F K d F5 2[ ] 0{ }{ }{ } 	 (4.4.8)

Work-equivalent replacement matrix for beam with uniform load:

	 { }

2

12

2

12

0

2

2
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





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


















5

2

2

2
F

wL

wL

wL

wL

	 (4.4.10)

Beam stiffness matrix with right end nodal hinge:

	 [ ]
3

1 1 0

0
1 1 0
0 0 0 0

3

2
5

2

2

2 2
k

EI

L

L

L L L
L



















	 (4.6.13)

Total potential energy for beam element:

	
EI

d B B d dx w d N dx d Pp
T T

L T T
L Tp 5 2 2

2
[ ] [ ]{ } [ ] { }

0 0∫ ∫{ } { } { } 	 (4.7.15)

Strain energy expression for beam element:

	 U d
EI

B B dx dT T
L

5
2

[ ] [ ] { }
0∫{ } 	 (4.7.21)
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PROBLEMS

	 4.1		  What are the differences between truss and beam elements? That is, what degrees 
of freedom does each one have? What forces do they resist?

	 4.2		  What kind of element would we have by combining the two elements (truss and 
beam) into one? What could that new element be used for?

	 4.3		  Use Eqs. (4.1.7) to plot the shape functions N1 and N3 and the derivatives dN dx( / )2  
and dN dx( / )4 ; which represent the shapes (variations) of the slopes f1 and f2 over 
the length of the beam element.

	 4.4		  Derive the element stiffness matrix for the beam element in Figure 4–1 if the rota-
tional degrees of freedom are assumed positive clockwise instead of counterclock-
wise. Compare the two different nodal sign conventions and discuss. Compare the 
resulting stiffness matrix to Eq. (4.1.14)

Solve all problems using the finite element stiffness method.

	 4.5		  For the beam shown in Figure P4–5, determine the rotation at pin support A and the 
rotation and displacement under the load P. Determine the reactions. Draw the shear 
force and bending moment diagrams. Let EI be constant throughout the beam.

Problems

■■ Figure P4–5

	 4.6		  For the cantilever beam subjected to the free-end load P shown in Figure P4–6, 
determine the maximum deflection and the reactions. Let EI be constant throughout 
the beam.

	4.7–4.13		 For the beams shown in Figures P4–7 through P4–13, determine the displacements 
and the slopes at the nodes, the forces in each element, and the reactions. Also, draw 
the shear force and bending moment diagrams.

6 m6 m

5 kN

E 5 210 GPa
I 5 4 3 10–5 m4

■■ Figure P4–7

■■ Figure P4–6

■■ Figure P4–8

6 m

5 kN

6 m

10 mm gap

E 5 210 GPa
I 5 4 3 10–5 m4

7
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4  |  Development of Beam Equations230

	 4.14		  For the fixed-fixed beam subjected to the uniform load w shown in Figure P4–14. 
determine the midspan deflection and the reactions. Draw the shear force and bend-
ing moment diagrams. The middle section of the beam has a bending stiffness of 
2EI; the other sections have bending stiffnesses of EI.

■■ Figure P4–9

25 kN25 kN

2 m
2 m

E 5 210 GPa
I 5 4 3 10–5 m4

■■ Figure P4–10

■■ Figure P4–11

80 kN

■■ Figure P4–12

6 m

10 kN

k = 200 kN/m

E 5 200 GPa
I 5 8 3 10–5 m4

■■ Figure P4–13
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■■ Figure P4–14

	 4.15		  Determine the midspan deflection and the reactions and draw the shear force and 
bending moment diagrams for the fixed-fixed beam subjected to uniformly dis-
tributed load w shown in Figure P4–15. Assume EI constant throughout the beam. 
Compare your answers with the classical solution (that is, with the appropriate 
equivalent joint forces given in Appendix D).

■■ Figure P4–15 ■■ Figure P4–16

	 4.16		  Determine the midspan deflection and the reactions and draw the shear force and 
bending moment diagrams for the simply supported beam subjected to the uniformly 
distributed load w shown in Figure P4–16. Assume EI constant throughout the beam.

	 4.17		  For the beam loaded as shown in Figure P4–17, determine the free-end deflection 
and the reactions and then draw the shear force and bending moment diagrams. 
Assume EI constant throughout the beam.

■■ Figure P4–17 ■■ Figure P4–18

	 4.18		  Using the concept of work equivalence, determine the nodal forces and moments 
(called equivalent nodal forces) used to replace the linearly varying distributed load 
shown in Figure P4–18.

	 4.19		  For the beam shown in Figure 4–19, determine the displacement and slope at the 
center and the reactions. The load is symmetrical with respect to the center of the 
beam. Assume EI constant throughout the beam.

■■ Figure P4–19

Problems
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4  |  Development of Beam Equations232

	 4.20		  For the beam subjected to the linearly varying line load w shown in Figure P4–20, 
determine the right-end rotation and the reactions. Assume EI constant throughout 
the beam.

■■ Figure P4–20

	4.21–4.26	 For the beams shown in Figures P4–21 through P4–26, determine the nodal displace-
ments and slopes, the forces in each element, and the reactions.

■■ Figure P4–21

■■ Figure P4–22

30 kN/m

5 m 5 m

E 5 200 GPa
I 5 8 3 10–5 m4

■■ Figure P4–23
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	4.27–4–32	For the beams shown in Figures P4–27 through P4–32 use a computer program to 
determine the maximum deflection and maximum bending stress. Let E 5 200 GPa  
for all beams as appropriate for the rest of the units in the problem. Let c be the 
half-depth of each beam.

■■ Figure P4–24

5 m 5 m

60 kN/m

E 5 200 GPa
I 5 6 3 10–5 m4

■■ Figure P4–25

7.5 kN/m

6 m6 m

k = 800 kN/m

E 5 10 GPa
I 5 4 3 10–5 m4

■■ Figure P4–26

■■ Figure P4–27

4 m 4 m

A B C

w = 100 kN/m

c = 0.25 m, I = 100 × 10−6 m4

■■ Figure P4–28

10 m 20 m

A B C

3 kN/m

c = 0.25 m, I = 500(10−6) m4

I 2I

■■ Figure P4–29

A B C

400 kN

c = 250 mm, I = 20 3 10–5 m4

3I I

D

30 kN/m

5 m 5 m 10 m

■■ Figure P4–30

10 m 5 m

B C

10 kN/m

c = 0.30 m, I = 700 × 10−6  m4

A

Problems
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4  |  Development of Beam Equations234

			   For the beam design problems shown in Figures P4–33 through P4–38, determine 
the size of beam to support the loads shown, based on requirements listed next to 
each beam.

	 4.33		  Design a beam of ASTM A36 steel with allowable bending stress of 160 MPa to 
support the load shown in Figure P4–33. Assume a standard wide flange beam 
from Appendix F, or some other source can be used. Also what is the maximum 
deflection?

■■ Figure P4–31

3 m 3 m

A
B

C

25 kN/m

c = 250 mm, I = 16 3 10–5 m4

Figure P4–32

12 m 6 m

A
B

C

100 kN
10 kN/m

c = 0.30 m, I = 700 × 10−6 m4

I 2I

■■ Figure P4–33

4 m 4 m

w = 50 kN/m

■■ Figure P4–34

2 m

2.5 kN2.5 kN2.5 kN

2 m 2 m

■■ Figure P4–35

2 m

5 kN

2 m

	 4.34		  Select a standard steel pipe from Appendix F to support the load shown. The allow-
able bending stress must not exceed 170 MPa, and the allowable deflection must not 
exceed L / 360 of any span.

	 4.35		  Select a rectangular structural tube from Appendix F to support the loads shown 
for the beam in Figure P4–35. The allowable bending stress should not exceed 170 
MPa, and the allowable deflection must not exceed 5( 2 m) / 360L .
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	 4.36		  Select a standard W section from Appendix F or some other source to support the 
loads shown for the beam in Figure P4–36. The bending stress must not exceed 
160 MPa, and the allowable deflection must not exceed L 5( 6 m) / 360.

■■ Figure P4–36

6.0 m

10 kN/m

6.0 m6.0 m

■■ Figure P4–37

10 m10 m

70 kN
17 kN

70 kN

2.5 m 2.5 m

5 m

	 4.37		  For the beam in Figure P4–37, determine a suitably sized W section from Appendix 
F or from another suitable source such that the bending stress does not exceed 150 
MPa and the maximum deflection does not exceed L/360 of any span.

	 4.38		  For the stepped shaft shown in Figure P4–38, determine a solid circular cross section 
for each section shown such that the bending stress does not exceed 160 MPa and 
the maximum deflection does not exceed L / 360 of the span.

■■ Figure P4–38

3 m

A
C

B D

E

200 kN

3 m 3 m 3 m

	 4.39		  For the beam shown in Figure P4–39 subjected to the concentrated load P and dis-
tributed load w, determine the midspan displacement and the reactions. Let EI be 
constant throughout the beam.

■■ Figure P4–39 ■■ Figure P4–40

Problems
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4  |  Development of Beam Equations236

	 4.40		  For the beam shown in Figure P4–40 subjected to the two concentrated loads P, 
determine the deflection at the midspan. Use the equivalent load replacement 
method. Let EI be constant throughout the beam.

	 4.41		  For the beam shown in Figure P4–41 subjected to the concentrated load P and the 
linearly varying line load w, determine the free-end deflection and rotation and the 
reactions. Use the equivalent load replacement method. Let EI be constant through-
out the beam.

■■ Figure P4–41 ■■ Figure P4–42

	4.42–4.44	 For the beams shown in Figures P4–42 through P4–44, with internal hinge, deter-
mine the deflection at the hinge. Let E 5 210 GPa and 2 10 m4 45 3 2I .

■■ Figure P4–45

■■ Figure P4–43 ■■ Figure P4–44

	 4.45		  Derive the stiffness matrix for a beam element with a nodal linkage—that is, the 
shear is 0 at node i, but the usual shear and moment resistance are present at node j 
(see Figure P4–45).

	 4.46		  Develop the stiffness matrix for a fictitious pure shear panel element (Figure P4–46) 
in terms of the shear modulus, G, the shear web area, Aw, and the length, L. 
Notice that Y and v are the shear force and transverse displacement at each node, 
respectively.

			   Given    1)  Gτ g5 ,    2)  Y wt5 A ,    3)  Y Y1 5 01 2 ,    4) 
v v

L
g 5

22 1
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	 4.47		  Explicitly evaluate pp  of Eq. (4.7.15); then differentiate pp  with respect to v1, f1,  
v2, and 2f  and set each of these equations to zero (that is, minimize pp ) to obtain 
the four element equations for the beam element. Then express these equations in 
matrix form.

	 4.48		  Determine the free-end deflection for the tapered beam shown in Figure P4–48. Here 
I x I nx L5 1( ) (1 / )0  where I0 is the moment of inertia at x 5 0. Compare the exact 
beam theory solution with a two-element finite element solution for n 5 7[12].

                  where	
17.55

,
1

9.95
1

3

0
1

2

0
u5

2
5v

PL

EI

PL

EI
	

Figure P4–46

L

1 2

Y1,  1

L

Positive node force
sign convention

Element in equilibrium
(neglect moments)

YY

Y2,   2

Figure P4–48

I

■■ Figure P4–49

	 4.49		  Derive the equations for the beam element on an elastic foundation (Figure P4–49) 
using the principle of minimum potential energy. Here k f  is the subgrade spring 
constant per unit length. The potential energy of the beam is

	 1

2
( )

2
2

0

2

0 0∫ ∫ ∫π 05 1 2EI v dx
k v

dx wv dxp
L fL L 	

	 4.50		  Derive the equations for the beam element on an elastic foundation (see Figure P4–49) 
using Galerkin’s method. The basic differential equation for the beam on an elastic 
foundation is

	 ( )0 0 5 2 1EIv w k vf 	

Problems
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4  |  Development of Beam Equations238

	4.51–4.78	 Solve Problems 4.7 through 4.13, 4.21 through 4.32, and 4.42 through 4.44 using a 
suitable computer program.

	 4.79		  For the beam shown in Figure P4–79, use a computer program to determine the 
deflection at the mid-span using four beam elements, making the shear area zero 
and then making the shear area equal 5/6 times the cross-sectional area (b times h). 
Then make the beam have decreasing spans of 200 mm, 100 mm, and 50 mm with 
zero shear area and then 5/6 times the cross-sectional area. Compare the answers. 
Based on your program answers, can you conclude whether your program includes 
the effects of transverse shear deformation?

■■ Figure P4–79

	 4.80		  For the beam shown in Figure P4–79, use a longhand solution to solve the problem. 
Compare answers using the beam stiffness matrix, Eq. (4.1.14), without transverse 
shear deformation effects and then Eq. (4.1.15o), which includes the transverse shear 
effects.
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Frame and Grid Equations

CHAPTER OBJECTIVES

At the conclusion of this chapter, you will be able to:

■	 Derive the two-dimensional arbitrarily oriented beam element stiffness matrix.

■	 Demonstrate solutions of rigid plane frames by the direct stiffness method.

■	 Describe how to handle inclined or skewed supports.

■	 Derive the stiffness matrix and equations for grid analysis.

■	 Provide equations to determine torsional constants for various cross sections.

■	 Illustrate the solution of grid structures.

■	 Develop the stiffness matrix for a beam element arbitrarily oriented in space.

■	 Present the solution of a space frame.

■	 Introduce the concept of substructuring.

Introduction
Many structures, such as buildings (Figure 5–1) and bridges, are composed of frames and/or grids. 
This chapter develops the equations and methods for solution of plane and space frames and grids.

First, we will develop the stiffness matrix for a beam element arbitrarily oriented in a 
plane. We will then include the axial nodal displacement degree of freedom in the local beam 
element stiffness matrix. Then we will combine these results to develop the stiffness matrix, 
including axial deformation effects, for an arbitrarily oriented beam element, thus making it 
possible to analyze plane frames. Specific examples of plane frame analysis follow. We will 
then consider frames with inclined or skewed supports.

Next, we will develop the grid element stiffness matrix. We will present the solution of a 
grid deck system to illustrate the application of the grid equations. We will then develop the 
stiffness matrix for a beam element arbitrarily oriented in space. We will also consider the 
concept of substructure analysis.

	 5.1 	 Two-Dimensional Arbitrarily Oriented Beam Element
We can derive the stiffness matrix for an arbitrarily oriented beam element, as shown 
in  Figure 5–2, in a manner similar to that used for the bar element in Chapter 3. The 
local  axes x9 and y9 are located along the beam element and transverse to the beam 
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element, respectively, and the global axes x and y are located to be convenient for the total 
structure.

Recall that we can relate local displacements to global displacements by using Eq. (3.3.16), 
repeated here for convenience as
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	 (5.1.1)

Using the second equation of Eqs. (5.1.1) for the beam element, we relate local nodal degrees 
of freedom to global degrees of freedom by
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	 (5.1.2)

■■ Figure 5–1  (a) The Arizona Cardinals’ football stadium under construction—a rigid building 
frame (By Ed Yack) and (b) Mini Baja space frame constructed of tubular steel members 
welded together (By Daryl L. Logan) 

(a) (b)

■■ Figure 5–2  Arbitrarily oriented beam element
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where, for a beam element, we define 
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as the transformation matrix. The axial effects are not yet included. Equation (5.1.2) indicates 
that rotation is invariant with respect to either coordinate system. For example, f9 f51 1, and 
moment m m9 51 1 can be considered to be a vector pointing normal to the x y9 9–  plane or to 
the x – y plane by the usual right-hand rule. From either viewpoint, the moment is in the z z9 5  
direction. Therefore, moment is unaffected as the element changes orientation in the x – y plane.

Substituting Eq. (5.1.3) for [T] and Eq. (4.1.14) for local k9[ ] into Eq. (3.4.22), 
[ ]k T k TT5 9[ ] [ ] [ ], we obtain the global element stiffness matrix as
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where, again, C cosu5  and S u5 sin . It is not necessary here to expand [T] given by Eq. (5.1.3) 
to make it a square matrix to be able to use Eq. (3.4.22). Because Eq. (3.4.22) is a generally 
applicable equation, the matrices used must merely be of the correct order for matrix multipli-
cation (see Appendix A for more on matrix multiplication). The stiffness matrix Eq. (5.1.4) is 
the global element stiffness matrix for a beam element that includes shear and bending resis-
tance. Local axial effects are not yet included. The transformation from local to global stiffness 
by multiplying matrices [ ][ ] [ ]T k' TT , as done in Eq. (5.1.4), is usually done on the computer.

We will now include the axial effects in the element, as shown in Figure 5–3. The element now 
has three degrees of freedom per node u vi i i9 9 f9( , , ). For axial effects, we recall from Eq. (3.1.13),
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Combining the axial effects of Eq. (5.1.5) with the shear and principal bending moment effects 
of Eq. (4.1.13), we have, in local coordinates,
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where	 C
AE

L
C

EI

L
5 5and1 2 3

	 (5.1.7)

and, therefore,
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The k9[ ] matrix in Eq. (5.1.8) now has three degrees of freedom per node and now includes 
axial effects (in the x9 direction), as well as shear force effects (in the y9 direction) and principal 
bending moment effects (about the z z9 5  axis). Using Eqs. (5.1.1) and (5.1.2), we now relate 
the local to the global displacements by
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where [T] has now been expanded to include local axial deformation effects as
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■■ Figure 5–3  Local forces and displacements acting on a beam element
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Substituting [T] from Eq. (5.1.10) and k9[ ] from Eq. (5.1.8) into Eq. (3.4.22), k T k TT5 9([ ] [ ] [ ][ ]) 
we obtain the general transformed global stiffness matrix for a beam element that includes axial 
force, shear force, and bending moment effects as follows:
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	(5.1.11)

The analysis of a rigid plane frame can be undertaken by applying stiffness matrix Eq. (5.1.11). 
A rigid plane frame is defined here as a series of beam elements rigidly connected to each 
other; that is, the original angles made between elements at their joints remain unchanged after 
the deformation due to applied loads or applied displacements.

Furthermore, moments are transmitted from one element to another at the joints. Hence, 
moment continuity exists at the rigid joints. In addition, the element centroids, as well as 
the applied loads, lie in a common plane (x – y plane). From Eq. (5.1.11), we observe that the 
element stiffnesses of a frame are functions of E, A, L, I, and the angle of orientation θ of the 
element with respect to the global-coordinate axes. It should be noted that computer programs 
often refer to the frame element as a beam element, with the understanding that the program 
is using the stiffness matrix in Eq. (5.1.11) for plane frame analysis.

	 5.2 	 Rigid Plane Frame Examples
To illustrate the use of the equations developed in Section 5.1, we will now perform complete 
solutions for the following rigid plane frames.

EXAMPLE 5.1

As the first example of rigid plane frame analysis, solve the simple “bent” shown in Figure 5–4.

■■ Figure 5–4  Plane frame for analysis, also showing local x9 axis for each element
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SOLUTION:
The frame is fixed at nodes 1 and 4 and subjected to a positive horizontal force of 40 kN 
applied at node 2 and to a positive moment of 500 N-m. applied at node 3. The global-
coordinate axes and the element lengths are shown in Figure 5–4.

Let 5E 200 GPa and 5A 6500 mm2 for all elements, and let 5 3I 80 10 mm6 4 for 
elements 1 and 3, and 5 3I 40 10 mm6 4 for element 2.

Using Eq. (5.1.11), we obtain the global stiffness matrices for each element.

Element 1

For element 1, the angle between the global x and the local x9 axes is 890  (counterclockwise) 
because x9 is assumed to be directed from node 1 to node 2. Therefore,
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Then, using Eqs. (5.2.1) to help in evaluating Eq. (5.1.11) for element 1, we obtain the 
element global stiffness matrix as
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	(5.2.2)

where all diagonal terms are positive.

Element 2

For element 2, the angle between x and x9 is zero because x9 is directed from node 2 to node 
3. Therefore,

	 C S5 51 0	
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Using the quantities obtained in Eqs. (5.2.3) in evaluating Eq. (5.1.11) for element 2, we obtain
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Element 3

For element 3, the angle between x and x9 is 8270  (or 2 890 ) because x9 is directed from 
node 3 to node 4. Therefore,
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Therefore, evaluating Eq. (5.1.11) for element 3, we obtain

[ ] 66.67 10

0.106 0 160 0.106 0 160

0 6.5 0 0 6.5 0

160 0 320,000 160 0 160,000

0.106 0 160 0.106 0 160

0 6.5 0 0 6.5 0

160 0 160,000 160 0 320,000

N

mm

3 3 3 4 4 4

(3) 3

f f

5 3

2

2

2

2 2 2

2

2

u v u v

k



























	 (5.2.5)

Superposition of Eqs. (5.2.2), (5.2.4), and (5.2.5) and application of the boundary condi-
tions u v 01 1 1f5 5 5  and u v f5 5 5 04 4 4  at nodes 1 and 4 yield the reduced set of 
equations for a longhand solution as
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Solving Eq. (5.2.6) for the displacements and rotations, we have
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The results indicate that the top of the frame moves to the right with negligible vertical 
displacement and small rotations of elements at nodes 2 and 3.

The element forces can now be obtained using f k T d9 5 9{ } [ ][ ]{ } for each element, as 
was previously done in solving truss and beam problems. We will illustrate this procedure 
only for element 1. For element 1, on using Eq. (5.1.10) for [T ] and Eq. (5.2.7) for the 
displacements at node 2, we have
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On multiplying the matrices in Eq. (5.2.8), we obtain
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2

2

T d[ ]{ }

0

0
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
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

	 (5.2.9)

Then using k9[ ] from Eq. (5.1.8), we obtain element 1 local forces as

	{ } [ ][ ]{ } 66.67 10

6.5 0 0 6.5 0 0

0 0.106 160 0 0.106 160

0 160 320,000 0 160 160,000
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0
0
0
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0.00144

39 5 9 5 3
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2

2

2 2 2
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




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

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

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
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

	

(5.2.10)
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Simplifying Eq. (5.2.10), we obtain the local forces acting on element 1 as
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	 (5.2.11)

A free-body diagram of each element is shown in Figure 5–5 along with equilibrium 
verification. In Figure 5–5, the x9 axis is directed from node 1 to node 2—consistent with 
the order of the nodal degrees of freedom used in developing the stiffness matrix for the 
element. Since the x–y plane was initially established as shown in Figure 5–4, the z axis is 
directed outward—consequently, so is the z9 axis (recall z z9 5 ). The y9 axis is then estab-
lished such that x9 cross y9 yields the direction of z9. The signs on the resulting element forces 
in Eq. (5.2.11) are thus consistently shown in Figure 5–5. The forces in elements 2 and 3 
can be obtained in a manner similar to that used to obtain Eq. (5.2.11) for the nodal forces 
in element 1. Here we report only the final results for the forces in elements 2 and 3 and 
leave it to your discretion to perform the detailed calculations. The element forces [shown 
in Figures 5–5(b) and (c)] are as follows:

Element 2

	
9 9 9

9 9 9

5 5 2 5 2

5 2 5 5 2

f f m

f f m

x y

x y

20243 N 14950 N 22689134 N-mm

20243 N 14950 N 2264437 N-mm

2 2 2

3 3 2

	 (5.2.12a)

Element 3

	
9 9 9

9 9 9

5 5 5

5 2 5 2 5

f f m

f f m

x y

x y

14950 N 20243 N 22870420 N-mm

14950 N 20243 N 37948705 N-mm

3 3 3

4 4 4

	 (5.2.12b)

Considering the free body of element 1, the equilibrium equations are

	

2 1 5

2 1 5

1 2

9

9

>

F

F

M

x

y

: 20023 20023 0

: 14950 14950 0

: 38,049,902 22,689,134 20,023(3000) 02

∑
∑

∑
	

Considering moment equilibrium at node 2, we see from Eqs. (5.2.12a) and (5.2.12b) that on 
element 1, 9 5m 22,689,134 N-mm2 , and the opposite value, 222,689,134 N-mm, occurs on 
element 2. Similarly, moment equilibrium is satisfied at node 3, as 93m  from elements 2 and 3 
add to the 505,983 N-m applied moment. That is, from Eqs. (5.2.12a) and (5.2.12b) we have

	 .
2 1 522,364,437 22,870,420 505,983 N-mm

500 N-m 	
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EXAMPLE 5.2

To illustrate the procedure for solving frames subjected to distributed loads, solve the rigid 
plane frame shown in Figure 5–6. The frame is fixed at nodes 1 and 3 and subjected to 
a uniformly distributed load of 13 kN/m applied downward over element 2. The global-
coordinate axes have been established at node 1. The element lengths are shown in the figure. 
Let 5E 200 GPa, 5A 0.06 m2 and 5 3 2I 3.6 10 m4 4 for both elements of the frame.

SOLUTION:
We begin by replacing the distributed load acting on element 2 by nodal forces and moments 
acting at nodes 2 and 3. Using Eqs. (4.4.5)–(4.4.7) (or Appendix D), the equivalent nodal 
forces and moments are calculated as

	
5 2 5 2

3
5 2 5 2

5 2 5 2
3

5 2 5 2

f
wL

m
wL

y
2

(13 10 )12

2
78,000 N 78 kN

12

(13 10 )12

12
156,000 N-m 156 kN-m

2

3

2

2 3 2 	 (5.2.13)

■■ Figure 5–5  Free-body diagrams of (a) element 1, (b) element 2, and (c) element 3
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22,689,134 N-mm
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20,023 N

20,243 N

14,950 N

14,950 N

20,243 N

22,870,420 N-mm

3 m

20,243 N

14,950 N

37,948,705 N-mm

22,689,134 N-mm

2,234,437 N-mm

14,950 N

20,243 N

3 m

20,023 N

14,950 N

38,049,902 N-mm

3 m

y ′

z ′

z ′

z ′

x ′

x ′

y ′

y ′
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2

(13 10 )12

2
78,000 N 78 kN

12

(13 10 )12

12
156,000 N-m 156 kN-m

3

3

3

2 3 2

f
wL

m
wL

y 5 2 5 2
3

5 2 5 2

5 5
3

5 5

	

We then use Eq. (5.1.11) to determine each element stiffness matrix:

Element 1

	 u 5 8 5 5 5 5C S L45 0.707 0.707 12.72 m 12720.0 mm(1) (1) 	

	

5
3

5

5 2

2 3

E

L

k

200 10

12720
15.72

N

mm

[ ] 15.72

30,010 29,980 12,005

29,980 30,010 12,005

12,005 12,005 1.44 10

N

mm

3

3

(1)

9
3

















	 (5.2.14)

■■ Figure 5–6  (a) Plane frame for analysis and (b) equivalent nodal forces on frame

x ′1

x ′2

13 kN/m

–78 kN

–156 kN-m –156 kN-m
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12 m

9 m
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Simplifying Eq. (5.2.14), we obtain

	

f

5 3 2

2

u v

k[ ] 15.72 10

0.3001 0.2998 0.12005

0.2998 0.3001 0.12005

0.12005 0.12005 14,400

N

mm

2 2 2

(1) 5
3



















	 (5.2.15)

where only the parts of the stiffness matrix associated with degrees of freedom at node 2 
are included because node 1 is fixed.

Element 2

	 u 5 8 5 5 5 5C S L0 1 0 12 m 12,000 mm(2) (2) 	

	

5
3

5

5

3

E

L

k

200 10

12,000
16.67

N

mm

[ ] 16.67

60,000 0 0

0 30 180,000

0 180,000 1.44 10

N

mm

3

3

(2)

9
3



















	 (5.2.16)

Simplifying Eq. (5.2.16), we obtain

	


















u v

k

f

5 3[ ] 16.67 10

0.6 0 0

0 0.0003 1.8

0 1.8 14,000

N

mm

2 2 2

(2) 5
3

	 (5.2.17)

where, again, only the parts of the stiffness matrix associated with degrees of freedom at 
node 2 are included because node 3 is fixed. On superimposing the stiffness matrices of the 
elements, using Eqs. (5.2.15) and (5.2.17), and using Eq. (5.2.13) for the nodal forces and 
moments only at node 2 (because the structure is fixed at node 3), we have
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
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
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F
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v
x

y

f

5

5 2 3

5 2 3

5

0

78 10

156 10

(10 )
1471.95 471.28 1887.18
471.28 472.25 113.41

1887.18 113.41 46,641,600

2

2
3

2
3

3

2

2

2

	 (5.2.18)

Solving Eq. (5.2.18) for the displacements and the rotation at node 2, we obtain

	





























u

v

f

5 2

2

0.0803 mm
0.2374 mm
0.0033 rad

2

2

2

	 (5.2.19)

The results indicate that node 2 moves to the right u 5( 0.0803 mm)2  and down 
v 5 2( 0.2374 mm)2  and the rotation of the joint is clockwise ( 0.0033 rad)2f 5 2 .
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The local forces in each element can now be determined. The procedure for elements 
that are subjected to a distributed load must be applied to element 2. Recall that the local 
forces are given by f k T d9 5 9{ } [ ][ ]{ }. For element 1, we then have
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	 (5.2.20)

Simplifying Eq. (5.2.20) yields
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	 (5.2.21)

Using Eq. (5.2.21) and Eq. (5.1.8) for k[ ]9 , we obtain
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	 (5.2.22)

Simplifying Eq. (5.2.22) yields the local forces in element 1 as

	
104.77 kN 8.827 kN 37.22 kN-m

104.77 kN 8.827 kN 75.05 kN-m

1 1 1

2 2 2

9 9 9

9 9 9

5 5 2 5 2

5 2 5 5 2

f f m
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x y x

x y x

	 (5.2.23)

For element 2, the local forces are given by Eq. (4.4.11) because a distributed load is acting 
on the element. From Eqs. (5.1.10) and (5.2.19), we then have
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	 (5.2.24)
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Simplifying Eq. (5.2.24), we obtain
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	 (5.2.25)

Using Eq. (5.2.25) and Eq. (5.1.8) for k[ ]9 , we have
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(5.2.26)

Simplifying Eq. (5.2.26) yields
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	 (5.2.27)

To obtain the actual element local nodal forces, we apply Eq. (4.4.11); that is, we must 
subtract the equivalent nodal forces [Eqs. (5.2.13)] from Eq. (5.2.27) to yield

	























































































f

f

m

f

f

m

x

y

x

y

9

9

9

9

9

9

5

2

2

2

2

2

2

2

2

80.316
10.018
79.928
80.316
10.018
40.32

0
78

156
0

78
156

2

2

2

3

3

3

	 (5.2.28)

Simplifying Eq. (5.2.28), we obtain

	
f f m

f f m

x y
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9 9 9
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	 (5.2.29)
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Using Eqs. (5.2.23) and (5.2.29) for the local forces in each element, we can construct 
the free-body diagram for each element, as shown in Figure 5–7. From the free-body 
diagrams, one can confirm the equilibrium of each element, the total frame, and joint 2 as 
desired.

In Example 5.3, we will illustrate the equivalent joint force replacement method for a 
frame subjected to a load acting on an element instead of at one of the joints of the structure. 
Since no distributed loads are present, the point of application of the concentrated load could 
be treated as an extra joint in the analysis, and we could solve the problem in the same manner 
as Example 5.1.

This approach has the disadvantage of increasing the total number of joints, as well as the 
size of the total structure stiffness matrix [K ]. For small structures solved by computer, this 
does not pose a problem. However, for very large structures, this might reduce the maximum 
size of the structure that could be analyzed. Certainly, this additional node greatly increases 
the longhand solution time for the structure. Hence, we will illustrate a standard procedure 
based on the concept of equivalent joint forces applied to the case of concentrated loads. We 
will again use Appendix D.

EXAMPLE 5.3

Solve the frame shown in Figure 5–8(a). The frame consists of the three elements shown and 
is subjected to a 65-kN horizontal load applied at midlength of element 1. Nodes 1, 2, and 3 
are fixed, and the dimensions are shown in the figure. Let E 5 200 GPa, I 5 3 23.0 10 m4 4,  
and A 5 3 25.0 10 m3 2 for all elements.

SOLUTION:
	1.	 We first express the applied load in the element 1 local coordinate system (here x9 is 

directed from node 1 to node 4). This is shown in Figure 5–8(b).
	2.	 Next, we determine the equivalent joint forces f{ }0  at each end of element 1, using the 

table in Appendix D. (These forces are of opposite sign from what are traditionally 
known as fixed-end forces in classical structural analysis theory [1].) These equivalent 
forces (and moments) are shown in Figure 5–8(c).

■■ Figure 5–7  Free-body diagrams of elements 1 and 2

37.22 kN-m
12

.72
 m
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■■ Figure 5–8  Rigid frame with a load applied on an element

32.5 kN

32.5 kN

y ′
x ′

58.12 kN

29.06 kN

97.5 kN-m

97.5 kN-m

	3.	 We then transform the equivalent joint forces from the present local-coordinate-system 
forces into the global-coordinate-system forces, using the equation f T fT5 9{ } [ ] { }, where 
[T] is defined by Eq. (5.1.10). These global joint forces are shown in Figure 5–8(d).

	4.	 Then we analyze the structure in Figure 5–8(d), using the equivalent joint forces (plus 
actual joint forces, if any) in the usual manner.

	5.	 We obtain the final internal forces developed at the ends of each element that has an 
applied load (here element 1 only) by subtracting step 2 joint forces from step 4 joint 
forces; that is, Eq. (4.4.11) f f fe5 2({ } { } { })( )

0  is applied locally to all elements that 
originally had loads acting on them.

The solution of the structure as shown in Figure 5–8(d) now follows. Using Eq. (5.1.11), 
we obtain the global stiffness matrix for each element.
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Element 1
For element 1, the angle between the global x and the local x9 axes is 863.43  because x9 is 
assumed to be directed from node 1 to node 4. Therefore,

	

C
x x

L

S
y y

L
I

L

I

L

E

L

5 8 5
2

5
2

5

5 8 5
2

5
2

5

5
3

5 3 5
3

5 3

5
3

5 3

2
2

2
2

cos63.43
6 0

13.42
0.447

sin 63.43
12 0

13.42
0.895

12 12(3 10 )

(13.42)
1.998 10

6 6(3 10 )

13.42
1.341 10

200 10

13.42
1.49 10

4 1
(1)

4 1
(1)

2

4

2
5

4
4

9
10

	

Using the preceding results in Eq. (5.1.11) for [k], we obtain

	 















u v

k

f

5 2

2

[ ] (10 )
15.12 29.78 1.78
29.78 59.73 0.88
1.78 0.88 17.88

4 4 4

(1) 6
	 (5.2.30)

where only the parts of the stiffness matrix associated with degrees of freedom at node 4 
are included because node 1 is fixed and, hence, not needed in the solution for the nodal 
displacements.

Element 3
For element 3, the angle between x and x9 is zero because x9 is directed from node 4 to 
node 3. Therefore,

	

1 0
12 12(3.0 10 )

(15)
1.6 10

6 6(3.0 10 )

15
1.2 10

200 10

15
1.33 10

2

4

2
5

4
4

9
10

5 5 5
3

5 3

5
3

5 3 5
3

5 3

2

2
2

C S
I

L

I

L

E

L

−

	

Substituting these results into [k], we obtain

	


















u v

k

f

5[ ] (10 )

66.67 0 0

0 0.21 1.59

0 1.59 15.99

4 4 4

(3) 6 	 (5.2.31)

since node 3 is fixed.
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Element 2
For element 2, the angle between x and x9 is 8116.57  because x9 is directed from node 2 to 
node 4. Therefore,

	

6 12

13.42
0.447

12 0

13.42
0.895

12
1.998 10

6
1.341 10 1.49 10

2
5 4 10

5
2

5 2 5
2

5

5 3 5 3 5 32 2

C S

I

L

I

L

E

L

	

since element 2 has the same properties as element 1. Substituting these results into [k], 
we obtain

	

f

5

2

2[ ] (10 )
15.12 29.78 1.78
29.78 59.73 0.88
1.78 0.88 17.88

4 4 4

(2) 6

u v

k

















	 (5.2.32)

since node 2 is fixed. On superimposing the stiffness matrices given by Eqs. (5.2.30), 
(5.2.31), and (5.2.32), and using the nodal forces given in Figure 5–8(d) at node 4 only, 
we have

	
f

2

2

5

32.5 kN

0

97.5 kN-m

96.91 0 3.56

0 119.67 1.59

3.56 1.59 51.75

4

4

4

u

v



















































	 (5.2.33)

Simultaneously solving the three equations in Eq. (5.2.33), we obtain

	

f

5 2

5

5 2

0.267 mm

0.025 mm

0.001866 rad

4

4

4

u

v 	 (5.2.34)

Next, we determine the element forces by again using f k T d9 5 9{ } [ ][ ]{ }. In general, we have

	




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



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





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
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



























T d

C S

S C

C S
S C

u

v

u

v

i

i

i

j

j

j

f

f

5

2

2

[ ]{ }

0 0 0 0

0 0 0 0
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Thus, the preceding matrix multiplication yields

	































T d

Cu Sv

Su Cv

Cu Sv

Su Cv

i i

i i

i

j j

j j

j

f

f

5

1

2 1

1

2 1

[ ]{ } 	 (5.2.35)

Element 1

5
2 3 1 3

2 2 3 1 3

2

5
2 3

3

2

2

2

2

2

[ ]{ }

0
0
0

(0.447)( 2.67 10 ) (0.895)(2.5 10 )

( 0.895)( 2.67 10 ) (0.447)(2.5 10 )

0.001866

0
0
0

9.697 10

2.5 10
0.001186

4 5

4 5

5

4

T d

























































−

−

	 (5.2.36)

Using Eq. (5.1.8) for k9[ ] and Eq. (5.2.36), we obtain

	

9 5

2

2

2

2

2 2 2

2

3
2

2

[ ][ ]{ } (10 )

74.51 0 0 74.51 0 0
0 0.297 1.996 0 0.297 1.996
0 1.996 17.86 0 1.996 8.93

74.51 0 0 74.51 0 0
0 0.297 1.996 0 0.297 1.996
0 1.996 8.93 0 1.996 17.86

0
0
0
0.0969
0.025 mm
0.001186 rad

6k T d





















































	

(5.2.37)

These values are now called effective nodal forces f e{ }( ) . Multiplying the matrices of 
Eq. (5.2.37) and using Eq. (4.4.11) to subtract the equivalent nodal forces in local coordinates 
for the element shown in Figure 5–8(c), we obtain the final nodal forces in element 1 as

	 9 5

2

2

2

2

2

2

2

2

5

2

2

2

{ }

7.25 kN

3.725 kN
16.66 kN-m
7.25 kN
3.725 kN

33.33 kN

14.53 kN
29.06 kN

97.5 kN-m

14.53 kN
29.06

97.5 kN-m

21.78 kN

32.785 kN
114.66 kN-m
7.28 kN

25.335 kN
64.17 kN-m

(1)f

























































































	 (5.2.38)

Similarly, we can use Eqs. (5.2.35) and (5.1.8) for elements 3 and 2 to obtain the local 
nodal forces in these elements. Since these elements do not have any applied loads on 
them, the final nodal forces in local coordinates associated with each element are given by 
f k T d9 5 9{ } [ ][ ]{ }. These forces have been determined as follows:

Element 3

	
9 9 9

9 9 9

5 2 5 2 5 2

5 5 5 2

17.78 kN 2.695 kN 29.866 kN-m

17.78 kN 2.965 kN 14.933 kN-m

4 4 4

3 3 3

f f m

f f m

x y

x y
	 (5.2.39)
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Element 2

	
9 9 9

9 9 9

5 2 5 2 5 2

5 5 5 2

10.53 kN 3.785 kN 17.22 kN-m

10.53 kN 3.785 kN 34.0 kN-m

2 2 2

4 4 4

f f m

f f m

x y

x y
	 (5.2.40)

Free-body diagrams of all elements are shown in Figure 5–9. Each element has been deter-
mined to be in equilibrium, as often occurs even if errors are made in the longhand calcula-
tions. However, equilibrium at node 4 and equilibrium of the whole frame are also satisfied. 
For instance, using the results of Eqs. (5.2.38) through (5.2.40) to check equilibrium at 
node 4, which is implicit in the formulation of the global equations, we have

	

64.17 29.866 34.0 0.304 kN-m (close to zero)

7.28(0.447) 25.335(0.895) 10.53(0.447)

3.785(0.895) 17.78 0.05 kN (close to zero)

7.28(0.895) 25.335(0.447) 10.53(0.895)

3.785(0.447) 2.965 0.039 kN (close to zero)

4 5 2 2 5

5 1 2

2 2 5 2

5 2 1

2 2 5

M

F

F

x

y

∑
∑

∑
	

Thus, the solution has been verified to be correct within the accuracy associated with a 
longhand solution.

To illustrate the solution of a problem involving both bar and frame elements, we will 
solve the following example.

EXAMPLE 5.4

The bar element 2 is used to stiffen the cantilever beam element 1, as shown in 
Figure 5–10. Determine the displacements at node 1 and the element forces. For the bar, let 
A 1.0 10 m3 25 3 2 . For the beam, let A 2 10 m3 25 3 2 , I 5 10 m5 45 3 2 , and L 3 m5 . 
For both the bar and the beam elements, let E 210 GPa5 . Let the angle between the beam 
and the bar be 845 . A downward force of 500 kN is applied at node 1.

■■ Figure 5–9  Free-body diagrams of all elements of the frame in Figure 5–8(a)
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SOLUTION:
For brevity’s sake, since nodes 2 and 3 are fixed, we keep only the parts of [k] for each 
element that are needed to obtain the global [K] matrix necessary for solution of the nodal 
degrees of freedom. Using Eq. (3.4.23), we obtain [k] for the bar as

	








k 5

3 3

8

2

[ ]
(1 10 )(210 10 )

(3 cos45 )
0.5 0.5
0.5 0.5

(2)
3 6

	

or, simplifying this equation, we obtain

	

u v

k[ ] 70 10
0.354 0.354
0.354 0.354

kN

m

1 1

(2) 3 







5 3

	 (5.2.41)

Using the upper left 33 3 part of Eq. (5.1.11), we obtain [k] for the beam (including axial 
effects) as

	

u v

k[ ] 70 10
2 0 0
0 0.067 0.10
0 0.10 0.20

kN

m

1 1 1

(1) 3

















f

5 3
	 (5.2.42)

where E L 3 2( / ) 10 3 has been factored out in evaluating Eq. (5.2.42).
We assemble Eqs. (5.2.41) and (5.2.42) in the usual manner to obtain the global stiff-

ness matrix as

	

















K 5 3[ ] 70 10
2.354 0.354 0
0.354 0.421 0.10
0 0.10 0.20

kN

m
3 	 (5.2.43)

The global equations are then written for node 1 as
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
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	 (5.2.44)

■■ Figure 5–10  Cantilever beam with a bar element support
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Solving Eq. (5.2.44), we obtain

	 u v0.00338 m 0.0225 m 0.0113 rad1 1 1f5 5 2 5 	 (5.2.45)

In general, the local element forces are obtained using f k T d9 5 9{ } [ ][ ]{ }. For the bar 
element, we then have
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
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

	 (5.2.46)

The matrix triple product of Eq. (5.2.46) yields (as one equation)

	 9 5 1( )1 1 1f
AE

L
Cu Svx 	 (5.2.47)

Substituting the numerical values into Eq. (5.2.47), we obtain

	 9 5
3

2
2(1 10 m )(210 10 kN m )

4.24 m

2

2
(0.00338 0.0225)1

3 2 6 2

f x
× 







 	 (5.2.48)

Simplifying Eq. (5.2.48), we obtain the axial force in the bar (element 2) as

	 9 5 2670 kN1f x 	 (5.2.49)

where the negative sign means 91f x is in the direction opposite x9 for element 2. Similarly, 
we obtain

	 9 5 670 kN3f x 	 (5.2.50)

which means the bar is in tension as shown in Figure 5–11. Since the local and global axes 
are coincident for the beam element, we have f f9 5{ } { } and d d9 5{ } { }. Therefore, from 
Eq. (5.1.6), we have at node 1
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

	 (5.2.51)

where only the upper left 33 3 part of the stiffness matrix is needed because the displace-
ments at node 2 are equal to zero. Substituting numerical values into Eq. (5.2.51), we obtain

	

9

9

9

5 3 270 10
2 0 0
0 0.067 0.10
0 0.10 0.20

0.00338
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f
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y
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
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
	

The matrix product then yields

	 9 9 95 5 2 5 ?473 kN 26.5 kN 0.0 kN m1 1 1f f mx y 	 (5.2.52)
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Similarly, using the lower left 33 3 part of Eq. (5.1.6), we have at node 2,
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The matrix product then yields

	 9 9 95 2 5 5 2 ?473 kN 26.5 kN 78.3 kN m2 2 2f f mx y 	 (5.2.53)

To help interpret the results of Eqs. (5.2.49), (5.2.50), (5.2.52), and (5.2.53), freebody 
diagrams of the bar and beam elements are shown in Figure 5–11. To further verify the 
results, we can show a check on equilibrium of node 1 to be satisfied. You should also verify 
that moment equilibrium is satisfied in the beam.

	 5.3 	 Inclined or Skewed Supports—Frame Element
For the frame element with inclined support at node 3 in Figure 5–12, the transformation matrix 
[T] used to transform global to local nodal displacements is given by Eq. (5.1.10).

In the example shown in Figure 5–12, we use [T] applied to node 3 as follows:
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	 (5.3.1)

The same steps as given in Section 3.9 then follow for the plane frame. The resulting 
equations for the plane frame in Figure 5–12 are [see also Eq. (3.9.13)]

	 T f T K T di i i
T5[ ]{ } [ ][ ][ ] { }	 (5.3.2)

■■ Figure 5–11  Free-body diagrams of the bar (element 2) and beam (element 1) elements 
of Figure 5–10
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where	

















T

I

I

t
i 5[ ]

[ ] [0] [0]

[0] [ ] [0]

[0] [0] [ ]3

	 (5.3.4)

and	

















t
a a

a a5 2[ ]
cos sin 0

sin cos 0
0 0 1

3 	 (5.3.5)

	 5.4 	 Grid Equations
A grid is a structure on which loads are applied perpendicular to the plane of the structure, 
as opposed to a plane frame, where loads are applied in the plane of the structure. We will 
now develop the grid element stiffness matrix. The elements of a grid are assumed to be 
rigidly connected, so that the original angles between elements connected together at a node 
remain unchanged. Both torsional and bending moment continuity then exist at the node point 
of a grid. Examples of grids include floor and bridge deck systems. A typical grid structure 
subjected to loads F1, F2, F3, and F4 is shown in Figure 5–13.

■■ Figure 5–12  Frame with inclined support
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We will now consider the development of the grid element stiffness matrix and element 
equations. A representative grid element with the nodal degrees of freedom and nodal forces is 
shown in Figure 5–14. The degrees of freedom at each node for a grid are a vertical deflection 
vi9  (normal to the grid), a torsional rotation ixf9  about the x9  axis, and a bending rotation izf9  
about the z9 axis. Any effect of axial displacement is ignored; that is, ui9 5 0. The nodal forces 
consist of a transverse force fiy9 , a torsional moment mix9  about the x9 axis, and a bending moment 
miz9  about the z9 axis. Grid elements do not resist axial loading; that is fix9 5 0.

To develop the local stiffness matrix for a grid element, we need to include the torsional 
effects in the basic beam element stiffness matrix Eq. (4.1.14). Recall that Eq. (4.1.14) already 
accounts for the bending and shear effects.

We can derive the torsional bar element stiffness matrix in a manner analogous to that used 
for the axial bar element stiffness matrix in Chapter 3. In the derivation, we simply replace fix9  
with mix9 , ui9  with ixf9 , E with G (the shear modulus), A with J (the torsional constant, or stiffness 
factor), s  with τ  (shear stress), and « with g (shear strain).

The actual derivation is briefly presented as follows. We assume a circular cross section 
with radius R for simplicity but without loss of generalization.

Step 1
Figure 5–15 shows the sign conventions for nodal torque and angle of twist and for element 
torque.

Step 2
We assume a linear angle-of-twist variation along the x9 axis of the bar such that

	 a a xf9 95 11 2 	 (5.4.1)

■■ Figure 5–13  Typical grid structure

■■ Figure 5–14  Grid element with nodal degrees of freedom and nodal forces
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Using the usual procedure of expressing a1 and a2 in terms of unknown nodal angles of twist 
xf91  and xf92 , we obtain

	
L

xx x
x

2 1
1





f9

f9 f9
9 f95

2
1 	 (5.4.2)

or, in matrix form, Eq. (5.4.2) becomes

	 N N
x

x
[ ]1 2

1

2












f9

f9

f9
5 	 (5.4.3)

with the shape functions given by

 	 N
x

L
N

x

L

9 9
5 2 511 2 	 (5.4.4)

Step 3
We obtain the shear strain g/angle of twist f9 relationship by considering the torsional defor-
mation of the bar segment shown in Figure 5–16. Assuming that all radial lines, such as OA, 
remain straight during twisting or torsional deformation, we observe that the arc length A B�  
is given by

	 g 9 f95 5A B dx Rd�
max 	

■■ Figure 5–15  Nodal and element torque sign conventions

′ ′ ′ ′ ′ ′

′′

′ ′

■■ Figure 5-16  Torsional deformation of a bar segment

′

′

′

′

′
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Solving for the maximum shear strain gmax, we obtain

	
Rd

dx
g

f9

9
5max 	

Similarly, at any radial position r, we then have, from similar triangles OAB and OCD,

	 r
d

dx

r

L
x x( )2 1g

f9

9
f9 f95 5 2 	 (5.4.5)

where we have used Eq. (5.4.2) to derive the final expression in Eq. (5.4.5).
The shear stress t /shear strain g relationship for linear-elastic isotropic materials is 

given by

	 Gτ g5 	 (5.4.6)

where G is the shear modulus of the material.

Step 4
We derive the element stiffness matrix in the following manner. From elementary mechanics, 
we have the shear stress related to the applied torque by

	 m
J

R
x

τ
9 5 	 (5.4.7)

where J is called the polar moment of inertia for the circular cross section or, generally, the 
torsional constant for noncircular cross sections. Using Eqs. (5.4.5) and (5.4.6) in Eq. (5.4.7), 
we obtain

	 m
GJ

L
x x x( )2 19 f9 f95 2 	 (5.4.8)

By the nodal torque sign convention of Figure 5–15,

	 m mx x19 95 2 	 (5.4.9)

or, by using Eq. (5.4.8) in Eq. (5.4.9), we obtain

	 m
GJ

L
x x x( )1 1 29 f9 f95 2 	 (5.4.10)

Similarly,	 m mx x29 95 	 (5.4.11)

or	 m
GJ

L
x x x( )2 2 19 f9 f95 2 	 (5.4.12)
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Expressing Eqs. (5.4.10) and (5.4.12) together in matrix form, we have the resulting torsion 
bar stiffness matrix equation:
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m
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x
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1 1
1 1

1

2

1

2



































9

9

f9

f9
5

2

2
	 (5.4.13)

Hence, the stiffness matrix for the torsion bar is

	








k

GJ

L
9 5

2

2
[ ] 1 1

1 1
	 (5.4.14)

The cross sections of various structures, such as bridge decks, are often not circular. 
However, Eqs. (5.4.13) and (5.4.14) are still general; to apply them to other cross sections, 
we simply evaluate the torsional constant J for the particular cross section. For instance, for 
cross sections made up of thin rectangular shapes such as channels, angles, or I shapes, we 
approximate J by

	 ∑J b ti i5
1

3
3 	 (5.4.15)

where bi is the length of any element of the cross section and ti is the thickness of any element 
of the cross section. In Table 5–1, we list values of J for various common cross sections. 
The first four cross sections are called open sections. Equation (5.4.15) applies only to these 
open cross sections. (For more information on the J concept, consult References [2] and [3], 
and for an extensive table of torsional constants for various cross-sectional shapes, consult 
Reference [4].) We assume the loading to go through the shear center of these open cross 
sections in order to prevent twisting of the cross section. For more on the shear center consult 
References [2] and [5].

On combining the torsional effects of Eq. (5.4.13) with the shear and bending effects of 
Eq. (4.1.13), we obtain the local stiffness matrix equation for a grid element as
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	 (5.4.16)
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Table 5–1    Torsional constants J and shear centers SC for various cross sections

Cross Section Torsional Constant
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where, from Eq. (5.4.16), the local stiffness matrix for a grid element is
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and the degrees of freedom are in the order (1) vertical deflection, (2) torsional rotation, and 
(3) bending rotation, as indicated by the notation used above the columns of Eq. (5.4.17).

The transformation matrix relating local to global degrees of freedom for a grid is given by
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	 (5.4.18)

where u  is now positive, taken counterclockwise from x to x9 in the x – z plane (Figure 5–17) and

	 C
x x

L
S

z z

L
j i j i

u u5 5
2

5 5
2

cos sin 	

where L is the length of the element from node i to node j. As indicated by Eq. (5.4.18) for a 
grid, the vertical deflection v9 is invariant with respect to a coordinate transformation (that is, 
y y5 9) (Figure 5–17).

■■ Figure 5–17  Grid element arbitrarily oriented in the x – z plane

′

′

′
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The global stiffness matrix for a grid element arbitrarily oriented in the x – z plane is then 
given by using Eqs. (5.4.17) and (5.4.18) in

	 k T k TG G
T

G G[ ] [ ] [ ][ ]′5 	 (5.4.19)

Now that we have formulated the global stiffness matrix for the grid element, the proce-
dure for solution then follows in the same manner as that for the plane frame.

To illustrate the use of the equations developed in Section 5.4, we will now solve the 
following grid structures.

EXAMPLE 5.5

Analyze the grid shown in Figure 5–18. The grid consists of three elements, is fixed at 
nodes 2, 3, and 4, and is subjected to a downward vertical force (perpendicular to the x–z 
plane passing through the grid elements) of 400 kN. The global-coordinate axes have been 
established at node 3, and the element lengths are shown in the figure. Let 5 200 GPaE ,  

5 80G  GPa, 5 3150 10 mm6 4I , and 5 340 10 mm6 4J  for all elements of the grid.

■■ Figure 5–18  Grid for analysis showing local 9x  axis for each element

′

′′
6 m

6 m

F1y= – 400 kN

6 m

SOLUTION:
Substituting Eq. (5.4.17) for the local stiffness matrix and Eq. (5.4.18) for the transformation 
matrix into Eq. (5.4.19), we can obtain each element global stiffness matrix. To expedite the 
longhand solution, the boundary conditions at nodes 2, 3, and 4

	 v v vx z x z x zf f f f f f5 5 5 5 5 5 5 5 50 0 02 2 2 3 3 3 4 4 4 	 (5.4.20)

make it possible to use only the upper left-hand 33 3 partitioned part of the local stiffness 
and transformation matrices associated with the degrees of freedom at node 1. Therefore, 
the global stiffness matrices for each element are as follows:

Element 1
For element 1, we assume the local x9 axis to be directed from node 1 to node 2 for the 
formulation of the element stiffness matrix. We need the following expressions to evaluate 
the element stiffness matrix:
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	 (5.4.21)

Considering the boundary condition Eqs. (5.4.20), using the results of Eqs. (5.4.21) in  
Eq. (5.4.17) for [ ]9k G  and Eq. (5.4.18) for TG[ ], and then applying Eq. (5.4.19), we obtain 
the upper left-hand 33 3 partitioned part of the global stiffness matrix for element 1 as
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Performing the matrix multiplications, we obtain the global element grid stiffness matrix
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	 (5.4.22)

where the labels next to the columns indicate the degrees of freedom.

Element 2
For element 2, we assume the local x9 axis to be directed from node 1 to node 3 for the 
formulation of the element stiffness matrix. We need the following expressions to evaluate 
the element stiffness matrix:
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L

	 (5.4.23)

Other expressions used in Eq. (5.4.17) are identical to those in Eqs. (5.4.21) for element 1 
because E, G, I, J, and L are identical. Evaluating Eq. (5.4.19) for the global stiffness matrix 
for element 2, we obtain
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Simplifying, we obtain
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	 (5.4.24)

Element 3
For element 3, we assume the local x9 axis to be directed from node 1 to node 4. We need 
the following expressions to evaluate the element stiffness matrix:
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Using Eqs. (5.4.25), we can obtain the upper part of the global stiffness matrix for 
element 3 as
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0 0 1066

kN

mm

1 1 1

(3) 6

v

k

x z

G



















	 (5.4.26)

Superimposing the global stiffness matrices from Eqs. (5.4.22), (5.4.24), and (5.4.26), we 
obtain the total stiffness matrix of the grid (with boundary conditions applied) as

	

f f

5

2

2

[ ] (10 )
0.0157 20 7.152

20 47900 0

7.152 0 29851.68

kN

mm

1 1 1

3

v

K

x z

G



















	 (5.4.27)
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The grid matrix equation then becomes

	 f

f

5 2

5

5

5

2

2

400

0

0

(10 )
0.0157 20 1.152

20 47900 0

7.152 0 29851.68

1

1

1

3
1

1

1

F

M

M

vy

x

z

x

z





















































	 (5.4.28)

The force F y1  is negative because the load is applied in the negative y direction. Solving for 
the displacement and the rotations in Eq. (5.4.28), we obtain

	 f

f

5 2

5

5 2

70.96 mm

0.0296 rad

0.0169 rad

1

1

1

v

x

z

	 (5.4.29)

The results indicate that the y displacement at node 1 is downward as indicated by the minus 
sign, the rotation about the x axis is positive, and the rotation about the z axis is negative. 
Based on the downward loading location with respect to the supports, these results are 
expected.

Having solved for the unknown displacement and the rotations, we can obtain the local 
element forces on formulating the element equations in a manner similar to that for the beam 
and the plane frame. The local forces (which are needed in the design/analysis stage) are 
found by applying the equation f k T dG G{ } [ ][ ]{ }′9 5  for each element as follows:

Element 1
Using Eqs. (5.4.17) and (5.4.18) for kG[ ]′  and TG[ ] and Eq. (5.4.29), we obtain

	 5

2

2 2

2

2 2

2

2
[ ]{ }

1 0 0 0 0 0

0 0.894 0.447 0 0 0

0 0.447 0.894 0 0 0

0 0 0 1 0 0

0 0 0 0 0.894 0.447

0 0 0 0 0.447 0.894

70.96
0.0296

0.0169
0

0

0

T dG

























































	

Multiplying the matrices, we obtain

	 5

2

2

[ ]{ }

70.96
0.03401
0.001877

0

0

0

T dG































	 (5.4.30)
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Then f k T dG G{ } [ ][ ]{ }′9 5  becomes

	

9

9

9

9

9

9

5

2

2

2

2 2 2

2

2

2

2

0.0012 0 4.0 0.0012 0 4.0

0 477.04 0 0 477.04 0

4.0 0 17889 4.0 0 8944.5

0.0012 0 4.0 0.0012 0 4.0

0 477.04 0 0 477.04 0

4.0 0 8944.5 4.0 0 17889

70.96
0.03401
0.001877

0

0

0

1

1

1

2

2

2

f

m

m

f

m

m

y

x

z

y

x

z



























































































	

(5.4.31)

Multiplying the matrices in Eq. (5.4.31), we obtain the local element forces as

	

9

9

9

9

9

9

5

2

2

2

2

77.644 kN
16.244 kN-m
250.262 kN-m
77.644 kN

16.244 kN-m
267.05 kN-m

1

1

1

2

2

2

f

m

m

f

m

m

y

x

z

y

x

z



























































	 (5.4.32)

The directions of the forces acting on element 1 are shown in the free-body diagram of 
element 1 in Figure 5–19.

■■ Figure 5–19  Free-body diagrams of the elements of Figure 5–18 showing local-coordinate 
systems for each

351.76 kN

77.644 kN

77.644 kN

′ ′

′

′

′
′

′

′

′

30.354 kN-m
9.019 kN-m

28.207 kN

9.019 kN-m

223.13 kN-3

28.207 kN

827.2 kN-m

18.015 kN-m

18.015 kN-m

351.76 kN

250.262 kN-m

16.244 kN-m

230.2 kN-m

16.244 kN-m

267.05 kN-m
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Element 2
Similarly, using f k T dG G9 5 9{ } [ ][ ]{ } for element 2, with the direction cosines in Eqs. (5.4.23), 
we obtain

	

9

9

9

9

9

9

5

2

2

2

2 2 2

2

2

3

2 2

2

2 2

2

2

2

0.0012 0 4.0 0.0012 0 4.0

0 477.04 0 0 477.04 0

4.0 0 17889 4.0 0 8944.5

0.0012 0 4.0 0.0012 0 4.0
0 477.04 0 0 477.04 0

4.0 0 8944.5 4.0 0 17889

1 0 0 0 0 0

0 0.894 0.447 0 0 0

0 0.447 0.894 0 0 0

0 0 0 1 0 0

0 0 0 0 0.894 0.447
0 0 0 0 0.447 0.894

70.96
0.0296

0.0169
0

0

0

1

1

1

3

3

3





















































































































f

m

m

f

m

m

y

x

z

y

x

z

	

(5.4.33)

Multiplying the matrices in Eq. (5.4.33), we obtain the local element forces as

	

9

9

9

9

9

9

5

5 2

5

5 2

5

5 2

28.207 kN

9.019 kN-m

223.13 kN-m

28.207 kN

9.019 kN-m

30.354 kN-m

1

1

1

3

3

3

f

m

m

f

m

m

y

x

z

y

x

z

	 (5.4.34)

Element 3
Finally, using the direction cosines in Eqs. (5.4.25), we obtain the local element forces as

	

0.0133 0 20 0.0133 0 20
0 1066 0 0 1066 0

20 0 40,000 20 0 20,000

0.0133 0 20 0.01333 0 20
0 1066 0 0 1066 0

20 0 20,000 20 0 40,000

1

1

1

3

3

3

9

9

9

9

9

9

5

2

2

2

2 2 2

2

2

f

m

m

f

m

m

y

x

z

y

x

z




























































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	 3

2

2

2

2

1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

70.96
0.0296
0.0169
0
0
0





















































	 (5.4.35)

Multiplying the matrices in Eq. (5.4.35), we obtain the local element forces as

	

9

9

9

9

9

9

5

5

5 2

5

5 2

5 2

351.76 kN

18.015 kN-m

235.2 kN-m

351.76 kN

18.015 kN-m

827.2 kN-m

1

1

1

4

4

4

f

m

m

f

m

m

y

x

z

y

x

z

	 (5.4.36)

Free-body diagrams for all elements are shown in Figure 5–19. Each element is in equilib-
rium. For each element, the x9 axis is shown directed from the first node to the second node, 
the y9 axis coincides with the global y axis, and the z9 axis is perpendicular to the x y9 9-  plane 
with its direction given by the right-hand rule.

To verify equilibrium of node 1, we draw a free-body diagram of the node show-
ing all forces and moments transferred from node 1 of each element, as in Figure 5–20. 
In Figure 5–20, the local forces and moments from each element have been transformed 
to global components, and any applied nodal forces have been included. To perform this 
transformation, recall that, in general, f T f9 5{ } [ ]{ }, and therefore f T fT5 9{ } [ ] { } because 
T TT 5 2[ ] [ ] 1. Since we are transforming forces at node 1 of each element, only the upper 
33 3 part of Eq. (5.4.18) for TG[ ] need be applied. Therefore, by premultiplying the local 

■■ Figure 5–20  Free-body diagram of node 1 of Figure 5–18

x

y

z

126.37 kN-m

107.80 kN-m

216.48 kN-m
400 kN
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kN
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–195.44 kN-m

28.207 kN
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element forces and moments at node 1 by the transpose of the transformation matrix for 
each element, we obtain the global nodal forces and moments as follows:

Element 1

	 5 2 2

2

2

2

1 0 0

0 0.894 0.447
0 0.447 0.894

77.644

16.244

250.262

1

1

1

f

m

m

y

x

z

















































	

Simplifying, we obtain the global-coordinate force and moments as

	 5 2 5 577.664 kN 126.37 kN-m 216.48 kN-m1 1 1f m my x z 	 (5.4.37)

where f fy y1 1′5  because y y5 9.

Element 2

	

1 0 0

0 0.894 0.447

0 0.447 0.894

28.702

9.019

228.13

1

1

1

5 2

2 2

2

f

m

m

y

x

z



















































	

Simplifying, we obtain the global-coordinate force and moments as

	 5 5 5 228.207 kN 107.80 kN-m 195.44 kN-m1 1 1f m my x z 	 (5.4.38)

Element 3

	 5

2

2

2

1 0 0

0 0 1

0 1 0

351.76 kN-m
18.015 kN-m

235.2 kN-m

1

1

1

f

m

m

y

x

z
















































	

Simplifying, we obtain the global-coordinate force and moments as

	 351.76 kN 235.2 kN-m 18.015 kN-m1 1 15 2 5 2 5f m my x z 	 (5.4.39)

Then forces and moments from each element that are equal in magnitude but opposite 
in sign will be applied to node 1. Hence, the free-body diagram of node 1 is shown in 
Figure 5–20. Force and moment equilibrium are verified as follows:

	

5 2 2 1 1 5

5 2 2 1 5

5 2 1 1 5 2

400 28.207 77.644 351.76 1.197 kN (close to zero)

126.37 107.80 235 0.83 kN (close to zero)

216.48 195.44 18.015 3.025 kN (close to zero)

1

1

1

∑
∑
∑

F

M

M

y

x

z

	

Thus, we have verified the solution to be correct within the accuracy associated with a 
longhand solution.
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EXAMPLE 5.6

Analyze the grid shown in Figure 5–21. The grid consists of two elements, is fixed at nodes 
1 and 3, and is subjected to a downward vertical load of 22 kN. The global coordinate 
axes and element lengths are shown in the figure. Let E 210 GPa5 , G 84 GPa5 , 
I 16.6 10 m5 45 3 2 , and J 4.6 10 m5 45 3 2 .

■■ Figure 5–21  Grid example

SOLUTION:
As in Example 5.5, we use the boundary conditions and express only the part of the stiff-
ness matrix associated with the degrees of freedom at node 2. The boundary conditions at 
nodes 1 and 3 are

	 f f f f5 5 5 5 5 5v vx z x z0 01 1 1 3 3 3 	 (5.4.40)

The global stiffness matrices for each element are obtained as follows:

Element 1
For element 1, we have the local x9 axis coincident with the global x axis. Therefore, we 
obtain

	 C
x x

L
S

z z

L
5

2
5 5 5

2
5

2
5

3

3
1

3 3

3
02 1

(1)
2 1

(1)
	

Other expressions needed to evaluate the stiffness matrix are

	

EI

L

EI

L

GJ

L
EI

L

5
3 3

5 3

5
3 3

5 3

5
3 3

5 3

5
3 3

5 3

2

2

2

2

12 12(210 10 kN m )(16.6 10 m )

(3 m)
1.55 10

6 6(210 10 )(16.6 10 )

(3)
2.32 10

(84 10 )(4.6 10 )

3
1.28 10

4 4(210 10 )(16.6 10 )

3
4.65 10

3

6 2 5 4

3
4

2

6 5

2
4

6 5
3

6 5
4

	 (5.4.41)

Considering the boundary condition Eqs. (5.4.40), using the results of Eqs. (5.4.41) in 
Eq. (5.4.17) for k G9[ ] and Eq. (5.4.18) for TG[ ], and then applying Eq. (5.4.19), we obtain 
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the reduced part of the global stiffness matrix associated only with the degrees of freedom 
at node 2 as

	 kG 5

2

2



















































[ ]
1 0 0
0 1 0
0 0 1

1.55 0 2.32

0 0.128 0

2.32 0 4.65

(10 )
1 0 0
0 1 0
0 0 1

(1) 4 	

Since the local axes associated with element 1 are parallel to the global axes, we observe 
that TG[ ] is merely the identity matrix; therefore, k kG G5 9[ ] [ ]. Performing the matrix mul-
tiplications, we obtain

	 kG 5

2

2



















[ ]

1.55 0 2.32

0 0.128 0

2.32 0 4.65

(10 )
kN

m
(1) 4 	 (5.4.42)

Element 2
For element 2, we assume the local x9 axis to be directed from node 2 to node 3 for the 
formulation of kG[ ]. Therefore,

	 C
x x

L
S

z z

L
5

2
5

2
5 5

2
5

2
5 2

0 0

3
0

0 3

3
13 2

(2)
3 2

(2)
	 (5.4.43)

Other expressions used in Eq. (5.4.17) are identical to those obtained in Eqs. (5.4.41) for 
element 1. Evaluating Eq. (5.4.19) for the global stiffness matrix, we obtain

	

















































kG 5

2

2[ ]
1 0 0
0 0 1
0 1 0

1.55 0 2.32
0 0.128 0
2.32 0 4.65

(10 )
1 0 0
0 0 1
0 1 0

(2) 4 	

where the reduced part of kG[ ] is now associated with node 2 for element 2. Again perform-
ing the matrix multiplications, we have

	

















kG 5[ ]
1.55 2.32 0
2.32 4.65 0
0 0 0.128

(10 )
kN

m
(2) 4 	 (5.4.44)

Superimposing the global stiffness matrices from Eqs. (5.4.42) and (5.4.44), we obtain the 
total global stiffness matrix (with boundary conditions applied) as

	

















KG 5

2

2

[ ]
3.10 2.32 2.32
2.32 4.78 0
2.32 0 4.78

(10 )
kN

m
4 	 (5.4.45)
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The grid matrix equation becomes

	 f

f

5 2

5

5

5

2

2

F

M

M

vy

x

z

x

z

22

0

0

3.10 2.32 2.32
2.32 4.78 0
2.32 0 4.78

(10 )
2

2

2

2

2

2

4

















































	 (5.4.46)

Solving for the displacement and the rotations in Eq. (5.4.46), we obtain

	 f

f

5 2 3

5 3

5 2 3

2

2

2

v

x

z

0.259 10 m

0.126 10 rad

0.126 10 rad

2
2

2
2

2
2

	 (5.4.47)

We determine the local element forces by applying the local equation f k T dG G{ } [ ][ ]{ }′9 5  
for each element as follows:

Element 1
Using Eq. (5.4.17) for kG[ ]′ , Eq. (5.4.18) for TG[ ], and Eqs. (5.4.47), we obtain

	





















































T dG 5 2 3

3

2 3

2

2

2

[ ]{ }

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0
0
0

0.259 10

0.126 10

0.126 10

2

2

2

	

Multiplying the matrices, we have

	 5
2 3

3

2 3

2

2

2

T dG[ ]{ }

0
0
0

0.259 10

0.126 10

0.126 10

2

2

2





























	 (5.4.48)

Using Eqs. (5.4.17), (5.4.41), and (5.4.48), we obtain the local element forces as

	



















































































9

9

9

9

9

9

5

2

2

2

2 2 3

3

2 3

2

2

2

f

m

m

f

m

m

y

x

z

y

x

z

(10 )

1.55 0 2.32 1.55 0 2.32

0.128 0 0 0.128 0

4.65 2.32 0 2.33
1.55 0 2.32

0.128 0
Symmetry 4.65

0
0
0

0.259 10

0.126 10

0.126 10

1

1

1

2

2

2

4
2

2

2

	 (5.4.49)
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Multiplying the matrices in Eq. (5.4.49), we obtain

	
f m m

f m m

y x z

y x z

11.0 kN 1.50 kN m 31.0 kN m

11.0 kN 1.50 kN m 1.50 kN m

1 1 1

2 2 2

9 9 9

9 9 9

5 5 2 ? 5 ?

5 2 5 ? 5 ?
	 (5.4.50)

Element 2
We can obtain the local element forces for element 2 in a similar manner. Because the 
procedure is the same as that used to obtain the element 1 local forces, we will not show 
the details but will only list the final results:

	
f m m

f m m

y x z

y x z

11.0 kN 1.50 kN m 1.50 kN m

11.0 kN 1.50 kN m 31.0 kN m

2 2 2

3 3 3

9 9 9

9 9 9

5 2 5 ? 5 2 ?

5 5 2 ? 5 2 ?
	 (5.4.51)

Free-body diagrams showing the local element forces are shown in Figure 5–22.

■■ Figure 5–22  Free-body diagram of each element of Figure 5-21

′

′

′

′ ′

′

	 5.5 	 Beam Element Arbitrarily Oriented in Space
In this section, we develop the stiffness matrix for the beam element arbitrarily oriented 
in space, or three dimensions. This element can then be used to analyze frames in three-
dimensional space.

First we consider bending about two axes, as shown in Figure 5–23.
We establish the following sign convention for the axes. Now we choose positive x9 from 

node 1 to 2. Then y9 is the principal axis for which the moment of inertia is minimum, Iy. By 
the right-hand rule we establish z9, and the maximum moment of inertia is Iz .
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Bending in x z′′ ′′–  Plane
First consider bending in the x z9 9–  plane due to 9my. Then clockwise rotation f9y is in the 
same sense as before for single bending. The stiffness matrix due to bending in the x z9 9–  
plane is then

	 5

2 2 2

k
EI

L

L L L L

L L L

L L

L

y
y[ ]

12 6 12 6

4 6 2

12 6

Symmetry 4

4

2 2

3 2 3

2

3

′





















	 (5.5.1)

where Iy is the moment of inertia of the cross section about the principal axis y9, the weak axis; 
that is, ,I Iy z .

Bending in the yx ′ ′–  Plane
Now we consider bending in the x y9 9–  plane due to 9mz. Now positive rotation f9z is coun-
terclockwise instead of clockwise. Therefore, some signs change in the stiffness matrix for 
bending in the x z9 9–  plane. The resulting stiffness matrix is

	 5

2

2

2
k

EI

L

L L L L

L L L

L L

L

z
z[ ]

12 6 12 6

4 6 2

12 6

Symmetry 4

4

2 2

3 2 3

2

3

′





















	 (5.5.2)

Direct superposition of Eqs. (5.5.1) and (5.5.2) with the axial stiffness matrix Eq. (3.1.14) and 
the torsional stiffness matrix Eq. (5.4.14) yields the element stiffness matrix for the beam or 
frame element in three-dimensional space as

■■ Figure 5–23  Bending about two axes y ′ and z ′

′ ′
′ ′ ′ ¢

′′ ′

′
′ ′

′

′ ′

′ ′

′w

w

′v 1

′v2
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L
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L
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L
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L
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L
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L
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EI

L

EI
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x y z x y z

z z z z

y y y y

y y y y

z z z z

z z z z

y y y y

y y y y

z z z z

[ ]

0 0 0 0 0 0 0 0 0 0

0
12

0 0 0
6

0
12

0 0 0
6

0 0
12

0
6

0 0 0
12

0
6

0

0 0 0 0 0 0 0 0 0 0

0 0
6

0
4

0 0 0
6

0
2

0

0
6

0 0 0
4

0
6

0 0 0
2

0 0 0 0 0 0 0 0 0 0

0
12

0 0 0
6

0
12

0 0 0
6

0 0
12

0
6

0 0 0
12

0
6

0

0 0 0 0 0 0 0 0 0 0

0 0
6

0
2

0 0 0
6

0
4

0

0
6

0 0 0
2

0
6

0 0 0
4

1 1 1 1 1 1 2 2 2 2 2 2

3 2 3 2

3 2 3 2

2 2

2 2

3 2 3 2

3 2 3 2

2 2

2 2

=











































































	

(5.5.3)

The transformation from local to global axis system is accomplished as follows:

	 k T k TT 95[ ] [ ] [ ][ ]	 (5.5.4)

where k[ ]9  is given by Eq. (5.5.3) and T[ ] is given by

	





















T

l

l

l

l

5

3

3

3

3

[ ]

[ ]

[ ]

[ ]

[ ]

3 3

3 3

3 3

3 3

	 (5.5.5)

where

	



















C C C

C C C

C C C

xx yx zx

xy yy zy

xz yz zz

l 5

9 9 9

9 9 9

9 9 9

[ ] 	 (5.5.6)

Here Cyx ′ and Cxy′ are not necessarily equal. The direction cosines are shown in part in 
Figure 5–24.

Remember that direction cosines of the x9  axis member are

	 x xx yx zxi j k9 u u u5 1 19 9 9cos cos cos 	 (5.5.7)
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where

	

x x

L
l

y y

L
m

z z

L
n

xx

yx

zx

u

u

u

5
2

5

5
2

5

5
2

5

9

9

9

cos

cos

cos

2 1

2 1

2 1

	 (5.5.8)

The y9 axis is selected to be perpendicular to the x9  and z axes in such a way that the cross 
product of global z with x9  results in the y9  axis, as shown in Figure 5–25. Therefore,

	 z x y
D l m n

9 93 5 5
1

0 0 1

i j k

	 (5.5.9)

and
 	

( )2 2 1/2

y
m

D

l

D
D l m

i j9 5 2 1

5 1

	 (5.5.10)

■■ Figure 5–24  Direction cosines associated with the x axis

′

′

′

′

′

′y ′

■■ Figure 5–25  Illustration showing how local 9y  axis is determined

′ ′

′′
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The z9  axis will be determined by the orthogonality condition z x y9 9 95 3  as follows:

	 9 9 95 3 5

2

z x y
D

l m n

m l

1

0

i j k

	 (5.5.11)

or

	 z
ln

D

mn

D
Di j k9 5 2 2 1 	 (5.5.12)

Combining Eqs. (5.5.7), (5.5.10), and (5.5.12), the 33 3 transformation matrix becomes

	

























[ ] 03 3

l m n
m

D

l

D
ln

D

mn

D
D

l 5 2

2 2

3 	 (5.5.13)

This vector l[ ] rotates a vector from the local coordinate system into the global one. This is the 
l[ ] used in the [T] matrix. In summary, we have

	

m

D
l

D

ln

D
mn

D
D

xy

yy

zy

xz

yz

zz

cos

cos

cos 0

cos

cos

cos

u

u

u

u

u

u

5 2

5

5

5 2

5 2

5

9

9

9

9

9

9

	 (5.5.14)

Two exceptions arise when local and global axes have special orientations with respect to 
each other. If the local x9 axis coincides with the global z axis, then the member is parallel to 
the global z axis and the y9 axis becomes uncertain, as shown in Figure 5–26(a). In this case the 
local y9 axis is selected as the global y axis. Then, for the positive x9 axis in the same direction 
as the global z, l[ ] becomes

	

















[ ]
0 0 1
0 1 0
1 0 0

l 5

2

	 (5.5.15)

For the positive x9 axis opposite the global z [Figure 5–26(b)], l[ ] becomes

	

















[ ]
0 0 1
0 1 0
1 0 0

l 5

2

	 (5.5.16)
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EXAMPLE 5.7

Determine the direction cosines and the rotation matrix of the local x9, y9, z9 axes in reference 
to the global x, y, z axes for the beam element oriented in space with end nodal coordinates 
of 1 (0, 0, 0) and 2 (3, 4, 12), as shown in Figure 5–27.

■■ Figure 5–26  Special cases of transformation matrices

′

′

′

′′

x ′ x ′

x ′

■■ Figure 5–27  Beam element oriented in space

1 (0, 0, 0)

2 (3, 4, 12)

4

3
12

y

x

z

y ′

x ′z ′
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SOLUTION:
First we determine the length of the element as

	 3 4 12 132 2 2L 5 1 1 5 	

Now using Eq. (5.5.8), we obtain the direction cosines of the x9 axis as follows:

	

3 0

13

3

13
4 0

13

4

13
12 0

13

12

13

2 1

2 1

2 1

l
x x
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y y

L

n
z z

L

x

x

x

5
2

5
2

5

5
2

5
2

5

5
2

5
2

5

	 (5.5.17)

By Eq. (5.5.10) or (5.5.14), we obtain the direction cosines of the y9 axis as follows:

	 









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







( )

3

13

4

13

5

13
2 2 1/2

2 2 1/2

D l m5 1 5 1 5 	 (5.5.18)

Define the direction cosines of the y9 axis as ly, my, and ny, where
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5
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D

m
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D
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5 2 5 2

5 5

5

	 (5.5.19)

For the z9 axis, define the direction cosines as lz, mz, nz and again use Eq. (5.5.12) or (5.5.14) 
as follows:
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	 (5.5.20)

Now check that l m n1 1 5 12 2 2 .
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	 (5.5.21)
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By Eq. (5.5.13), the rotation matrix is

	 l 5 2

2 2

3[ ] 03 3
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13

12
13

4
5
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5
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13


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










	 (5.5.22)

Based on the resulting direction cosines from Eqs. (5.5.17), (5.5.19), and (5.5.20), the local 
axes are also shown in Figure 5–27.

EXAMPLE 5.8

Determine the displacements and rotations at the free node (node 1) and the element 
local forces and moments for the space frame shown in Figure 5–28. Also verify equilib-
rium at node 1. Let 5 200 GPaE , 5 60 GPaG , 5 3 220 10 m6 4J , 5 3 240 10 m6 4Iy , 

5 3 240 10 m6 4Iy , 5 3 2A 6.25 10 m3 2, and 5 2.5 mL  for all three beam elements.

■■ Figure 5–28  Space frame for analysis

Joint 1
Plan

4

3

2

x ′

x ′

x ′
I

x

y

z

L = 2.5 m

Mx = −100 kN-m

Fy = 200 kN

L =
 2.

5 m

L = 2.5 m 1

3

2

SOLUTION:
Use Eq. (5.5.4) to obtain the global stiffness matrix for each element. This requires us to first 
use Eq. (5.5.3) to obtain each local stiffness matrix, Eq. (5.5.5) to obtain the transformation 
matrix for each element, and Eqs. (5.5.6) and (5.5.14) to obtain the direction cosine matrix 
for each element.
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Element 1
We establish the local x9 axis to go from node 2 to node 1 as shown in Figure 5–28. There-
fore, using Eq. (5.5.8), we obtain the direction cosines of the x9 axis as follows:

	 1 0 0l m n5 5 5 	 (5.5.23)

Also, 	 ( ) 12 2 1/2D l m5 1 5 	

Using Eqs. (5.5.10) and (5.5.14), we obtain the direction cosines of the y9 axis as follows:

	 0
1

1 0l
m

D
m

D
ny y y5 2 5 5 5 5 	 (5.5.24)

Using Eqs. (5.5.12) and (5.5.14), we obtain the direction cosines of the z9 axis as follows:

	 0 0 1l
ln

D
m

mn

D
n Dz z z5 2 5 5 2 5 5 5 	 (5.5.25)

Using Eqs. (5.5.23) through (5.5.25) in Eq. (5.5.13), we have
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Using Eq. (5.5.3), we obtain the local stiffness matrix for element 1 as
u v w u v w
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(5.5.27)
Using Eq. (5.5.26) in Eq. (5.5.5), we obtain the transformation matrix from local to global 
axis system as

	 [ ]
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	 (5.5.28)
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Finally, using Eq. (5.5.4), we obtain the global stiffness matrix for element 1 as
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(5.5.29)
Element 2
We establish the local x9 axis from node 3 to node 1 as shown in Figure 5–28. We note that 
the local x9 axis coincides with the global z axis. Therefore, by Eq. (5.5.15), we obtain
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	 (5.5.30)

The local stiffness matrix is the same as the one in Eq. (5.5.27) as all properties are the 
same as for element 1. However, we must remember that the degrees of freedom are for 
node 3 and then node 1.

Using Eq. (5.5.30) in Eq. (5.5.5), we obtain the transformation matrix as follows:
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	 (5.5.31)

Finally, using Eq. (5.5.31) in Eq. (5.5.4), we obtain the global stiffness matrix for 
element 2 as
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(5.5.32)Element 3
We establish the local x9 axis from node 4 to node 1 for element 3 as shown in Figure 5–28. 
The direction cosines are now
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5 5
2 2

5 5
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0 ( 2.5)
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0 0

2.5
0	 (5.5.33)

Also, D 5 1.
Using Eq. (5.5.14), we obtain the rest of the direction cosines as
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and
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Using Eqs. (5.5.33) through (5.5.35), we obtain
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The transformation matrix for element 3 is then obtained by using Eq. (5.5.5) as:
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	 (5.5.37)
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The element 3 properties are identical to the element 1 properties; therefore, the local 
stiffness matrix is identical to the one in Eq. (5.5.27). We must remember that the degrees 
of freedom are now in the order node 4 and then node 1.

Using Eq. (5.5.37) in Eq. (5.5.4), we obtain the global stiffness matrix for element 3 as
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0 500 0 0 0 0 0 500 0 0 0 0
0 0 6.144 7.68 0 0 0 0 6.144 7.68 0 0
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(5.5.38)

Applying the boundary conditions that displacements in the x, y, and z directions are all zero 
at nodes 2, 3, and 4, and rotations about the x, y, and z axes are all zero at nodes 2, 3, and 4,  
we obtain the reduced global stiffness matrix. Also, the applied global force is directed in the 
negative y direction at node 1 and so expressed as F y 5 22001  kN, and the global moment 
about the x axis at node 1 is M x 5 21001  kN-m.

With these considerations, the final global equations are
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(5.5.39)

Finally, solving simultaneously for the displacements and rotations at node 1, we obtain
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	 (5.5.40)

We now determine the element local forces and moments using the equation 
f k T d9 5 9{ } [ ][ ]{ } for each element as previously done for plane frames and trusses. As we 

are dealing with space frame elements, these element local forces and moments are now 
the normal force, two shear forces, torsional moment, and two bending moments at each 
end of each element.
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Element 1
Using Eq. (5.5.27) for the local stiffness matrix, Eq. (5.5.28) for the transformation 
matrix, [T], and Eq. (5.5.40) for the displacements, we obtain the local element forces and 
moments as
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0.215 kN
1.822 kN-m
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(1) 	 (5.5.41)

Element 2
Using Eq. (5.5.27) for the local stiffness matrix, Eq. (5.5.28) for the transformation matrix, 
and Eq. (5.5.40) for the displacements, we obtain the local forces and moments as
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(2) 	 (5.5.42)

Element 3
Similarly, using Eqs. (5.5.27), (5.5.37), and (5.5.40), we obtain the local forces and 
moments as
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(3) 	 (5.5.43)

We can verify equilibrium of node 1 by considering the node 1 forces and moments from 
each element that transfer to the node. We use the results from Eqs. (5.5.41), (5.5.42), and 
(5.5.43) to establish the proper forces and moments transferred to node 1. (Note that based 
on Newton’s third law, the opposite forces and moments from each element are sent to 
node 1.) For instance, we observe from summing forces in the global y direction (shown in 
the diagram that follows)

	 1 1 2 51.299 kN 30.87 kN 167.85 kN 200 kN 0.019 (close to zero)	 (5.5.44)

In Eq. (5.5.44), 1.299 kN is from the element 1 local y9 force that is coincident with the 
global y direction; 30.87 kN is from the element 2 local y9 force that is coincident with the 
global y direction, while 167.85 kN is from the element 3 local x9 direction that is coincident 
with the global y direction. We observe these axes from Figure 5–28. Verification of the 
other equilibrium equations is left to your discretion.

An example using the frame element in three-dimensional space is shown in Figure 5–29. 
Figure 5–29 shows a bus frame subjected to a static roof-crush analysis. In this model, 599 
frame elements and 357 nodes were used. A total downward load of 100 kN was uniformly 
spread over the 56 nodes of the roof portion of the frame. Figure 5–30 shows the rear of the 
frame and the displaced view of the rear frame. Other frame models with additional loads 
simulating rollover and front-end collisions were studied in Reference [6].

Global y force equilibrium

167.85 kN

30.87 kN1.299 kN

200 kN

1
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■■ Figure 5–29  Finite element model of bus frame subjected to roof load [6]

■■ Figure 5–30  Displaced view of the frame of Figure 5–29 made of square section members
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	 5.6 	 Concept of Substructure Analysis
The problem of exceeding memory capacity on today’s personal computers has decreased sig-
nificantly for most applications. However, for those structures that are too large to be analyzed 
as a single system or treated as a whole—that is, the final stiffness matrix and equations for 
solution exceed the memory capacity of the computer—the concept of substructure analysis 
can be used. The procedure to overcome this problem is to separate the whole structure into 
smaller units called substructures. For example, the space frame of an airplane, as shown in 
Figure 5–31(a), may require thousands of nodes and elements to model and describe com-
pletely the response of the whole structure. If we separate the aircraft into substructures, such 
as parts of the fuselage or body, wing sections, and so on, as shown in Figure 5–31(b), then we 
can solve the problem more readily and on computers with limited memory.

The analysis of the airplane frame is performed by treating each substructure separately while 
ensuring force and displacement compatibility at the intersections where partitioning occurs.

To describe the procedure of substructuring, consider the rigid frame shown in Figure 5–32 
(even though this frame could be analyzed as a whole). First we define individual separate 
substructures. Normally, we make these substructures of similar size, and to reduce computa-
tions, we make as few cuts as possible. We then separate the frame into three parts, A, B, and C.

■■ Figure 5–32  (a) Rigid frame for substructure analysis and (b) substructure B

■■ Figure 5–31  Airplane frame showing substructuring. (a) Boeing 747 aircraft (shaded area 
indicates portion of the airframe analyzed by finite element method). (b) Substructures for 
finite element analysis of shaded region
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We now analyze a typical substructure B shown in Figure 5–32(b). This substructure 
includes the beams at the top (a-a), but the beams at the bottom (b-b) are included in substruc-
ture A, although the beams at top could be included in substructure C and the beams at the 
bottom could be included in substructure B.

The force/displacement equations for substructure B are partitioned with the interface 
displacements and forces separated from the interior ones as follows:
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	 (5.6.1)

where the superscript B denotes the substructure B, subscript i denotes the interface nodal 
forces and displacements, and subscript e denotes the interior nodal forces and displacements 
to be eliminated by static condensation. Using static condensation, Eq. (5.6.1) becomes
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B5 1 	 (5.6.2)
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We eliminate the interior displacements de{ } by solving Eq. (5.6.3) for de
B{ }, as follows:

	 5 22d K F K de
B

ee
B

e
B

ei
B

i
B{ } [ ] { } [ ]{ }1 [ ]	 (5.6.4)

Then we substitute Eq. (5.6.4) for de
B{ } into Eq. (5.6.2) to obtain
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We define
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Substituting Eq. (5.6.6) into (5.6.5), we obtain

	 2 5F F K di
B

i
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ii
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i
B{ } { }{ }   	 (5.6.7)

Similarly, we can write force/displacement equations for substructures A and C. These 
equations can be partitioned in a manner similar to Eq. (5.6.1) to obtain
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	 (5.6.8)

Eliminating de
A{ }, we obtain

	 { } 



{ } { }F F K di

A
i
A

ii
A

i
A2 5 	 (5.6.9)

Similarly, for substructure C, we have

	 2 5F F K di
C

i
C

ii
C

i
C{ } { }{ }   	 (5.6.10)
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The whole frame is now considered to be made of superelements A, B, and C connected at 
interface nodal points (each superelement being made up of a collection of individual smaller 
elements). Using compatibility, we have

	 5 5d d d di
A

i
B

i
B

i
Candtop bottom top bottom{ } { }{ } { } 	 (5.6.11)

That is, the interface displacements at the common locations where cuts were made must be 
the same.

The response of the whole structure can now be obtained by direct superposition of Eqs. 
(5.6.7), (5.6.9), and (5.6.10), where now the final equations are expressed in terms of the inter-
face displacements at the eight interface nodes only [Figure 5–32(b)] as

	 { }{ } [ ]{ }F F K di i
A

ii i2 5 	 (5.6.12)

The solution of Eq. (5.6.12) gives the displacements at the interface nodes. To obtain the 
displacements within each substructure, we use the force-displacement Eqs. (5.6.4) for de

B{ } 
with similar equations for substructures A and C. Example 5.9 illustrates the concept of sub-
structure analysis. In order to solve by hand, a relatively simple structure is used.

EXAMPLE 5.9

Solve for the displacement and rotation at node 3 for the beam in Figure 5–33 by using 
substructuring. Let E 5 200 GPa and I 5 3 240 10 m4 4.

SOLUTION:
To illustrate the substructuring concept, we divide the beam into two substructures, labeled 
1 and 2 in Figure 5–34. The 45 kN force has been assigned to node 3 of substructure 2, 
although it could have been assigned to either substructure or a fraction of it assigned to 
each substructure.

■■ Figure 5–33  Beam analyzed by substructuring

90 kN

3 m 3 m 3 m 3 m

45 kN

150 kN-m

■■ Figure 5–34  Beam of Figure 5–33 separated into substructures

90 kN 90 kN

150 kN-m
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The stiffness matrix for each beam element is given by Eq. (4.1.14) as
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(5.6.13)
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For substructure 1, we add the stiffness matrices of elements 1 and 2 together. The equations are
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(5.6.15)

where the boundary conditions v f5 5 01 1  were used to reduce the equations.
Rewriting Eq. (5.6.15) with the interface displacements first allows us to use Eq. (5.6.6) 

to condense out, or eliminate, the interior degrees of freedom, v2 and f2. These reordered 
equations are
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	 (5.6.16)

Using Eq. (5.6.6), we obtain equations for the interface degrees of freedom as
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(5.6.17)
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Simplifying Eq. (5.6.17), we obtain
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	 (5.6.18)

For substructure 2, we add the stiffness matrices of elements 3 and 4 together. The 
equations are
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	 (5.6.19)

where boundary conditions v f5 5 05 5  were used to reduce the equations.
Using static condensation, Eq. (5.6.6), we obtain equations with only the interface 

displacements v3 and f3. These equations are
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(5.6.20)

Simplifying Eq. (5.6.20), we obtain
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	 (5.6.21)

Adding Eqs. (5.6.18) and (5.6.21), we obtain the final nodal equilibrium equations at the 
interface degrees of freedom as
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	 (5.6.22)

Solving Eq. (5.6.22) for the displacement and rotation at node 3, we obtain

	
f

5 2 5

5

0.01523 15.2 mm

0.000286 rad
3

3

v
	 (5.6.23)

We could now return to Eq. (5.6.15) or Eq. (5.6.16) to obtain v2 and f2 and to 
Eq. (5.6.19) to obtain v4 and f4.

We emphasize that this example is used as a simple illustration of substructuring and is 
not typical of the size of problems where substructuring is normally performed. Generally, 
substructuring is used when the number of degrees of freedom is very large, as might occur, 
for instance, for very large structures such as the airframe in Figure 5–31.
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SUMMARY EQUATIONS

Stiffness matrix for rigid plane frame beam element:
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(5.1.11)

Equations for plane frame with inclined support at node 3:
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	 (5.3.3)

where
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and
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Stiffness matrix for torsion bar element:
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See Table 5–1 for torsional constants for various cross-sectional shapes:

	 ∑ 1
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Stiffness matrix for grid element:
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Transformation matrix for grid element:
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	 (5.4.18)

Global stiffness matrix for grid element:

	 [kG] 5 [TG]T [k'G] [TG]	 (5.4.19)
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Stiffness matrix for beam or frame element in three-dimensional space:
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(5.5.3)

Global stiffness matrix for the beam or frame element in three-dimensional space:
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and
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PROBLEMS

Solve all problems using the finite element stiffness method.

	 5.1		  For the rigid frame shown in Figure P5–1, determine (1) the displacement compo-
nents and the rotation at node 2, (2) the support reactions, and (3) the forces in each 
element. Then check equilibrium at node 2. Let E 5 210 GPa, A 5 3 26.25 10 m3 2,  
and I 5 3 21.95 10 m4 4 for both elements.

■■ Figure P5–1

40 kN

12 m

9 m9 m

■■ Figure P5–2

20 kN

6 m

6 m

	 5.2		  For the rigid frame shown in Figure P5–2, determine (1) the nodal displacement 
components and rotations, (2) the support reactions, and (3) the forces in each 
element. Let E 5 210 GPa, A 5 3 26.25 10 m3 2, and I 5 3 27.8 10 m5 4 for all 
elements.

	 5.3		  For the rigid stairway frame shown in Figure P5–3, determine (1) the displacements 
at node 2, (2) the support reactions, and (3) the local nodal forces acting on each ele-
ment. Draw the bending moment diagram for the whole frame. Remember that the 
angle between elements 1 and 2 is preserved as deformation takes place; similarly 
for the angle between elements 2 and 3. Furthermore, owing to symmetry, u u5 22 3,  
v v52 3, and f f5 22 3. What size A36 steel channel section would be needed to 
keep the allowable bending stress less than two-thirds of the yield stress? (For A36 
steel, the yield stress is 240 MPa.)
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	 5.4		  For the rigid frame shown in Figure P5–4, determine (1) the nodal displacements and 
rotation at node 4, (2) the reactions, and (3) the forces in each element. Then check 
equilibrium at node 4. Finally, draw the shear force and bending moment diagrams 
for each element. Let E 5 210 GPa, A 5 3 25 10 m3 2, and I 5 3 23 10 m4 4 for all 
elements.

8 kN

2 m

8 kN

2 m

2.5 m

■■ Figure P5–3

80 kN

7.5 m

6 m 6 m 9 m

12 m

7.5 m

■■ Figure P5–4

	5.5–5.15		 For the rigid frames shown in Figures P5–5 through P5–15, determine the displace-
ments and rotations of the nodes, the element forces, and the reactions. The values 
of E, A, and I to be used are listed next to each figure.
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160 kN

160 kN

4.5 m

E 5 210 GPa
A 5 6 31023 m2

I  5 8 31025 m4
9 m

3 m

3 m

80 kN

4.5 m

■■ Figure P5–5

160 kN

160 kN

80 kN

3.5 m 3.5 m

3 m 3 m

6 m

4.5 m

E 5 210 GPa
A 5 6 31023 m2

I  5 8 31025 m4

■■ Figure P5–6

■■ Figure P5–7
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■■ Figure P5–8

80 N/m

6 m

6 m

E 5 210 GPa
A 5 0.01 m2

I  5 1 31024 m4

■■ Figure P5–9

600

■■ Figure P5–10

■■ Figure P5–11

60
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■■ Figure P5–12

10

E 5 210 GPa
A 5 6 31023 m2

I  5 8 31025 m4

(for elements 1,
2, and 3)

E 5 210 GPa
A 5 4 31027 m4

I  5 1.25 31023 m2

20 kN
6 m

6 m

■■ Figure P5–13

■■ Figure P5–14

25 kN/m

4.5 m

3 m

E 5 210 GPa
A 5 6 31023 m2

I  5 8 31025 m4

30

■■ Figure P5–15
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	5.16–5.18		 Solve the structures in Figures P5–16 through P5–18 by using substructuring.

■■ Figure P5–16  (Substructure the truss at nodes 3 and 4)

L L

L

L  =  1 m

■■ Figure P5–17  (Substructure the beam at node 3)

40 kN

3 m 3 m 3 m 3 m

40 kN 40 kN

E 5 185 GPa
I  5 4 31024 m4

■■ Figure P5–18  (Substructure the frame at node 2)

80

Solve Problems 5.19 through 5.39 by using a computer program.

	 5.19		  For the rigid frame shown in Figure P5–19, determine (1) the nodal displacement 
components and (2) the support reactions. (3) Draw the shear force and bend-
ing moment diagrams. For all elements, let E 5 210 GPa, I 5 3 28 10 m5 4, and 
A 5 3 26 10 m3 2

	 5.20		  For the rigid frame shown in Figure P5–20, determine (1) the nodal displacement 
components and (2) the support reactions. (3) Draw the shear force and bending 
moment diagrams. Let E 5 240 GPa, I 5 3 28 10 m5 4, and A 5 3 26 10 m3 2 for 
all elements, except as noted in the figure.
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■■ Figure P5–19

18 kN-m

60 kN

5 m

2.5 m

3 m

1.5 m

40 kN

■■ Figure P5–20

I  5 4 31024 m4

4 kN-m

5 kN

10 kN

4.5 m

4.5 m

7.5 m

	 5.21		  For the slant-legged rigid frame shown in Figure P5–21, size the structure for min-
imum weight based on a maximum bending stress of 140 MPa in the horizontal 
beam elements and a maximum compressive stress (due to bending and direct axial 
load) of 105 MPa in the slant-legged elements. Use the same element size for the 
two slant-legged elements and the same element size for the two 3-m sections of the 
horizontal element. Assume A36 steel is used.

■■ Figure P5–21

15 kN

3 m 4 m

7.5 m

3.5 m

4.5
 m

3 m

60 kN 60 kN

	 5.22		  For the rigid building frame shown in Figure P5–22, determine the forces in 
each element and calculate the bending stresses. Assume all the vertical elements 
have A 5 3 26 10 m3 2 and I 5 3 24 10 m5 4 and all horizontal elements have 
A 5 3 29 10 m3 2 and I 5 3 26 10 m5 4 Let E 5 200 GPa  for all elements. Let 
c 5 125 mm for the vertical elements and c 5 150 mm for the horizontal elements, 
where c denotes the distance from the neutral axis to the top or bottom of the beam 
cross section, as used in the bending stress formula Mc Is 5 ( / ).

	5.23–5.38	 For the rigid frames or beams shown in Figures P5–23 through P5–38, deter-
mine the displacements and rotations at the nodes, the element forces, and the 
reactions.
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4 kN

8 kN

8 kN

3 m

3 m

3 m

9 m 9 m

■■ Figure P5–22

in.2

in.4 in.2
in.4

in.2

in.4

E 5 210 GPa
(for all members)

I  5 8 31025 m4

A 5 6 31023 m2

I  5 6 31025 m4

(for elements 3 and 4)

A 5 6 31023 m2

I  5 6 31025 m4

(for elements 1 and 2)

5 kN

7.5 m

4.5 m

For cross members:
I  5 4 31027 m4

A 5 12.5 3 1023 m2

4.5 m

4 kN-m

70 kN

A 5 7.5 3 1023 m2

I  5 12 31025 m4

A 5 7.5 3 1023 m2

■■ Figure P5–23

■■ Figure P5–24

in.2
in.4

E 5 210 GPa
I  5 8 31025 m4

A 5 9 31023 m2

7.5 m

4.5 m

4.5 m

4.5
kN
m

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems 311

■■ Figure P5–25  Two bicycle frame models (coordinates shown in inches)

■■ Figure P5–26

15 kN/m

2.5 m 2.5 m

3.5 m

3.5 m E 5 210 GPa
I1 5 1 31024 m4

I2  5 2 31024 m4

A1 5 9 31023 m2

A2 5 1.8 31022 m2
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■■ Figure P5–27

■■ Figure P5–28

200

400

■■ Figure P5–29

E 5 210 GPa
I  5 7 31024 m4

A 5 6 31023 m2
60 kN

9 m 4 m 2 m 2 m 9 m

60 kN
15 kN
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■■ Figure P5–30

E 5 210 GPa
I  5 8 31025 m4

A 5 7.5 31023 m2

100 kN

4.5 m 4.5 m

3 m

9 m

15 m

6 m

100 kN

■■ Figure P5–31

7 kN/m

3 m

4.5 m

E 5 210 GPa
I  5 4 31025 m4

A 5 5 31023 m2

■■ Figure P5–32
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■■ Figure P5–33

■■ Figure P5–34

■■ Figure P5–35
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■■ Figure P5–36

20

200

20

200

■■ Figure P5–37

■■ Figure P5–38

	 5.39		  Consider the plane structure shown in Figure P5–39. First assume the structure to 
be a plane frame with rigid joints, and analyze using a frame element. Then assume 
the structure to be pin-jointed and analyze as a plane truss, using a truss element. If 
the structure is actually a truss, is it appropriate to model it as a rigid frame?
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Figure P5–39

	 5.40		  For the two-story, two-bay rigid frame shown in Figure P5–40, determine (1) the 
nodal displacement components and (2) the shear force and bending moments in 
each member. Let 200 GPaE 5 , 2 10 m4 4I 5 3 2  for each horizontal member and 

1.5 10 m4 4I 5 3 2  for each vertical member.

■■ Figure P5–40

10 m

G

D

A

H

E

B

I

F

C

10 m

12 kN/m

12 kN/m 5 m

5 m

	 5.41		  For the two-story, three-bay rigid frame shown in Figure P5–41, determine (1) the 
nodal displacements and (2) the member end shear forces and bending moments. 
(3) Draw the shear force and bending moment diagrams for each member. Let 

200 GPaE 5 , 1.29 10 m4 4I 5 3 2  for the beams and 0.462 10 m4 4I 5 3 2  for the 
columns. The properties for I correspond to a W 610 1553  and a W 410 1143  
wide-flange section, respectively, in metric units.

			   How can you model the truss using the frame (or beam) element? In other words, what 
idealization could you make in your model to use the beam element to approximate 
a truss?
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	 5.42		  For the rigid frame shown in Figure P5–42, determine (1) the nodal displacements and 
rotations and (2) the member shear forces and bending moments. Let 200 GPaE 5 , 

0.795 10 m4 4I 5 3 2  for the horizontal members, and 0.316 10 m4 4I 5 3 2  for the 
vertical members. These I values correspond to a W 460 1583  and a W 410 853  
wide-flange section, respectively.

■■ Figure P5–41

8 m6 m

6 m

4 m

8 m

50 kN

25 kN
I

E

A B C D

F G H

J K L

■■ Figure P5–42

5 m

G

D

A

H

E

B

I

F

C

5 m

3 m

3 m

30 kN

60 kN

	 5.43		  For the rigid frame shown in Figure P5–43, determine (1) the nodal displacements 
and rotations and (2) the shear force and bending moments in each member. Let 
E 5 200 GPa, I 5 3 21 10 m3 4 for the horizontal members and I 5 3 24 10 m4 4 for 
the vertical members. The I values correspond to a 3W 24 104 and a W 16 773 .

■■ Figure P5–43

4.5 m

4.5 m

4.5 m

9 m 6 m 9 m

60 kN

60 kN
I

E

A B C D

F G H

J

M N

K

L

30 kN
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	 5.44		  A structure is fabricated by welding together three lengths of I-shaped mem-
bers as shown in Figure P5–44. The yield strength of the members is 250 MPa, 
E 5 200 GPa, and Poisson’s ratio is 0.3. The members all have cross-section prop-
erties corresponding to a 3W 460 52. That is, A 5 6640 mm2, depth of section is 
d 5 450 mm, Ix 5 3212 10 mm6 4 Sx 5 3944 10 mm3 3 Iy 5 36.4 10 mm6 4 and 
Sy 5 384 10 mm3 3. Determine whether a load of Q 5 40 kN downward is safe against 
general yielding of the material. The factor of safety against general yielding is to be 2.0. 
Also, determine the maximum vertical and horizontal deflections of the structure.

■■ Figure P5–44

2 m

Q

A

A
y

y

x x

2 m

2 m

Section A-A

+

	 5.45		  For the tapered beam shown in Figure P5–45, determine the maximum deflection using 
one, two, four, and eight elements. Calculate the moment of inertia at the midlength 
station for each element. Let E 5 210 GPa, I 5 3 24 10 m0

5 4, and L 5 2.5 m. Run 
cases where n 5 1, 3, and 7. Use a beam element. The analytical solution for deflection 
and slope at the free end for n 5 7 is given by Reference [7] as shown below:

	

49
(1 7 In 8 2.5)

1

17.5

49
(In 8 7)

1

9.95

( ) 1

1

3

0

3

0

1

2

0

2

0

0

v
PL

EI

PL

EI

PL

EI

PL

EI

I x I n
x

L

u

5 1 5

5 2 5

5 1





			   where n 5 arbitrary numerical factor and I 5 moment0  of inertia of section at x 5 0.

■■ Figure P5–45  Tapered cantilever beam

2 kN
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	 5.46		  Derive the stiffness matrix for the nonprismatic torsion bar shown in Figure P5–46. 
The radius of the shaft is given by

	 r r x L r r x5 1 5( ) , where is the radius at 0.0 0 0 	

■■ Figure P5–46

■■ Figure P5–47

T (kN-m/m)

■■ Figure P5–48

20 kN

3 m

3 
m

	 5.47		  Derive the total potential energy for the prismatic circular cross-section torsion bar 
shown in Figure P5–47. Also determine the equivalent nodal torques for the bar 
subjected to uniform torque per unit length (kN-m/m). Let G be the shear modulus 
and J be the polar moment of inertia of the bar.

	 5.48		  For the grid shown in Figure P5–48, determine the nodal displacements and the 
local element forces. Let E 5 200 GPa , G 5 80 GPa, I 5 3 28 10 m5 4, and 
J 5 3 24 10 m5 4 for both elements.

	 5.49		  Resolve Problem 5–48 with an additional nodal moment of 100 kN-m applied about 
the x axis at node 2.

	5.50–5.51	 For the grids shown in Figures P5–50 and P5–51, determine the nodal displacements 
and the local element forces. Let 210 GPaE 5 , 84 GPaG 5 , 2 10 m4 4I 5 3 2 , 

1 10 m4 4J 5 3 2 , and 1 10 m2 2A 5 3 2 .
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	5.52–5.57	 Solve the grid structures shown in Figures P5–52 through P5–57 using a computer 
program. For grids P5–52—P5–54, let E 5 210 GPa, G 5 84 GPa, I 5 3 28 10 m5 4,  
and J 5 3 24 10 m5 4, except as noted in the figures. In Figure P5–54, let the cross 
elements have I 5 3 220 10 m6 4 and J 5 3 28 10 m6 4, with dimensions and loads 

■■ Figure P5–50

■■ Figure P5–51

30

8 kN

3 m

3 
m

3 
m

■■ Figure P5–52
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as in Figure P5–53. For grids P5–55 through P5–57, let 210 GPaE 5 , 84 GPaG 5 ,  
2 10 m4 4I 5 3 2 , 1 10 m4 4J 5 3 2 , and 1 10 m2 2A 5 3 2 .

■■ Figure P5–55

■■ Figure P5–53

4 kN

4 kN 4 kN 4 kN

6 @ 1.8 m 5 10.8 m

4 kN 4 kN 3 
m

4 kN 4 kN 4 kN 4 kN

■■ Figure P5–54

6 @ 1.8 m 5 10.8 m

3 
m

(all loads 4 kN each)
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	5.58–5.59	 Determine the displacements and reactions for the space frames shown in Figures 
P5–58 and P5–59. Let Ix 5 3 24 10 m5 4, Iy 5 3 28 10 m5 4, Iz 5 3 24 10 m4 4, 
E 5 200 GPa, G 5 80 GPa, and A 5 0.06 m2 for both frames.

■■ Figure P5–56

■■ Figure P5–58

Fy 5220 kN

mx 52120 kN-m

Fz 5160 kN

6 m

3 m
3 m

■■ Figure P5–57
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Use a computer program to assist in the design problems in Problems 5.60 
through 5.79.

	 5.60		  Design a jib crane as shown in Figure P5–60 that will support a downward load of 
24 kN. Choose a common structural steel shape for all members. Use allowable 
stresses of Sy0.66  (Sy is the yield strength of the material) in bending, and Sy0.60  
in  tension on gross areas. The maximum deflection should not exceed 1/360 of 
the length of the horizontal beam. Buckling should be checked using Euler’s or 
Johnson’s method as applicable.

■■ Figure P5–59

3 m

6 m

6 m

120 kN

3 m

6 m
Mz 5260 kN-m

M x

5250 kN-m

c 5 0.7 m d 5 1.4 m e 5 2 m

24 kNb 5 1.4m

a 5 2.5 m

■■ Figure P5–60
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	 5.61	 	 Design the support members AB and CD for the platform lift shown in Figure P5–61. 
Select a mild steel and choose suitable cross-sectional shapes with no more than a 
4 : 1 ratio of moments of inertia between the two principal directions of the cross 
section. You may choose two different cross sections to make up each arm to reduce 
weight. The actual structure has four support arms, but the loads shown are for one 
side of the platform with the two arms shown. The loads shown are under operating 
conditions. Use a factor of safety of 2 for human safety. In developing the finite 
element model, remove the platform and replace it with statically equivalent loads 
at the joints at B and D. Use truss elements or beam elements with low bending 
stiffness to model the arms from B to D, the intermediate connection E to F, and 
the hydraulic actuator. The allowable stresses are Sy0.60  in bending and Sy0.60  in 
tension. Check buckling using either Euler’s method or Johnson’s method as appro-
priate. Also check maximum deflections. Any deflection greater than 1/360 of the 
length of member AB is considered too large.

	 5.62		  A two-story building frame is to be designed as shown in Figure P5–62. The mem-
bers are all to be I-beams with rigid connections. We would like the floor joists 
beams to have a 0.38 m depth and the columns to have a 0.25 m width. The material 
is to be A36 structural steel. Two horizontal loads and vertical loads are shown. 
Select members such that the allowable bending in the beams is 170 MPa. Check 

■■ Figure P5–62

1.5 m

2.40 m

3 m

22.5 kN

45 kN

4.5 m3 m

3 m

2.2 kN/m 4.4 kN/m

■■ Figure P5–61

1.8 m

0.8 m

0.6 m

0.6 m

Dimensions are in meters

0.75 m

0.75 m

2.4 kN3.2 kN2.4 kN

0.75 m 0.75 m
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buckling in the columns using Euler’s or Johnson’s method as appropriate. The 
allowable deflection in the beams should not exceed 1/360 of each beam span. The 
overall sway of the frame should not exceed 12.5 mm.

	 5.63		  A pulpwood loader as shown in Figure P5–63 is to be designed to lift 10 kN. 
Select a steel and determine a suitable tubular cross section for the main upright 
member BF that has attachments for the hydraulic cylinder actuators AE and DG. 
Select a steel and determine a suitable box section for the horizontal load arm 
AC. The horizontal load arm may have two different cross sections AB and BC to 
reduce weight. The finite element model should use beam elements for all mem-
bers except the hydraulic cylinders, which should be truss elements. The pinned 
joint at B between the upright and the horizontal beam is best modeled with end 
release of the end node of the top element on the upright member. The allowable 
bending stress is Sy0.60  in members AB and BC. Member BF should be checked 
for buckling. The allowable deflection at C should be less than 1/360 of the length 
of BC. As a bonus, the client would like you to select the size of the hydraulic 
cylinders AE and DG.

■■ Figure P5–63

	 5.64		  A piston ring (with a split as shown in Figure P5–64) is to be expanded by a tool to 
facilitate its installation. The ring is sufficiently thin (5 mm depth) to justify using 
conventional straight-beam bending formulas. The ring requires a displacement of 
2.5 mm at its separation for installation. Determine the force required to produce this 
separation. In addition, determine the largest stress in the ring. Let E 5 125 GPa,  
G 5 50 GPa, cross-sectional area A 5 40 mm2, and principal moment of inertia 
I 5 3 220 10 m9 4. The inner radius is 46 mm, and the outer radius is 54 mm. Use 
models with 4, 6, 8, 10, and 20 elements in a symmetric model until convergence to 
the same results occurs. Plot the displacement versus the number of elements for a 
constant force F predicted by the conventional beam theory equation of Reference [8].

	
FR

EI

FR

EA

FR

GA
Rd

p p p
d5 1 1 5 5

3 6

5
where 50 mm and 2.5 mm

3
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	 5.65		  A small hydraulic floor crane as shown in Figure P5–65 carries a 20 kN load. Determine 
the size of the beam and column needed. Select either a standard box section or a wide-
flange section. Assume a rigid connection between the beam and column. The column 
is rigidly connected to the floor. The allowable bending stress in the beam is Sy0.60 . The 
allowable deflection is 1/360 of the beam length. Check the column for buckling.

■■ Figure P5–64

2.5 mm required due to F

■■ Figure P5–65

0.2 m
1.8 m

1.5 m
20 kN

	 5.66		  Determine the size of a solid round shaft such that the maximum angle of twist 
between C and B is 0.26 degrees per meter of length and the deflection of the beam 
is less than 0.0127 cm under the pulley C for the loads, as shown in Figure P5–66. 
Assume simple supports at bearings A and B. Assume the shaft is made from cold-
rolled AISI 1020 steel. (Recommended angles of twist in driven shafts can be found 
in Machinery’s Handbook, Oberg, E., et. al., 26th ed., Industrial Press, N.Y., 2000.)

■■ Figure P5–66

0.4 m 0.5 m

0.15 m

z

A B

T
D

C

y

x

5 kN

2 kN
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	 5.67		  The shaft in Figure P5–67 supports a winch load of 3.5 kN and a torsional moment of 
900 N-m at F (650 mm from the center of the bearing at A). In addition, a radial 
load of 2.25 kN and an axial load of 1.8 kN act at point E from a worm gearset. 
Assume the maximum stress in the shaft cannot be larger than that obtained from 
the maximum distortional energy theory with a factor of safety of 2.5. Also make 
sure the angle of twist is less than 1.5 deg between A and D. In your model, 
assume the bearing at A to be frozen when calculating the angle of twist. Bearings 
at B, C, and D can be assumed as simple supports. Determine the required shaft 
diameter.

■■ Figure P5–67

DCBA

E
F

Shaft

Winch
drum

0.25 m 0.25 m
0.25 m

	 5.68		  Design the gabled frame subjected to the external wind load shown in Figure P5–68 
(comparable to an 125 km/h wind speed) for an industrial building. Assume this 
is one of a typical frame spaced every 6 m. Select a wide flange section based 
on allowable bending stress of 140 MPa and an allowable compressive stress of 
70 MPa in any member. Neglect the possibility of buckling in any members. Use 
ASTM A36 steel.

■■ Figure P5–68

Wind

h

L = 12 m

(a) (b)

350 Pa15
0 P

a

4.8 m

3.3 m
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	 5.69		  Design the gabled frame shown for a balanced snow load shown in Figure P5–69 
(typical of the Midwest) for an apartment building. Select a wide flange section for 
the frame. Assume the allowable bending stress not to exceed 140 MPa. Use ASTM 
A36 steel.

6 m

4 m

3 m

1500 Pa

(4 m spacing of frames)

■■ Figure P5–69

	 5.70		  Design a gantry crane that must be able to lift 90 kN as it must lift compressors, 
motors, heat exchangers, and controls. This load should be placed at the center 
of one of the main 3.6-m-long beams as shown in Figure P5–70, by the hoisting 
device location. Note that this beam is on one side of the crane. Assume you are 
using ASTM A36 structural steel. The crane must be 3.6 m long, 2.4 m wide, 
and 4.5 m high. The beams should all be the same size, the columns all the same 
size, and the bracing all the same size. The corner bracing can be wide flange 
sections or some other common shape. You must verify that the structure is safe 
by checking the beam’s bending strength and allowable deflection, the column’s 
buckling strength, and the bracing’s buckling strength. Use a factor of safety 
against material yielding of the beams of 5. Verify that the beam deflection is less 
than L/360, where L is the span of the beam. Check Euler buckling of the long 
columns and the bracing. Use a factor of safety against buckling of 5. Assume 
the column-to-beam joints to be rigid while the bracing (a total of eight braces) 
is pinned to the column and beam at each of the four corners. Also assume the 
gantry crane is on rollers with one roller locked down to behave as a pin support 
as shown.

	 5.71		  Design the rigid highway bridge frame structure shown in Figure P5–71 for a 
moving truck load (shown below) simulating a truck moving across the bridge. 
Use the load shown and place it along the top girder at various locations. Use the 
allowable stresses in bending and compression and allowable deflection given in 
the Standard Specifications for Highway Bridges, American Association of State 
Highway and Transportation Officials (AASHTO), Washington, D.C. or use some 
other reasonable values.
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2.4 m

4.5 m

0.9 m

0.6 m

3.6 m

90 kN

■■ Figure P5–70

■■ Figure P5–71

A

B

3 m

F

C

D

4.5 m

E

7.5 m 15.0 m 7.5 m

4.25 m

0.2 W 0.8 W

35 kN 140 kN

H truck loading

H20 – 44

W = total weight of truck and load
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	 5.72		  For the tripod space frame shown in Figure P5–72, determine standard steel pipe 
sections such that the maximum bending stress must not exceed 150 MPa, the com-
pressive stress to prevent buckling must not exceed that given by the Euler buckling 
formula with a factor of safety of 2, and the maximum deflection will not exceed 
L/360 in any span, L. Assume the three bottom supports to be fixed. All coordinates 
are shown in units of millimeters.

■■ Figure P5–72

4.5 kN

4.5 kN

4.5 kN

(500,750,1500)

(750, 1000, 0)
(0, 0, 0)

(0, 250, 1500)

(−500, 750, 1500)

(−750, 1000, 0)

z

y

x

	 5.73		  The curved semi-circular frame shown in Figure P5–73 is supported by a pin on 
the left end and a roller on the right end and is subjected to a load P 5 4.5 kN at its 
apex. The frame has a radius to centerline cross section of R 3 m5 . Select a struc-
tural steel W shape from Appendix F such that the maximum stress does not exceed 
150 MPa. Perform a finite element analysis using 4, 8, and then 16 elements in your 
finite element model. Also, determine the maximum deflection for each model. It is 
suggested that the finite element answers for deflection be compared to the solution 
obtained by classical methods, such as using Castigliano’s theorem. The expression 
for deflection under the load is given by using Castigliano’s theorem as

	 d 5 1 1
PR

El

PR

AE

PR

A G
y

v

0.178 0.393 0.3933

	 		  where A is the cross sectional area of the W shape, Av is the shear area of the W 
shape (use depth of web times thickness of web for the shear area); 210 GPaE 5 , 
and 80 GPaG 5 .

Now change the radius of the frame to 0.5 m and repeat the problem. Run the 
finite element model with the shear area included in your computer program input 
and then without. Comment on the difference in results and compare to the predicted 
analytical deflection by using the equation above for yd .
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	P5.74		  For the water wheel frame shown in Figure P 5–74, determine a common cross 
section of an aluminum alloy, such that the von Mises stress is less than one-half 
of the yield strength of the material. The coordinates in centimeters are shown on 
the figure. A horizontal force of 2 kN to simulate water pressure is applied at the 
lowest node. The nodes at the center of the waterwheel are assumed to be fixed. (By 
Caleb Johnson)

■■ Figure P5–73

P

R

■■ Figure 5–74  Water wheel frame (By Caleb Johnson)

(−9.73, 17.48)

(−9.73, 9.73)

(−19.25, 5.48)

(−13.75, 0)

(−17.48, −9.73)

(−9.73, −9.73)

(−5.48, −19.23)

(9.73, −17.48)

(9.73, −9.73)

(0, 0)
Only rotation
allowed about
orgin

(0, −13.75)

(19.25, −5.48)

(13.75, 0)

(0, 13.75)

(17.48, 9.73)
(9.73, 9.73)

(5.48, 19.23)

Force of 2 kN applied
horizontally to simulate water �ow.
Total force would be 4 kN, but
it is split in half since water wheel
is symmetrical.
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	P5.75		  A basketball hoop frame is to be design as shown in Figure P 5–75. Determine a 
standard pipe size such that the most critical compression member does not buckle 
and most critical tensile member does not yield. Also verify that the largest deflec-
tion is less than 12.5 mm. Assume the bottom supports are fixed. Apply a concen-
trated load of 2500 N downward to the end of the rim as shown in Figure P 5–75. 
(Take your own measurements.)

■■ Figure P 5–75  Basketball hoop frame

2500 N

	P5.76		  A space frame for a paraglider is shown in Figure P5–76(a). The applied forces and 
boundary conditions are also shown on the figure (b). The nodal coordinates are also 
listed below to assist in building the model. Determine a suitable pipe section based 
on a maximum von Mises stress equal to one-half the yield strength of the material. 
Try an aluminum alloy. Also determine the largest displacement and its location on 
the frame. (By Matthew Groshek)

	P5.77		  A motorcycle frame is shown in Figure P 5–77. The loads and boundary conditions 
are shown in the figure. The nodal coordinates are listed below to assist in building 
the model. Determine a suitable cross section and material based on a maximum 
von Mises stress equal to one-third of the yield strength of the material you select. 
Also, what is the maximum displacement, and where is it located on the frame? 
(By Kevin Roholt)
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Coordinates (cm)
X Y

1 ( 9.125 0 )
2 ( 21.025 0 )
3 ( 37.30 77.025 )
4 ( 35.975 0 )
5 ( 44.475 14.525 )
6 ( 37.30 27.30 )
7 ( 35.075 31.25 )
8 ( 21.025 16.25 )
9 ( 21.025 31.25 )

10 ( 21.025 46.30 )
11 ( 21.025 56.25 )
12 ( 21.025 78.75 )
13 ( 21.025 91.25 )
14 ( 21.025 91.20 )
15 ( 21.025 78.75 )
16 ( 21.025 56.25 )
17 ( 37.30 77.025 )
18 ( 37.30 86.25 )
19 ( 46.525 86.25 )
20 ( 56.45 86.25 )
21 ( 65.875 68.15 )
22 ( 37.30 27.30 )
23 ( 44.475 14.525 )
24 ( 35.975 0 )
25 ( 21.025 0 )
26 ( 9.125 0 )
27 ( 21.025 16.25 )
28 ( 35.075 31.25 )
29 ( 21.025 31.25 )
30 ( 65.875 68.15 )
31 ( 37.30 56.25 )
32 ( 46.525 86.25 )
33 ( 37.30 86.25 )
34 ( 56.45 86.25 )
35 ( 37.30 56.25 )
36 ( 21.025 46.30

Z
0
0
0
0
0
0
0
0
0
0
0
0

−18.625
−26.55
−45.0
−45.0
−45.0
−45.0
−45.0
−45.0
−45.0
−45.0
−45.0
−45.0
−45.0
−45.0
−45.0
−45.0
−45.0

0
0
0
0
0

−45.0
−45.0 )

10

13

12

3
33

32 16

17

15
18

19

20

21
35

36

29

22

23

24

25

26

6

5

4

2

1

8
7

31

30

28
27

9

10

11

34

(a)

Parachute Load
(Human + Frame + Motor)
1375 N

Motor
250 N thrust

Human Load
1000 N

(b)

■■ Figure P5–76  (By Matthew Groshek)
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■■ Figure P 5–77  Motorcycle frame (By Kevin Roholt)

Coordinates (x,y,z):
Sketch plane: xy
Units: Metric (cm)

1 (0, 0, 10)
2 (0, 0, −10)
3 (38.75, 23.75, 10)
4 (38.75, 23.75, −10)
5 (58.125, 46.875, 0)
6 (86.25, 50.313, 0)
7 (103.75, 59.688, 0)
8 (109.38, 52.188, 0)
9 (103.13, 17.188, 0)

10 (96.875, −17.813, −10)
11 (96.875, −17.813, 10)
12 (58.125, −17.813, −10)
13 (58.125, −17.813, 0)
14 (58.125, −17.813, 10)
15 (38.75, −17.813, −10)
16 (38.75, −17.813, 10)

1

2
3

4
5 6 7

8

9

10

11

14

16

15

13
12

Constraint 2:
Angled �xed constraint

using a 1D spring
simulating where the

forks/handle bars would
bePossible Loading:

Nonuniform distributed load ranging from 0–6500–1000N 
(Left to Right). Load concentration increases where the

engine and the rider(s) would be placed.

Constraint 1:
Fixed in the x, y, and z but
free to rotating simulating
the frames ability to �ex

and rotate around the
rear wheel axel.

0.000 24.433 cm 48.865 73.295

Y

X
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	P5.78		  A go-kart frame is shown in Figure P 5.78. The nodal coordinates (in centimeter 
units) are also listed along with the fixed nodes located at three axle locations. 
Simulate a front end collision using 12.5 kN of force applied to four front end nodes. 
Select a suitable pipe cross section that just reaches yielding of the material. Try 
ASTM A 36 steel or maybe a chrome moly steel. (By Nathan Christian)

NODE BOUNDARY COND. CODES NODAL POINT COORDINATES

No. Tx Ty Tz Rx Ry Rz X Y Z

1 0 0 0 0 0 0 1.000E+01 0.000E+00 0.000E+00
2 0 0 0 0 0 0 0.000E+00 1.000E+01 0.000E+00
3 1 1 1 1 1 1 −1.000E+01 2.000E+02 0.000E+00
4 0 0 0 0 0 0 0.000E+00 3.000E+01 0.000E+00
5 0 0 0 0 0 0 7.500E+01 1.000E+01 0.000E+00
6 0 0 0 0 0 0 6.500E+01 0.000E+00 0.000E+00
7 0 0 0 0 0 0 8.500E+01 2.000E+01 0.000E+00
8 0 0 0 0 0 0 7.500E+01 3.000E+01 0.000E+00
9 0 0 0 0 0 0 0.000E+00 6.000E+01 0.000E+00
10 0 0 0 0 0 0 3.750E+01 6.000E+01 0.000E+00
11 0 0 0 0 0 0 7.500E+01 6.000E+01 0.000E+00
12 0 0 0 0 0 0 0.000E+00 1.400E+02 0.000E+00
13 0 0 0 0 0 0 0.000E+00 1.700E+02 0.000E+00
14 1 1 1 1 1 1 0.000E+00 2.000E+02 0.000E+00
15 0 0 0 0 0 0 1.000E+01 2.100E+02 0.000E+00
16 0 0 0 0 0 0 6.500E+01 2.100E+02 0.000E+00
17 1 1 1 1 1 1 7.500E+01 2.000E+02 0.000E+00
18 0 0 0 0 0 0 7.500E+01 1.700E+02 0.000E+00
19 0 0 0 0 0 0 7.500E+01 1.400E+02 0.000E+00
20 0 0 0 0 0 0 3.750E+01 1.400E+02 0.000E+00
21 0 0 0 0 0 0 1.000E+01 0.000E+00 1.500E+01
22 0 0 0 0 0 0 0.000E+00 1.000E+01 1.500E+01
23 0 0 0 0 0 0 −1.000E+01 2.000E+01 1.500E+01
24 0 0 0 0 0 0 0.000E+00 3.000E+01 1.500E+01
25 0 0 0 0 0 0 0.000E+00 9.000E+01 1.500E+01
26 0 0 0 0 0 0 0.000E+00 1.200E+02 2.250E+01
27 0 0 0 0 0 0 0.000E+00 2.000E+02 2.250E+01
28 0 0 0 0 0 0 1.000E+01 2.100E+02 2.250E+01
29 0 0 0 0 0 0 6.500E+01 2.250E+012.100E+02
30 0 0 0 0 0 0 7.500E+01 2.000E+02 2.250E+01
31 0 0 0 0 0 0 7.500E+01 1.200E+02 2.250E+01
32 0 0 0 0 0 0 7.500E+01 9.000E+01 1.500E+01
33 0 0 0 0 0 0 7.500E+01 3.000E+01 1.500E+01
34 0 0 0 0 0 0 8.500E+01 1.500E+01
35 0 0 0 0 0 0 7.500E+01 1.000E+01

2.000E+01
1.500E+01

36 0 0 0 0 0 0 6.500E+01 0.000E+00 1.500E+01
37 0 0 0 0 0 0 0.000E+00 9.000E+01

9.000E+01
0.000E+00

38 0 0 0 0 0 0 7.500E+01 0.000E+00
39 0 0 0 0 0 0 0.000E+00 1.200E+02 0.000E+00
40 0 0 0 0 0 0 7.500E+01 1.200E+02 0.000E+00
41 0 0 0 0 0 0 0.000E+00 5.000E+01 5.250E+01
42 0 0 0 0 0 0 0.000E+00 9.000E+01 9.000E+01
43 0 0 0 0 0 0 7.500E+01 9.000E+01 9.000E+01
44 0 0 0 0 0 0 7.500E+01 5.000E+01 5.250E+01
45 0 0 0 0 0 0 0.000E+00 1.700E+02
46 0 0 0 0 0 0 0.000E+00 1.700E+02
47 0 0 0 0 0 0 7.500E+01 1.700E+02
48 0 0 0 0 0 0 7.500E+01 1.700E+02
49 1 1 1 1 1 1 0.000E+00 2.500E+14
50 1 1 1 1 1 1 0.000E+00 0.000E+00
51 1 1 1 1 1 1 2.500E+14 2.475E+01
52 1 1 1 1 1 1 0.000E+00 −2.500E+14
53 1 1 1 1 1 1 0.000E+00 0.000E+00
54 1 1 1 1 1 1 −2.500E+14 0.000E+00

9.000E+01
2.250E+01
9.000E+01
2.250E+01
0.000E+00
2.500E+14
0.000E+00
0.000E+00
2.500E+14
0.000E+00

■■ Figure P5–78  Go-kart frame 
(By Nathan Christian)
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	 5.79		  A hunting stand is shown in Figure P 5–79. The coordinates of all nodes are also 
listed. Two 1.25 kN forces are applied to the top of the platform at the two center 
most nodes as shown. The frame is rated for 2.5kN of force. Determine a standard 
suitable square tube of steel or aluminum based on a factor of safety of 2 against 
yielding of the material. (By Sam Hanson)

■■ Figure P5–79  Hunting stand frame (By Sam Hanson)
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29
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30
34
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35

36
32

13
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31

33

6

17 16

27 25 23 14
4 3 2 1

1.25 kN (Typ)

Nodes NODE NODAL POINT COORDINATES (cm)
No. X Y Z

1 0.000E+00
2 3.000E+01
3 6.000E+01
4 9.000E+01
5 1.200E+02
6 1.200E+02
7 1.200E+02
8 1.200E+02
9 1.200E+02

10
11
12 0.000E+00

0.000E+00

0.000E+00
0.000E+00

13
14 0.000E+00
15 0.000E+00

0.000E+0016
17 3.000. 00E+01
18 6.000. 00E+01
19 9.000. 00E+01
20 1.200. 00E+02
21 1.20000E+02
22 1.20000E+02
23 3.00000E+01
24 3.00000E+01
25 6.00000E+01
26 6.00000E+01
27 9.00000E+01
28 9.00000E+01
29 0.000E+00
30 0.000E+00
31 0.000E+00
32 0.000E+00
33 1.20000E+02
34 1.20000E+02
35 1.20000E+02
36 1.20000E+02

0.000E+00
0.000E+00
0.000E+00
0.000E+01
0.000E+00

−1.000E+02
−2.000E+02
−2.800E+02
−3.000E+02
−1.000E+02
−2.000E+02
−2.800E+02
−3.000E+02

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

−1.000E+02
−2.000E+02
−2.800E+02
−3.000E+02
−1.000E+02
−2.000E+02
−2.800E+02
−3.000E+02

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

−4.000E+01
−8.000E+01

−1.200E+02
−1.200E+02
−1.200E+02
−1.200E+02
−1.200E+02

−8.000E+01

−4.000E+01
−4.000E+01

−8.000E+01
−4.000E+01
−8.000E+01
−4.000E+01
−8.000E+01

−1.200E+02
−1.200E+02
−1.200E+02
−1.200E+02

−1.200E+02
−1.200E+02
−1.200E+02
−1.200E+02
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Development of the Plane 
Stress and Plane Strain 
Stiffness Equations

CHAPTER OBJECTIVES

At the conclusion of this chapter, you will be able to:

■	 Review basic concepts of plane stress and plane strain.

■	 Derive the constant-strain triangular (CST) element stiffness matrix and equations.

■	 Demonstrate how to determine the stiffness matrix and stresses for a constant 
strain element.

■	 Describe how to treat body and surface forces for two-dimensional elements.

■	 Evaluate the explicit stiffness matrix for the constant-strain triangle element.

■	 Perform a detailed finite element solution of a plane stress problem.

■	 Derive the bilinear four-noded rectangular (Q4) element stiffness matrix.

■	 Compare the CST and Q4 model results for a beam bending problem and describe 
some of the CST and Q4 element defects.

Introduction
In Chapters 2 through 5, we considered only line elements. Two or more line elements are 
connected only at common nodes, forming framed or articulated structures such as trusses, 
frames, and grids. Line elements have geometric properties such as cross-sectional area and 
moment of inertia associated with their cross sections. However, only one local coordinate x 
along the length of the element is required to describe a position along the element (hence, they 
are called line elements or one-dimensional elements). Nodal compatibility is then enforced 
during the formulation of the nodal equilibrium equations for a line element.

This chapter considers the two-dimensional finite element. Two-dimensional (planar) 
elements are defined by three or more nodes in a two-dimensional plane (that is, x – y). The 
elements are connected at common nodes and/or along common edges to form continuous 
structures such as those shown in Figures 1–3, 1–4, 1–6, 6–2a, and 6–6(b). Nodal displacement 
compatibility is then enforced during the formulation of the nodal equilibrium equations for 
two-dimensional elements. If proper displacement functions are chosen, compatibility along 
common edges is also obtained.

The two-dimensional element is extremely important for (1) plane stress analysis, which 
includes problems such as plates with holes, fillets, or other changes in geometry that are 
loaded in their plane resulting in local stress concentrations, as illustrated in Figure 6–1; and (2) 

C H A P T E R

6
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6  |  Development of the Plane Stress and Plane Strain Stiffness Equations338

plane strain analysis, which includes problems such as a long underground box culvert sub-
jected to a uniform load acting constantly over its length, as illustrated in Figure 1–3, a long, 
cylindrical control rod subjected to a load that remains constant over the rod length (or depth), 
as illustrated in Figure 1–4, and dams and pipes subjected to loads that remain constant over 
their lengths, as shown in Figure 6–2.

We begin this chapter with the development of the stiffness matrix for a basic two-
dimensional or plane finite element, called the constant-strain triangular element. We consider 
the constant-strain triangle (CST) stiffness matrix because its derivation is the simplest among 
the available two-dimensional elements. The element is called a CST because it has a constant 
strain throughout it.

We will derive the CST stiffness matrix by using the principle of minimum potential 
energy because the energy formulation is the most feasible for the development of the equations 
for both two- and three-dimensional finite elements.

We will then present a simple, thin-plate plane stress example problem to illustrate the 
assemblage of the plane element stiffness matrices using the direct stiffness method as pre-
sented in Chapter 2. We will present the total solution, including the stresses within the plate.

Finally, we will develop the stiffness matrix for the simple four-noded rectangular (Q4) 
element and compare the finite element solution to a beam bending problem modeled using 
the CST and Q4 elements.

	 6.1 	 Basic Concepts of Plane Stress and Plane Strain
In this section, we will describe the concepts of plane stress and plane strain. These concepts 
are important because the developments in this chapter are directly applicable only to systems 
assumed to behave in a plane stress or plane strain manner. Therefore, we will now describe 
these concepts in detail.

Plane Stress
Plane stress is defined to be a state of stress in which the normal stress and the shear stresses 
directed perpendicular to the plane are assumed to be zero. For instance, in Figures 6–1(a) 
and 6–1(b), the plates in the x – y plane shown subjected to surface tractions T (pressure acting 
on the surface edge or face of a member in units of force/area) in the plane are under a state 
of plane stress; that is, the normal stress zs  and the shear stresses xzτ  and yzτ  are assumed to 
be zero. Generally, members that are thin (those with a small z dimension compared to the 
in-plane x and y dimensions) and whose loads act only in the x – y plane can be considered to 
be under plane stress.

Plane Strain
Plane strain is defined to be a state of strain in which the strain normal to the x – y plane z«  
and the shear strains xzg  and yzgg  are assumed to be zero. The assumptions of plane strain are 
realistic for long bodies (say, in the z direction) with constant cross-sectional area subjected to 
loads that act only in the x and/or y directions and do not vary in the z direction. Some plane 
strain examples are shown in Figure 6–2 [and in Figures 1–4 (a long underground box culvert) 
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and 1–4 (a hydraulic cylinder rod end)]. In these examples, only a unit thickness (1 mm or 1 m)  
of the structure is considered because each unit thickness behaves identically (except near 
the ends). The finite element models of the structures in Figure 6–2 consist of appropriately 
discretized cross sections in the x – y plane with the loads acting over unit thicknesses in the 
x and/or y directions only.

Two-Dimensional State of Stress and Strain
The concept of a two-dimensional state of stress and strain and the stress/strain relationships 
for plane stress and plane strain are necessary to understand fully the development and appli-
cability of the stiffness matrix for the plane stress/plane strain triangular element. Therefore, 
we briefly outline the essential concepts of two-dimensional stress and strain (see References 
[1] and [2] and Appendix C for more details on this subject).

First, we illustrate the two-dimensional state of stress using Figure 6–3. The infinitesimal 
element with sides dx and dy has normal stresses xs  and ys  acting in the x and y directions 
(here on the vertical and horizontal faces), respectively. The shear stress xyτ  acts on the x edge 
(vertical face) in the y direction. The shear stress yxτ  acts on the y edge (horizontal face) in the 
x direction. Moment equilibrium of the element results in xyτ  being equal in magnitude to yxτ .  
See Appendix C.1 for proof of this equality. Hence, three independent stresses exist and are 
represented by the vector column matrix

■■ Figure 6–1  Plane stress problems: (a) plate with hole; (b) plate with fillet

■■ Figure 6–2  Plane strain problems: (a) dam subjected to horizontal loading (See the  
full-color insert for a color version of this figure.); (b) pipe subjected to a vertical load

(b)(a)
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The element equilibrium equations are derived in Appendix C.1.
The stresses given by Eq. (6.1.1) will be expressed in terms of the nodal displacement 

degrees of freedom. Hence, once the nodal displacements are determined, these stresses can 
be evaluated directly.

Recall from strength of materials [2] that the principal stresses, which are the maximum 
and minimum normal stresses in the two-dimensional plane, can be obtained from the follow-
ing expressions:
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Also, the principal angle pu , which defines the normal whose direction is perpendicular to the 
plane on which the maximum or minimum principal stress acts, is defined by

	 tan 2
2

u
s s

5
2

p
xy

x y

τ
	 (6.1.3)

Figure 6–4 shows the principal stresses s1 and s2 and the angle pu . Recall (as Figure 6–4 
indicates) that the shear stress is zero on the planes having principal (maximum and minimum) 
normal stresses.

In Figure 6–5, we show an infinitesimal element used to represent the general two-
dimensional state of strain at some point in a structure. The element is shown to be displaced 
by amounts u and v in the x and y directions at point A, and to displace or extend an additional 
(incremental) amount � �u x dx( )  along line AB, and � �v y dy( )  along line AC in the x and y 
directions, respectively. Furthermore, observing lines AB and AC, we see that point B moves 
upward an amount � �v x dx( )  with respect to A, and point C moves to the right an amount 
� �u y dy( )  with respect to A.

■■ Figure 6–3  Two-dimensional state of stress
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From the general definitions of normal and shear strains and the use of Figure 6–5, we obtain

	
�
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�

�

�

u

x

v

y

u

y

v

x
x y xy« « g5 5 5 1 	 (6.1.4)

Appendix C.2 shows a detailed derivation of Eqs. (6.1.4). Hence, recall that the strains x«  and 
y«  are the changes in length per unit length of material fibers originally parallel to the x and 

y axes, respectively, when the element undergoes deformation. These strains are then called 
normal (or extensional or longitudinal) strains. The strain xyg  is the change in the original 
right angle made between dx and dy when the element undergoes deformation. The strain xyg  
is then called a shear strain.

The strains given by Eqs. (6.1.4) are generally represented by the vector column matrix
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	 (6.1.5)

The relationships between strains and displacements referred to the x and y directions 
given by Eqs. (6.1.4) are sufficient for your understanding of subsequent material in this 
chapter.

■■ Figure 6–4  Principal stresses and their directions

■■ Figure 6–5  Displacements and rotations of lines of an element in the x – y plane
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We now present the stress/strain relationships for isotropic materials for both plane stress 
and plane strain. For plane stress, we assume the following stresses to be zero:

	 0s 5 5 5z xz yzτ τ 	 (6.1.6)

Applying Eq. (6.1.6) to the three-dimensional stress/strain relationship [see Appendix C,  
Eq. (C.3.10)], the shear strains xz yzg g5 5 0, but z« ? 0. For plane stress conditions, we 
then have

	 D{ } [ ]{ }s «5 	 (6.1.7)

where	
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is called the stress/strain matrix (or constitutive matrix), E is the modulus of elasticity, and n is 
Poisson’s ratio. In Eq. (6.1.7), s{ } and «{ } are defined by Eqs. (6.1.1) and (6.1.5), respectively.

For plane strain, we assume the following strains to be zero:

	 z xz yz 0« g g5 5 5 	 (6.1.9)

Applying Eq. (6.1.9) to the three-dimensional stress/strain relationship [Eq. (C.3.10)], the shear 
stresses 05 5xz yzτ τ , but zs ? 0. The stress/strain matrix then becomes
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	 (6.1.10)

The s{ } and «{ } matrices remain the same as for the plane stress case. The basic partial differ-
ential equations for plane stress, as derived in Reference [1], are
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	 (6.1.11)

	 6.2 	 Derivation of the Constant-Strain Triangular  
Element Stiffness Matrix and Equations

To illustrate the steps and introduce the basic equations necessary for the plane triangular 
element, consider the thin plate subjected to tensile surface traction loads TS in Figure 6–6(a).
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6.2  Derivation of the Constant-Strain Triangular Element Stiffness Matrix and Equations 343

Step 1 Select Element Type
To analyze the plate, we consider the basic triangular element in Figure 6–7 taken from the 
discretized plate, as shown in Figure 6–6(b). The discretized plate has been divided into tri-
angular elements, each with nodes such as i, j, and m. We use triangular elements because 
boundaries of irregularly shaped bodies can be closely approximated in this way, and because 
the expressions related to the triangular element are comparatively simple. This discretization 
is called a coarse-mesh generation if a few large elements are used. Each node has two degrees 
of freedom—an x and a y displacement. We will let ui and vi represent the node i displacement 
components in the x and y directions, respectively.

Here all formulations are based on this counterclockwise system of labeling of nodes, 
although a formulation based on a clockwise system of labeling could be used. Remember 
that a consistent labeling procedure for the whole body is necessary to avoid problems in the 
calculations such as negative element areas. Here x yi i( , ), x yj j( , ), and x ym m( , ) are the known 
nodal coordinates of nodes i, j, and m, respectively.

The nodal displacement matrix is given by
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■■ Figure 6–6(a)  Thin plate in tension ■■ Figure 6–6(b)  Discretized plate of  
Figure 6–6(a) using triangular elements

■■ Figure 6–7  Basic triangular element showing degrees of freedom
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Step 2 Select Displacement Functions
We select a linear displacement function for each element as

	
5 1 1

5 1 1

( , )

( , )
1 2 3

4 5 6

u x y a a x a y

v x y a a x a y
	 (6.2.2)

where u(x,y) and v(x,y) describe displacements at any interior point x yi i( , ) of the element.
The linear function ensures that compatibility will be satisfied. A linear function with 

specified endpoints has only one path through which to pass—that is, through the two points. 
Hence, the linear function ensures that the displacements along the edge and at the nodes shared 
by adjacent elements, such as edge i-j of the two elements shown in Figure 6–6(b), are equal. 
Using Eqs. (6.2.2), the general displacement function c{ }, which stores the functions u and v, 
can be expressed as
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To obtain the a s in Eqs. (6.2.2), we begin by substituting the coordinates of the nodal 
points into Eqs. (6.2.2) to yield
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We can solve for the a s beginning with the first three of Eqs. (6.2.4) expressed in matrix 
form as
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or, solving for the a s, we have

	 a x u{ } [ ] { }15 2 	 (6.2.6)
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where x[ ] is the 33 3 matrix on the right side of Eq. (6.2.5). The method of cofactors (Appen-
dix A) is one possible method for finding the inverse of x[ ]. Thus,

	



















x
A

i j m

i j m

i j m

[ ]
1

2
1

a a a

b b b

g g g

52 	 (6.2.7)

where	 A
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is the determinant of x[ ], which on evaluation is

	 A x y y x y y x y yi j m j m i m i j2 ( ) ( ) ( )5 2 1 2 1 2 	 (6.2.9)

Here A is the area of the triangle, and
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Having determined x 2[ ] 1, we can now express Eq. (6.2.6) in expanded matrix form as

	














































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b b b

g g g

5 	 (6.2.11)

Similarly, using the last three of Eqs. (6.2.4), we can obtain

	




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

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
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
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






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
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
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a
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a a a

b b b

g g g

5 	 (6.2.12)

We will derive the general x displacement function u(x, y) of c{ } (v will follow analo-
gously) in terms of the coordinate variables x and y, known coordinate variables ia , ja  …, mg ,  
and unknown nodal displacements ui, uj, and um. Beginning with Eqs. (6.2.2) expressed in 
matrix form, we have

	

















u x y

a

a

a

{ } [1 ]
1

2

3

5 	 (6.2.13)

Substituting Eq. (6.2.11) into Eq. (6.2.13), we obtain
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

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
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
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[1 ]

a a a
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5 	 (6.2.14)

Expanding Eq. (6.2.14), we have

	













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

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1
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[1 ]u

A
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u u u
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	 (6.2.15)

Multiplying the two matrices in Eq. (6.2.15) and rearranging, we obtain

a b g a b g a b g5 1 1 1 1 1 1 1 1( , )
1

2
{( ) ( ) ( ) }u x y

A
x y u x y u x y ui i i i j j j j m m m m 	(6.2.16)

Similarly, replacing ui by vi, uj by v j, and um by vm in Eq. (6.2.16), we have the y displacement 
given by

v x y
A

x y v x y v x y vi i i i j j j j m m m m( , )
1

2
{( ) ( ) ( ) }a b g a b g a b g5 1 1 1 1 1 1 1 1 	(6.2.17)

To express Eqs. (6.2.16) and (6.2.17) for u and v in simpler form, we define

	

N
A

x y

N
A

x y

N
A

x y

i i i i

j j j j

m m m m

1

2
( )

1

2
( )

1

2
( )

a b g

a b g

a b g

5 1 1

5 1 1

5 1 1

	 (6.2.18)

Thus, using Eqs. (6.2.18), we can rewrite Eqs. (6.2.16) and (6.2.17) as

	
u x y N u N u N u

v x y N v N v N v
i i j j m m

i i j j m m

( , )

( , )

5 1 1

5 1 1
	 (6.2.19)

Expressing Eqs. (6.2.19) in matrix form, we obtain
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
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

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
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
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N u N u N u
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i i j j m m
{ }

( , )
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or	
N N N

N N N

u

v

u

v

u

v

i j m

i j m

i

i

j

j

m

m

c 5{ }
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

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




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













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








	 (6.2.20)
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Finally, expressing Eq. (6.2.20) in abbreviated matrix form, we have

	 N d{ } [ ]{ }c 5 	 (6.2.21)

where [N] is given by

	












N
N N N

N N N

i j m

i j m
[ ]

0 0 0

0 0 0
5 	 (6.2.22)

We have now expressed the general displacements as functions of {d}, in terms of the 
shape functions Ni , N j, and Nm. The shape functions represent the shape of c{ } when plotted 
over the surface of a typical element. For instance, Ni  represents the shape of the variable 
u when plotted over the surface of the element for ui 5 1 and all other degrees of freedom 
equal to zero; that is, u u v v vj m i j m5 5 5 5 5 0. In addition, ( , )u x yi i  must be equal to ui.  
Therefore, we must have Ni 5 1, N j 5 0, and Nm 5 0 at ( , )x yi i . Similarly, ( , ) 5u x y uj j j. 
Therefore, Ni 5 0, N j 5 1, and Nm 5 0 at ( , )x yj j . Figure 6–8 shows the shape variation of 
Ni  plotted over the surface of a typical element. Note that Ni  does not equal zero except along 
a line connecting and including nodes j and m.

Finally, N N Ni j m1 1 5 1 for all x and y locations on the surface of the element so that 
u and v will yield a constant value when rigid-body displacement occurs. The proof of this 
relationship follows that given for the bar element in Section 3.2 and is left as an exercise 
(Problem 6.1). The shape functions are also used to determine the body and surface forces at 
element nodes, as described in Section 6.3.

The requirement of completeness for the constant-strain triangle element used in a two-
dimensional plane stress element is illustrated in Figure 6–9. The element must be able to 
translate uniformly in either the x or y direction in the plane and to rotate without straining 
as shown in Figure 6–9(a). The reason that the element must be able to translate as a rigid 
body and to rotate stress-free is illustrated in the example of a cantilever beam modeled with 
plane stress elements as shown in Figure 6–9(b). By simple statics, the beam elements beyond 
the loading are stress free. Hence these elements must be free to translate and rotate without 
stretching or changing shape.

■■ Figure 6–8  Variation of Ni  over the x – y surface of a typical element
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Step 3 Define the Strain/Displacement and Stress/Strain Relationships
We express the element strains and stresses in terms of the unknown nodal displacements.

Element Strains
The strains associated with the two-dimensional element are given by
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

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
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


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
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
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


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


u

x
v

y

u

y

v

x

x

y

xy

{ }«

«

«

g

5 5

1

	 (6.2.23a)

Substituting displacement functions for u and v from Eqs. (6.2.2) into Eq. (6.2.23a), we have

	 a a a ax y xy2 6 3 5« « g5 5 5 1 	 (6.2.23b)

■■ Figure 6–9  Unstressed elements in a cantilever beam modeled with CST

Rigid-body translation
and rotation occurs for
elements to right of load

(a) Rigid-body modes of a plane stress element (from left to right, pure
      translation in x and y directions and pure rotation)

(b) Cantilever beam modeled using constant-strain triangle elements;
      elements to the right of the loading are stress-free
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We observe from Eq. (6.2.23b) that the strains in the element are constant. The element is then 
called a constant-strain triangle (CST). It should be also noted that based on the assumption 
of choosing displacement functions that are linear in x and y, all lines in the triangle element 
remain straight as the element deforms.

Using Eqs. (6.2.19) for the displacements, we have

	
�

�

�

�

u

x
u

x
N u N u N ux i i j j m m( ),5 5 1 1 	 (6.2.24)

or	 u N u N u N ux i x i j x j m x m, , , ,5 1 1 	 (6.2.25)

where the comma followed by a variable indicates differentiation with respect to that variable. 
We have used ui x 5 0,  because ( , ), 5u u x yi x i i  is a constant value; similarly, uj x 5 0,  and 
um x 5 0, .

Using Eqs. (6.2.18), we can evaluate the expressions for the derivatives of the shape func-
tions in Eq. (6.2.25) as follows:

	
�

�
N

A x
x y

A
i x i i i

i1

2
( )

2
, a b g

b
5 1 1 5 	 (6.2.26)

Similarly,	 N
A

N
A

j x
j

m x
m

2
and

2
, ,

b b
5 5 	 (6.2.27)

Therefore, using Eqs. (6.2.26) and (6.2.27) in Eq. (6.2.25), we have

	
u

x A
u u ui i j j m mb b b5 1 1

1

2
( )

�

�
	 (6.2.28)

Similarly, we can obtain
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1

2
( )

g g g

g b g b g b
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1 5 1 1 1 1 1

	 (6.2.29)

Using Eqs. (6.2.28) and (6.2.29) in Eq. (6.2.23a), we obtain
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5 	 (6.2.30)

or	  

















B B B

d

d

d

i j m

i

j

m

{ } [ ] [ ] [ ]

{ }

{ }

{ }

« 5 	 (6.2.31)
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where
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
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5 5 5 	(6.2.32)

Finally, in simplified matrix form, Eq. (6.2.31) can be written as

	 B d{ } [ ]{ }« 5 	 (6.2.33)

where	  B B B Bi j m[ ] [ ] [ ] [ ]5 	 (6.2.34)

The [B] matrix (sometimes called a gradient matrix) is independent of the x and y coordinates. 
It depends solely on the element nodal coordinates, as seen from Eqs. (6.2.32) and (6.2.10). 
The strains in Eq. (6.2.33) will be constant (consistent with the simple expressions previously 
given by Eq. (6.2.23b).

Stress/Strain Relationship
In general, the in-plane stress/strain relationship is given by
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

	 (6.2.35)

where [D] is given by Eq. (6.1.8) for plane stress problems and by Eq. (6.1.10) for plane strain 
problems. Using Eq. (6.2.33) in Eq. (6.2.35), we obtain the in-plane stresses in terms of the 
unknown nodal degrees of freedom as

	 D B d{ } [ ][ ]{ }s 5 	 (6.2.36)

where the stresses s{ } are also constant everywhere within the element.

Step 4 Derive the Element Stiffness Matrix and Equations
Using the principle of minimum potential energy1, we can generate the equations for a typical 
constant-strain triangular element. Keep in mind that for the basic plane stress element, the 
total potential energy is now a function of the nodal displacements ui, vi, uj, …, vm (that is, 
{d}) such that

	 u v u vp p i i j mπ π …5 ( , , , , )	 (6.2.37)

1For one with an understanding of variational calculus, it might be appropriate to mention that the standard finite element 
method displacement formulation, based on taking the variation of the total potential energy, inherently enforces the fact that 
internal equilibrium and stress boundary conditions are enforced in an average or integral sense rather than point by point. 
In the literature, the formal mathematical basis of the finite element method is called the weak form of the finite element 
formulation. This is in opposition to the strong form where all the governing stress differential equations plus the boundary 
conditions are stated and satisfied point by point.

Furthermore, the terminology of weak form versus strong form should not imply weakness of the weak form as both forms are 
valid statements of a problem, such as the plane stress one. In fact, it can be shown that the weak form leads to the strong form 
when infinitely many degrees of freedom are approached. For a more in-depth treatment of strong versus weak form, consult [3].
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Here the total potential energy is given by

	 Up b p sπ Ω Ω Ω5 1 1 1 	 (6.2.38)

where the strain energy is given by

	 ∫∫∫U dVT

V

1

2
{ } { }« s5 	 (6.2.39)

or, using Eq. (6.2.35), we have

	 ∫∫∫U D dVT

V

1

2
{ } [ ]{ }« «5 	 (6.2.40)

where we have used D DT 5[ ] [ ] in Eq. (6.2.40).
The potential energy of the body forces is given by

	 ∫∫∫Ω X dVb
T

V

{ } { }c5 2 	 (6.2.41)

where c{ } is again the general displacement function, and {X} is the body weight/unit volume 
or weight density matrix (typically, in units of kilonewtons per cubic meter).

The potential energy of concentrated loads is given by

	 Ω d Pp
T{ } { }5 2 	 (6.2.42)

where {d} represents the usual nodal displacements, and {P} now represents the concentrated 
external loads.

The potential energy of distributed loads (or surface tractions) moving through respective 
surface displacements is given by

	 ∫∫Ω T dSs S
T

S

S

{ } { }c5 2 	 (6.2.43)

where TS{ } represents the surface tractions (typically in units of kilonewtons per square meter), 
Sc{ } represents the field of surface displacements through which the surface tractions act, and 

S represents the surfaces over which the tractions TS{ } act. Similar to Eq. (6.2.21), we express 
Sc{ } as N dS Sc 5{ } [ ]{ }, where NS[ ] represents the shape function matrix evaluated along the 

surface where the surface traction acts.
Using Eq. (6.2.21) for c{ } and Eq. (6.2.33) for the strains in Eqs. (6.2.40) through (6.2.43), 

we have
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2
{ } [ ] [ ][ ]{ } { } [ ] { } { } { }
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d B D B d dV d N X dV d P

d N T dS

p
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V

T T

V

T

T
S

T
S

S

∫∫∫ ∫∫∫

∫∫

π
	 (6.2.44)
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The nodal displacements {d} are independent of the general x – y coordinates, so {d} can be 
taken out of the integrals of Eq. (6.2.44). Therefore,

	

d B D B dV d N X dV

d P N T dS

p
T T T
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T T
S
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π 5 2

2 2

1

2
{ } [ ] [ ][ ] { } {d} [ ] { }

{ } { } {d} [ ] { }
	 (6.2.45)

From Eqs. (6.2.41) through (6.2.43), we can see that the last three terms of Eq. (6.2.45) repre-
sent the total load system {f} on an element; that is,

	 ∫∫∫ ∫∫f N X dV P N T dST

V

S
T

S

S

{ } [ ] { } { } [ ] { }5 1 1 	 (6.2.46)

where the first, second, and third terms on the right side of Eq. (6.2.46) represent the body 
forces, the concentrated nodal forces, and the surface tractions, respectively. Using Eq. (6.2.46) 
in Eq. (6.2.45), we obtain

	 d B D B dV d d fp
T T T

V
∫∫∫π 5 2

1

2
{ } [ ] [ ][ ] { } { } { }	 (6.2.47)

Taking the first variation, or equivalently, as shown in Chapters 2 and 3, the partial derivative 
of pπ  with respect to the nodal displacements since dp pπ π5 ({ }) (as was previously done for 
the bar and beam elements in Chapters 3 and 4, respectively), we obtain
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� d
B D B dV d fp T

V
∫∫∫

π 











5 2 5
{ }

[ ] [ ][ ] { } { } 0	 (6.2.48)

Rewriting Eq. (6.2.48), we have

	 ∫∫∫ B D B dV d fT

V

[ ] [ ][ ] { } { }5 	 (6.2.49)

where the partial derivative with respect to matrix {d} was previously defined by Eq. (2.6.12). 
From Eq. (6.2.49) we can see that

	 ∫∫∫k B D B dVT

V

[ ] [ ] [ ][ ]5 	 (6.2.50)

For an element with constant thickness, t, Eq. (6.2.50) becomes

	 ∫∫k t B D B dx dyT

A

[ ] [ ] [ ][ ]5 	 (6.2.51)

where the integrand is not a function of x or y for the constant-strain triangular element and 
thus can be taken out of the integral to yield

	 k tA B D BT[ ] [ ] [ ][ ]5 	 (6.2.52)
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where A is given by Eq. (6.2.9), [B] is given by Eq. (6.2.34), and [D] is given by Eq. (6.1.8) or 
Eq. (6.1.10). We will assume elements of constant thickness. (This assumption is convergent 
to the actual situation as the element size is decreased.)

From Eq. (6.2.52) we see that [k] is a function of the nodal coordinates (because [B] and 
A are defined in terms of them) and of the mechanical properties E and v (of which [D] is a 
function). The expansion of Eq. (6.2.52) for an element is
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5 	 (6.2.53)

where the 32 2 submatrices are given by
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	 (6.2.54)

and so forth. In Eqs. (6.2.54), Bi[ ], Bj[ ], and Bm[ ] are defined by Eqs. (6.2.32). The [k] matrix 
is seen to be a 36 6 matrix (equal in order to the number of degrees of freedom per node, two, 
times the total number of nodes per element, three).

In general, Eq. (6.2.46) must be used to evaluate the surface and body forces. When Eq. 
(6.2.46) is used to evaluate the surface and body forces, these forces are called consistent loads 
because they are derived from the consistent (energy) approach. For higher-order elements, 
typically with quadratic or cubic displacement functions, Eq. (6.2.46) should be used. However, 
for the CST element, the body and surface forces can be lumped at the nodes with equivalent 
results (this is illustrated in Section 6.3) and added to any concentrated nodal forces to obtain 
the element force matrix. The element equations are then given by
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5 	 (6.2.55)

Finally, realizing that the strain energy U is the first term on the right side of Eq. (6.2.47) 
and using the expression for the stiffness matrix given by Eq. (6.2.50), we can again express 
the strain energy in the quadratic form { } [ ]{ }1

25U d k dT .

Step 5 �Assemble the Element Equations to Obtain the Global  
Equations and Introduce Boundary Conditions

We obtain the global structure stiffness matrix and equations by using the direct stiffness 
method as

	 [ ] [ ]( )

1

5
5

K k e

e

N

∑ 	 (6.2.56)
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and	 F K d{ } [ ]{ }5 	 (6.2.57)

where, in Eq. (6.2.56), all element stiffness matrices are defined in terms of the global x – y 
coordinate system, {d} is now the total structure displacement matrix, and

	 { } { }( )

1

5
5

F f e

e

N

∑ 	 (6.2.58)

is the column of equivalent global nodal loads obtained by lumping body forces and distributed 
loads at the proper nodes (as well as including concentrated nodal loads) or by consistently 
using Eq. (6.2.46). (Further details regarding the treatment of body forces and surface tractions 
will be given in Section 6.3.)

In the formulation of the element stiffness matrix Eq. (6.2.52), the matrix has been derived 
for a general orientation in global coordinates. Equation (6.2.52) then applies for all elements. 
All element matrices are expressed in the global-coordinate orientation. Therefore, no trans-
formation from local to global equations is necessary. However, for completeness, we will now 
describe the method to use if the local axes for the constant-strain triangular element are not 
parallel to the global axes for the whole structure.

If the local axes for the constant-strain triangular element are not parallel to the global 
axes for the whole structure, we must apply rotation-of-axes transformations similar to those 
introduced in Chapter 3 by Eq. (3.3.16) to the element stiffness matrix, as well as to the element 
nodal force and displacement matrices. We illustrate the transformation of axes for the triangu-
lar element shown in Figure 6–10, considering the element to have local axes 9 9x y–  not parallel 
to global axes x – y. Local nodal forces are shown in the figure. The transformation from local 
to global equations follows the procedure outlined in Section 3.4. We have the same general 
expressions, Eqs. (3.4.14), (3.4.16), and (3.4.22), to relate local to global displacements, forces, 
and stiffness matrices, respectively; that is,

	 d T d f T f k T k TT{ } [ ]{ } { } [ ]{ } [ ] [ ] [ ][ ]9 9 95 5 5 	 (6.2.59)

where Eq. (3.4.15) for the transformation matrix [T] used in Eqs. (6.2.59) must be expanded 
because two additional degrees of freedom are present in the constant-strain triangular element. 
Thus, Eq. (3.4.15) is expanded to

■■ Figure 6–10  Triangular element with local axes not parallel to global axes
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	 (6.2.60)

where C u5 cos , S u5 sin , and u  is shown in Figure 6–10.

Step 6 Solve for the Nodal Displacements
We determine the unknown global structure nodal displacements by solving the system of 
algebraic equations given by Eq. (6.2.57).

Step 7 Solve for the Element Forces (Stresses)
Having solved for the nodal displacements, we obtain the strains and stresses in the global 
x and y directions in the elements by using Eqs. (6.2.33) and (6.2.36). Finally, we deter-
mine the maximum and minimum in-plane principal stresses s1 and s2 by using the trans-
formation Eqs. (6.1.2), where these stresses are usually assumed to act at the centroid of 
the element. The angle that one of the principal stresses makes with the x axis is given by  
Eq. (6.1.3).

EXAMPLE 6.1

Evaluate the stiffness matrix for the element shown in Figure 6–11. The coordinates are 
shown in units of mm. Assume plane stress conditions. Let 5 210 GPaE , ν 5 0.25,  
and thickness 5 20 mmt . Assume the element nodal displacements have been determined 
to be u 5 0.01 , 5 0.05 mm1v , 5 0.025 mm2u , v 5 0.02 , u 5 0.03 , and 5 0.05 mm3v . 
Determine the element stresses.

■■ Figure 6–11  Plane stress element for stiffness matrix evaluation
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SOLUTION:
We use Eq. (6.2.52) to obtain the element stiffness matrix. To evaluate [k], we first use  
Eqs. (6.2.10) to obtain the β s and γ s as follows:

	

b g

b g

b g

5 2 5 2 5 2 5 2 5 2 5 2

5 2 5 2 2 5 5 2 5 2 5

5 2 5 2 2 5 2 5 2 5 2 5

0 20 20 0 40 40

20 ( 20) 40 0 0 0

20 0 20 40 0 40

y y x x

y y x x

y y x x

i j m i m j

j m i j i m

m i j m j i

	 (6.2.61)

Using Eqs. (6.2.32) and (6.2.34), we obtain matrix [B] as
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2
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[ ]
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2(8)
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4 2 0 4 4 2

B 	 (6.2.62)

where we have used 5 0.0008 m2A  in Eq. (6.2.62).
Using Eq. (6.1.8) for plane stress conditions,
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Substituting Eqs. (6.2.62) and (6.2.63) into Eq. (6.2.52), we obtain
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Performing the matrix triple product, we have

	



























5 3

2 2 2

2 2 2 2

2 2 2

2 2 2

2 2 2 2

2 2 2

[ ] 56 10

2.5 1.25 2 1.5 0.5 0.25

1.25 4.375 1 0.75 0.25 3.625

2 1 4 0 2 1

1.5 0.75 0 1.5 1.5 0.75

0.5 0.25 2 1.5 2.5 1.25

0.25 3.625 1 0.75 1.25 4.375

N

m
7k 	 (6.2.64)
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To evaluate the stresses, we use Eq. (6.2.36). Substituting Eqs. (6.2.62) and (6.2.63), 
along with the given nodal displacements, into Eq. (6.2.36), we obtain
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Performing the matrix triple product in Eq. (6.2.65), we have

	 τs s5 5 5 2140 MPa 35 MPa 105 MPax y xy 	 (6.2.66)

Finally, the principal stresses and principal angle are obtained by substituting the results 
from Eqs. (6.2.66) into Eqs. (6.1.2) and (6.1.3) as follows:
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	 6.3 	 Treatment of Body and Surface Forces

Body Forces
Using the first term on the right side of Eq. (6.2.46), we can evaluate the body forces at the 
nodes as

	 ∫∫∫f N X dVb
T

V

{ } [ ] { }5 	 (6.3.1)

where	



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X

Y
b

b
{ } 5 	 (6.3.2)
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and Xb and Yb are the weight densities in the x and y directions in units of force/unit volume, 
respectively. These forces may arise, for instance, because of actual body weight (gravitational 
forces), angular velocity (called centrifugal body forces, as described in Chapter 9), or inertial 
forces in dynamics.

In Eq. (6.3.1), [N] is a linear function of x and y; therefore, the integration must be carried 
out. Without lack of generality, the integration is simplified if the origin of the coordinates 
is chosen at the centroid of the element. For example, consider the element with coordinates 
shown in Figure 6–12. With the origin of the coordinate placed at the centroid of the element, 

we have, from the definition of the centroid, 05 5x dA y dA∫∫ ∫∫  and therefore,

	 0b g5 5x dA ydAi i∫∫ ∫∫ 	 (6.3.3)

and	
A

i j m
2

3
a a a5 5 5 	 (6.3.4)

Using Eqs. (6.3.2) through (6.3.4) in Eq. (6.3.1), the body force at node i is then represented by
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Similarly, considering the j and m node body forces, we obtain the same results as in  
Eq. (6.3.5). In matrix form, the element body forces are
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	 (6.3.6)

From the results of Eq. (6.3.6), we can conclude that the body forces are distributed to the nodes 
in three equal parts. The signs depend on the directions of Xb and Yb with respect to the positive 
x and y global coordinates. For the case of body weight only, because of the gravitational force 
associated with the y direction, we have only Y Xb b 5( 0).

■■ Figure 6–12  Element with centroidal coordinate axes
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Surface Forces
Using the third term on the right side of Eq. (6.2.46), we can evaluate the surface forces at the nodes as

	 ∫∫f N T dSs S
T

S

S

{ } [ ] { }5 	 (6.3.7)

We emphasize that the subscript S in NS[ ] in Eq. (6.3.7) means the shape functions evaluated 
along the surface where the surface traction is applied.

We will now illustrate the use of Eq. (6.3.7) by considering the example of a uniform 
stress p (say, in pounds per square inch) acting between nodes 1 and 3 on the edge of element 
1 in Figure 6–13(b). In Eq. (6.3.7), the surface traction now becomes
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	 (6.3.9)

As the surface traction p acts along the edge at x a5  and y y5  from y 5 0 to y L5 , we 
evaluate the shape functions at x a5  and y y5  and integrate over the surface from 0 to L in 
the y direction and from 0 to t in the z direction, as shown by Eq. (6.3.10).

Using Eqs. (6.3.8) and (6.3.9), we express Eq. (6.3.7) as
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	 (6.3.10)

■■ Figure 6–13  (a) Elements with uniform surface traction acting on one edge and  
(b) element 1 with uniform surface traction along edge 1-3
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Simplifying Eq. (6.3.10), we obtain
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Now, by Eqs. (6.2.18) (with i 5 1), we have

	 N
A

x y
1

2
( )1 1 1 1a b g5 1 1 	 (6.3.12)

For convenience, we choose the coordinate system for the element as shown in Figure 6–14. 
Using the definition Eqs. (6.2.10), we obtain

	 α x y y xi j m j m5 2 	

or, with i 5 1, j 5 2, and m 5 3,

	 1 2 3 2 3a 5 2x y y x 	 (6.3.13)

Substituting the coordinates into Eq. (6.3.13), we obtain

	 01a 5 	 (6.3.14)

Similarly, again using Eqs. (6.2.10), we obtain

	 a01 1b g5 5 	 (6.3.15)

Therefore, substituting Eqs. (6.3.14) and (6.3.15) into Eq. (6.3.12), we obtain

	 N
ay

A2
1 5 	 (6.3.16)

■■ Figure 6–14  Representative element subjected to edge surface traction p
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Similarly, using Eqs. (6.2.18), we can show that
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On substituting Eqs. (6.3.16) and (6.3.17) for N1, N2, and N3 into Eq. (6.3.11), evaluating N1,  
N2, and N3 at x a5  and y y5  (the coordinates corresponding to the location of the surface 
load p), and then integrating with respect to y, we obtain
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where the shape function N 5 02  between nodes 1 and 3, as should be the case according to 
the definitions of the shape functions. Simplifying Eq. (6.3.18), we finally obtain
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Figure 6–15 illustrates the results for the surface load equivalent nodal forces for both 
elements 1 and 2.

We can conclude that for a constant-strain triangle, a distributed load on an ele-
ment edge can be treated as concentrated loads acting at the nodes associated with the 
loaded edge by making the two kinds of load statically equivalent [which is equivalent to 

■■ Figure 6–15  Surface traction equivalent nodal forces
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applying Eq. (6.3.7)]. However, for higher-order elements such as the linear-strain triangle 
(discussed in Chapter 8), the load replacement should be made by using Eq. (6.3.7), which 
was derived by the principle of minimum potential energy. For higher-order elements, this 
load replacement by use of Eq. (6.3.7) is generally not equal to the apparent statically 
equivalent one; however, it is consistent in that this replacement results directly from the 
energy approach.

We now recognize the force matrix fs{ } defined by Eq. (6.3.7), and based on the principle 
of minimum potential energy, to be equivalent to that based on work equivalence, which we 
previously used in Chapter 4 when discussing distributed loads acting on beams.

	 6.4 	 Explicit Expression for the Constant-Strain  
Triangle Stiffness Matrix

Although the stiffness matrix is generally formulated internally in most computer programs 
by performing the matrix triple product indicated by Eq. (6.4.1), it is still a valuable learning 
experience to evaluate the stiffness matrix explicitly for the constant-strain triangular element. 
Hence, we will consider the plane strain case specifically in this development.

First, recall that the stiffness matrix is given by

	 k tA B D BT[ ] [ ] [ ][ ]5 	 (6.4.1)

where, for the plane strain case, [D] is given by Eq. (6.1.10) and [B] is given by Eq. (6.2.34). 
On substituting the matrices [D] and [B] into Eq. (6.4.1), we obtain
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ν ν
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



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

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








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
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




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
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b g
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b b b

g g g

g b g b g b

5
1 2

3

2

2

2

k
tE

A

i i

i i

j j

j j

m m

m m

i j m

i j m

i i j j m m

[ ]
4 (1 )(1 2 )

0

0

0

0

0

0

1 0
1 0

0 0
1 2

2

0 0 0

0 0 0

	

(6.4.2)

On multiplying the matrices in Eq. (6.4.2), we obtain Eq. (6.4.3), the explicit constant-strain 
triangle stiffness matrix for the plane strain case. Note that k[ ] is a function of the difference 
in the x and y nodal coordinates, as indicated by the γ s and β s, of the material properties E 
and v, and of the thickness t and surface area A of the element.
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(6.4.3)

For the plane stress case, we need only replace ν21  by 1, ν2(1 2 ) 2 by ν2(1 ) 2, and 
ν ν1 2(1 )(1 2 ) outside the brackets by ν21 2 in Eq. (6.4.3).
Finally, it should be noted that for Poisson’s ratio ν  approaching 0.5, as in rubber-like 

materials and plastic solids, for instance, a material becomes incompressible [2]. For plane 
strain, as ν  approaches 0.5, the denominator becomes zero in the material property matrix [see 
Eq. (6.1.10)] and hence in the stiffness matrix, Eq. (6.4.3). A value of ν  near 0.5 can cause 
ill-conditioned structural equations. A special formulation (called a penalty formulation [3]) 
has been used in this case.

	 6.5 	 Finite Element Solution of a Plane Stress Problem
To illustrate the finite element method for a plane stress problem, we now present a detailed 
solution.
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EXAMPLE 6.2

For a thin plate subjected to the surface traction shown in Figure 6–16, determine the nodal 
displacements and the element stresses. The plate thickness 5 20 mmt , 5 210 GPaE , and 
v 5 0.30.

■■ Figure 6–16  Thin plate subjected to tensile stress

20 mm

200 mm 7 MPa

400 mm

SOLUTION:
Discretization
To illustrate the finite element method solution for the plate, we first discretize the plate 
into two elements, as shown in Figure 6–17. It should be understood that the coarseness 
of the mesh will not yield as true a predicted behavior of the plate as would a finer mesh, 
particularly near the fixed edge. However, since we are performing a longhand solution, we 
will use a coarse discretization for simplicity (but without loss of generality of the method).

In Figure 6–17, the original tensile surface traction in Figure 6–16 has been converted 
to nodal forces as follows:

	 − −

5

5 3 3 3

5

1

2
1

2
(7 10 )(20 10 )(200 10 )

14,000 N

6 3 3

F TA

F

F

■■ Figure 6–17  Discretized plate

14 kN

14 kN

In general, for higher-order elements, Eq. (6.3.7) should be used to convert distributed sur-
face tractions to nodal forces. However, for the CST element, we have shown in Section 6.3 
that a statically equivalent force replacement can be used directly, as has been done here.
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The governing global matrix equation is

	 { } [ ]{ }F K d5 	 (6.5.1)

Expanding matrices in Eq. (6.5.1), we obtain
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	 (6.5.2)

where K[ ] is an 38 8 matrix (two degrees of freedom per node with four nodes) before delet-
ing rows and columns to account for the fixed boundary support conditions at nodes 1 and 2.

Assemblage of the Stiffness Matrix
We assemble the global stiffness matrix by superposition of the individual element stiffness 
matrices. By Eq. (6.2.52), the stiffness matrix for an element is

	 [ ] [ ] [ ][ ]k tA B D BT5 	 (6.5.3)

In Figure 6–18 for element 1, we have coordinates xi 5 0, yi 5 0, 5 400 mmx j , yj 5 10,  
xm 5 0, and 5 200 mmym , since the global coordinate axes are set up at node 1, and

	






5

5 5

1

2
1

2
(0.4)(0.2) 0.04 m2

A bh

A
	

■■ Figure 6–18  Element 1 of the discretized plate

or, in general, A can be obtained equivalently by the nodal coordinate formula of Eq. (6.2.9).

We will now evaluate [B], where [B] is given by Eq. (6.2.34), expanded here as

	 [ ]
1

2

0 0 0

0 0 0B
A

i j m

i j m

i i j j m m



















b b b

g g g

g b g b g b

5 	 (6.5.4)
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and, from Eqs. (6.2.10),
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	 (6.5.5)

Therefore, substituting Eqs. (6.5.5) into Eq. (6.5.4), we obtain
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For plane stress, the [D] matrix is conveniently expressed here as
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2
	 (6.5.7)

With ν 5 0.3 and 5 3210 10 N/m9E , we obtain
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Then	
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Simplifying Eq. (6.5.9) yields
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Using Eqs. (6.5.10) and (6.5.6) in Eq. (6.5.3), we have the stiffness matrix for element 1 as
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(6.5.11)

Finally, simplifying Eq. (6.5.11) yields
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	 (6.5.12)

where the labels above the columns indicate the counterclockwise nodal order of the degrees 
of freedom in the element 1 stiffness matrix.

■■ Figure 6–19  Element 2 of the discretized plate

In Figure 6–19 for element 2, we have xi 5 0, yi 5 0, 5 400 mmx j , yj 5 0, 
5 400 mmxm , and 5 200 mmym . Then, from Eqs. (6.2.10), we have
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	 (6.5.13)
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Therefore, using Eqs. (6.5.13) in Eq. (6.5.4) yields
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The [D] matrix is again given by
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Then, using Eqs. (6.5.14) and (6.5.15), we obtain
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Simplifying Eq. (6.5.16) yields
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Finally, substituting Eqs. (6.5.17) and (6.5.14) into Eq. (6.5.3), we obtain the stiffness matrix 
for element 2 as
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(6.5.18)
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Equation (6.5.18) simplifies to
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where the degrees of freedom in the element 2 stiffness matrix are shown above the col-
umns in Eq. (6.5.19). Rewriting the element stiffness matrices, Eqs. (6.5.12) and (6.5.19), 
expanded to the order of, and rearranged according to, increasing nodal degrees of freedom 
of the total [K] matrix (where we have factored out a constant 5), we obtain
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Element 2
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	(6.5.21)

Using superposition of the element stiffness matrices, Eqs. (6.5.20) and (6.5.21), now that 
the orders of the degrees of freedom are the same, we obtain the total global stiffness 
matrix as
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[Alternatively, we could have applied the direct stiffness method to Eqs. (6.5.12) and 
(6.5.19) to obtain Eq. (6.5.22).] Substituting [K] into F K d5{ } [ ]{ } of Eq. (6.5.2), we have
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	(6.5.23)

Applying the support or boundary conditions by eliminating rows and columns correspond-
ing to displacement matrix rows and columns equal to zero [namely, rows and columns 1–4 
in Eq. (6.5.23)], we obtain
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	 (6.5.24)

Premultiplying both sides of Eq. (6.5.24) by K 2[ ] 1, we have
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	 (6.5.25)

Solving for the displacements in Eq. (6.5.25), we obtain
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	 (6.5.26)
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Simplifying Eq. (6.5.26), the final displacements are given by
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	 (6.5.27)

Comparing the finite element solution to an analytical solution, as a first approximation, 
we have the axial displacement given by

	 − −d 5 5
3 3 3

5 3 2(28,000)0.4

(20 10 )(200 10 )(210 10 )
13.33 10 m

3 3 9
6PL

AE
	

for a one-dimensional bar subjected to tensile force. Hence, the nodal x displacement com-
ponents of Eq. (6.5.27) for the two-dimensional plate appear to be reasonably correct, con-
sidering the coarseness of the mesh and the directional stiffness bias of the model. (For more 
on this subject see Section 7.5.) The y displacement would be expected to be downward at 
the top (node 3) and upward at the bottom (node 4) as a result of the Poisson effect. However, 
the directional stiffness bias due to the coarse mesh accounts for this unexpected poor result.

We now determine the stresses in each element by using Eq. (6.2.36):

	 { } [ ][ ]{ }D B ds 5 	 (6.5.28)

In general, for element 1, we then have
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	 (6.5.29)

Substituting numerical values for [B], given by Eq. (6.5.6); for [D], given by Eq. (6.5.8); 
and the appropriate part of {d}, given by Eq. (6.5.27), we obtain
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	 (6.5.30)

Simplifying Eq. (6.5.30), we obtain
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In general, for element 2, we have
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Substituting numerical values into Eq. (6.5.32), we obtain
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	 (6.5.33)

Simplifying Eq. (6.5.33), we obtain
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	 (6.5.34)

The principal stresses can now be determined from Eq. (6.1.2), and the principal angle made 
by one of the principal stresses can be determined from Eq. (6.1.3). (The other principal 
stress will be directed 890  from the first.) We determine these principal stresses for element 2 
(those for element 1 will be similar) as
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The principal angle is then
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(6.5.36)

Owing to the uniform stress of 7 MPa acting only in the x direction on the edge of the 
plate, we would expect the stress xs s5( )1  to be near 7 MPa in each element. Thus, the 
results from Eqs. (6.5.31) and (6.5.34) for xs  are quite good. We would expect the stress 

ys  to be very small (at least near the free edge). The restraint of element 1 at nodes 1 and 
2 causes a relatively large element stress ys , whereas the restraint of element 2 at only one 
node causes a very small stress ys . The shear stresses xyτ  remain close to zero, as expected. 
Had the number of elements been increased, with smaller ones used near the support edge, 
even more realistic results would have been obtained. However, a finer discretization would 
result in a cumbersome longhand solution and thus was not used here. Use of a computer 
program is recommended for a detailed solution to this plate problem and certainly for 
solving more complex stress/strain problems.

The maximum distortion energy theory [4] (also called the von Mises or von Mises-Hencky 
theory) for ductile materials subjected to static loading predicts that a material will fail if the 
von Mises stress (also called equivalent or effective stress) reaches the yield strength, Sy, of 
the material. The von Mises stress as derived in [4], for instance, is given in terms of the three 
principal stresses by

	
1

2
( ) ( ) ( )vm 1 2

2
2 3

2
3 1

2 1/2[ ]s s s s s s s5 2 1 2 1 2 	 (6.5.37a)

or equivalently in terms of the x-y-z components as

1

2
( ) ( ) ( ) 6( )vm

2 2 2 2 2 2 1/2
s s s s s s s5 2 1 2 1 2 1 1 1x y y z z x xy yz zxτ τ τ  	 (6.5.37b)

Thus for yielding to occur, the von Mises stress must become equal to or greater than the yield 
strength of the material as given by

	 vm Sys $ 	 (6.5.38)

We can see from Eqs. (6.5.37a or 6.5.37b) that the von Mises stress is a scalar that measures 
the intensity of the entire stress state as it includes the three principal stresses or the three nor-
mal stresses in the x, y, and z directions, along with the shear stresses on the x, y, and z planes. 
Other stresses, such as the maximum principal one, do not provide the most accurate way of 
predicting failure.

Most computer programs incorporate this failure theory and, as an optional result, the 
user can request a plot of the von Mises stress throughout the material model being analyzed. 
If the von Mises stress value is equal to or greater than the yield strength of the material being 
considered, then another material with greater yield strength can be selected or other design 
changes can be made.
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For brittle materials, such as glass and cast iron, with different tension and compression 
properties, it is recommended to use the Coulomb-Mohr theory to predict failure. For more on 
this theory consult [4].

	 6.6 	 Rectangular Plane Element (Bilinear Rectangle, Q4)
We will now develop the four-noded rectangular plane element stiffness matrix. We will later 
refer to this element in the isoparametric formulation of a general quadrilateral element in 
Section 10.2. This element is also called the bilinear rectangle because of the linear terms in x 
and y for the x and y displacement functions shown in Eq. (6.6.2). The “Q4” symbol represents 
the element as a quadrilateral with four corner nodes.

Two advantages of the rectangular element over the triangular element are ease of data 
input and simpler interpretation of output stresses. A disadvantage of the rectangular element 
is that the simple linear-displacement rectangle with its associated straight sides poorly approx-
imates the real boundary condition edges.

The usual steps outlined in Chapter 1 will be followed to obtain the element stiffness 
matrix and related equations.

Step 1 Select Element Type
Consider the rectangular element shown in Figure 6–20 (all interior angles are 890 ) with cor-
ner nodes 1–4 (again labeled counterclockwise) and base and height dimensions 2b and 2h, 
respectively.

The unknown nodal displacements are now given by
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5 	 (6.6.1)

■■ Figure 6–20  Basic four-node rectangular element with nodal degrees of freedom
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Step 2 Select Displacement Functions
For a compatible displacement field, the element displacement functions u and v must be linear 
along each edge because only two points (the corner nodes) exist along each edge. We then 
select the linear displacement functions as

	
( , )

( , )
1 2 3 4

5 6 7 8

u x y a a x a y a xy

v x y a a x a y a xy

5 1 1 1

5 1 1 1
	 (6.6.2)

There are a total of eight generalized degrees of freedom (a’s) in Eq. (6.6.2) and a total 
of eight specific degrees of freedom (u1, v1 at node 1 through u4, v4 at node 4) for the 
element.

We can proceed in the usual manner to eliminate the ai’s from Eqs. (6.6.2) to obtain
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	 (6.6.3)

These displacement expressions, Eqs. (6.6.3), can be expressed equivalently in terms of 
the shape functions and unknown nodal displacements as

	 { } [ ]{ }N dc 5 	 (6.6.4)

where the shape functions are given by
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	 (6.6.5)

and the Ni  s are again such that N 5 11  at node 1 and N 5 01  at all the other nodes, with similar 
requirements for the other shape functions. In expanded form, Eq. (6.6.4) becomes
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Step 3 Define the Strain-Displacement and Stress/Strain Relationships
Again the element strains for the two-dimensional stress state are given by
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Using Eq. (6.6.2) in Eq. (6.6.7a), we express the strains in terms of the a s as
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	 (6.6.7b)

Using Eq. (6.6.6) in Eq. (6.6.7a) and taking the derivatives of u and v as indicated, we can 
express the strains in terms of the unknown nodal displacements as

	 B d« 5{ } [ ]{ }	 (6.6.8)

where
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	 (6.6.9)

From Eqs. (6.6.7b), (6.6.8), and (6.6.9), we observe that x«  is a function of y, y«  is a func-
tion of x, and xyg  is a function of both x and y. The stresses are again given by the formulas in 
Eq. (6.2.36), where [B] is now that of Eq. (6.6.9) and {d} is that of Eq. (6.6.1).

Step 4 Derive the Element Stiffness Matrix and Equations
The stiffness matrix is determined by

	 k B D B t dx dyT
b

b

h

h

∫∫5
22

[ ] [ ] [ ][ ] 	 (6.6.10)

with [D] again given by the usual plane stress or plane strain conditions, Eq. (6.1.8) or (6.1.10). 
Because the [B] matrix is a function of x and y, integration of Eq. (6.6.10) must be performed. The 
[k] matrix for the rectangular element is now of order 38 8. A numerical evaluation of Eq. (6.6.10) 
for [k] is shown in Eq. (6.6.11) using 5 100 mmb , 5 50 mmh , 5 25 mmt , 5 210 GPaE ,  
and v 5 0.3. This double integral was solved using Mathcad [5].
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(6.6.11)
The element force matrix is determined by Eq. (6.2.46) as

	 ∫∫∫ ∫∫f N X dV P N T dST

V

S
T

S

5 1 1{ } [ ] { } { } [ ] { } 	 (6.6.12)

where [N] is the rectangular matrix in Eq. (6.6.6), and N1 through N4 are given by Eqs. (6.6.5). 
The element equations are then given by

	 f k d5{ } [ ]{ }	 (6.6.13)

Step 5 through 7
Steps 5 through 7, which involve assembling the global stiffness matrix and equations, determin-
ing the unknown nodal displacements, and calculating the stress, are identical to those in Section 
6.2 for the CST. However, the stresses within each element now vary in both the x and y directions.

Numerical Comparison of CST to Q4 Element  
Models and Element Defects
Table 6–1 compares the free end deflection and maximum principal stress for a cantilevered beam 
modeled with 2, 4, and 8 rows of either all triangular CST elements or all rectangular Q4 elements.

Table 6-1  Table comparing free-end deflections and largest principal stresses for CST and 
Q4 compatible element models (end force 4000N5P , length 1m5L , 1 10 m5 45 3 2I , 
thickness 0.12m5 , 5 5E G200 GPa, 77.5 GPa)

Plane Element 
Used/Rows

Number of 
Nodes

Number of 
Degrees of 
Freedom

Free End 
Displ.,m

Tensor Stress, 
(0.05m from 

wall) s x, MPa

Q4/2 60 120 3 25.944 10 4 17.34

Q4/4 200 400 3 26.509 10 4 18.71

Q4/8 720 1440 3 26.661 10 4 18.94

CST/2 60 120 3 23.630 10 4 7.10

CST/4 200 400 3 25.537 10 4 13.20

CST/8 720 1440 3 26.385 10 4 16.91

Classical beam theory, 
PL

3 EI

6 PL

5 AG

3

end
5 1ν 3 26.672 10 4 19.00
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Displacement Results
We observe from the displacement results that the CST element models produce stiffer models 
than the actual beam behavior, as the deflections are predicted to be smaller than classical beam 
theory predicts. We also observe that the CST model converges very slowly to the classical 
beam theory solution. This is partly due to the element predicting only constant stress within 
each element when for a bending problem; the stress actually varies linearly through the depth 
of the beam. This problem is rectified by using the linear-strain triangle (LST) element as 
described in Chapter 8.

Additional comparisons of CST and LST elements are given in Section 8.3. See Tables 8.1 
and 8.2 and Figure 8-6.

The results indicate that the Q4 compatible element model predicts more accurate 
deflection behavior than the CST element model. The two-row model of Q4 elements yields 
deflections approaching that predicted by the classical beam deflection equation, whereas the 
two-row model of CST elements is quite inaccurate in predicting the deflection. As the number 
of rows is increased to four and then eight, the deflections are predicted increasingly more 
accurately for the CST and Q4 element models. The two-noded beam element model gives 
the identical deflection as the classical equation PL EId 5( 3 )3  as expected (see discussion in 
Section 4.5) and is the most appropriate model for this problem when you are not concerned, 
for instance, with stress concentrations.

As further shown in [3] for a beam subjected to pure bending, the CST has a spurious or 
false shear stress and hence a spurious shear strain in parts of the model that should not have 
any shear stress or shear strain. This spurious shear strain absorbs energy; therefore, some of 
the energy that should go into bending is lost. The CST is then too stiff in bending, and the 
resulting deformation is smaller than it actually should be. This phenomenon of excessive 
stiffness developing in one or more modes of deformation is sometimes described as shear 
locking or parasitic shear.

Furthermore, in problems where plane strain conditions exist (recall this means when 
z« 5 0) and the Poisson’s ratio approaches 0.5, a mesh can actually lock, which means the 

mesh then cannot deform at all.
It should be noted that using a single row of Q4 elements with their linear edge dis-

placement is not recommended to accurately predict the stress gradient through the depth of 
the beam. This is illustrated in Figure 6–21, where for the pure bending state (approximated 
by this example), the exact displacement is shown in Figure 6–21(b), while the Q4 element 
displacement is shown in Figure 6–21(c), which is not capable of pure bending deformation.

Typical Q4 and CST models:

4000 N

4000 N

x

1 m

Q4—8 row

CST—2 row
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Stress Results
As mentioned previously, the CST element has constant strain and stress within it, while the Q4 
element normal strain, x« , and hence the normal stress, xs , is linear in the y direction. (Also see 
Eq. (6.6.7b). Therefore, the CST is not able to simulate the bending behavior nearly as well as the 
Q4 element. The classical beam theory/bending stress equation predicts a linear stress variation 
through the depth of the beam given by My Ixs 5 2 —shown in Section 4.1 as well. As shown 
when comparing the tensor stresses for each model, as more rows are used, the stresses approach 
the classical bending stress of 19 MPa 0.05 m from the wall with the Q4 approaching the classical 
solution much faster as indicated by comparing the two-row solutions for Q4 and CST models.

Finally, the eight-noded quadratic edge displacement element (Q8) predicts bending 
behavior better than both the CST and Q4 elements. Thus, fewer Q8 elements can be used and 
faster convergence to the proper solution are obtained using this element. In fact, using even a 
single row of Q8 elements yields reasonable results in bending, as shown in [3]. Again, Section 
10.5 describes the Q8 element and comparison of the Q8 to the Q4 element for a cantilever 
beam model is given in Table 10.3.

This brief description of some of the limitations in using the CST and Q4 elements does 
not prevent us from using them to model plane stress and plane strain problems. It just requires 
us to use a fine mesh as opposed to a coarse one, particularly where bending occurs and where 
in general large stress gradients will result. Also, we must make sure our computer program 
can handle Poisson’s ratios that approach 0.5 (if that is desired, such as in rubber-like materi-
als). For common materials, such as metals, Poisson’s ratio is around 0.3, so locking should 
not be of concern.

SUMMARY EQUATIONS

Stress vector for two-dimensional stress state:

	 { }s

s

s5

x

y

xyτ



















	 (6.1.1)

■■ Figure 6–21  (a) Pure bending state, (b) exact bending displacement, and (c) Q4 element 
displacements—linear edge displacements

L

y, v

x, u

(a) Pure bending state (b) Exact displacements

(c) Element displacements–linear
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Principal stresses for two-dimensional stress state:
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	 (6.1.2)

Principal angle:

	 tan 2
2

u
s s

5
2

p
xy

x y

τ
	 (6.1.3)

Strain-displacement equations for two-dimensional stress state:
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x y xy« « g5 5 5 1 	 (6.1.4)

Strain vector for two-dimensional stress state:
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5{ } 	 (6.1.5)

Stress/strain relationship for two-dimensional stress state:

	 Ds «5{ } [ ]{ }	 (6.1.7)

Stress/strain or constitutive matrix for plane stress condition:
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	 (6.1.8)

Stress/strain matrix for plane strain condition:

	
ν ν

ν ν
ν ν
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	 (6.1.10)

Displacement functions for three-noded triangular element:

	
u x y a a x a y

v x y a a x a y

5 1 1

5 1 1

( , )

( , )
1 2 3

4 5 6
	 (6.2.2)
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Shape functions for three-noded triangular element:
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	 (6.2.18)

where
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Shape function matrix for three-noded triangular element:
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Strain-displacement equations in matrix form:
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where the gradient matrix is
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	  B B B Bi j m5[ ] [ ][ ][ ] 	 (6.2.34)

Stress/strain relationship as function of displacement matrix:

	 D B ds 5{ } [ ][ ]{ }	 (6.2.36)

Total potential energy for two-dimensional stress state:

	 Up b p sπ Ω Ω Ω5 1 1 1 	 (6.2.38)

where
Strain energy is

	 U dVT

V
∫∫∫ « s5

1

2
{ } { } 	 (6.2.39)
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Potential energy of body forces is

	 { } { }c5 2 X dVb
T

V
∫∫∫Ω 	 (6.2.41)

Potential energy of concentrated loads is

	 { } { }5 2 d Pp
TΩ 	 (6.2.42)

Potential energy of surface tractions is

	 { } { }T dSs S
T

S

S

c52∫∫Ω 	 (6.2.43)

Stiffness matrix for CST element:

	 k tA B D BT5[ ] [ ] [ ][ ]	 (6.2.52)

Explicit body forces:
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	 (6.3.6)

Explicit surface forces for uniform surface traction in x-direction along side 1–3:
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	 (6.3.19)

Explicit expression for constant-strain triangle (CST) stiffness matrix [See Eq. (6.4.3)]:
von Mises stress:

	 [ ]s s s s s s s5 2 1 2 1 2
1

2
( ) ( ) ( )vm 1 2

2
2 3

2
3 1

2 1/2
	 (6.5.37a)
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Failure based on maximum distortion energy theory:

	 Sys $vm 	 (6.5.38)

Displacement functions for bilinear four-noded rectangle element:

	
u x y a a x a y a xy

v x y a a x a y a xy

5 1 1 1

5 1 1 1

( , )

( , )
1 2 3 4

5 6 7 8
	 (6.6.2)

Shape functions for four-noded rectangle element:
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Strain-displacement equations for four-noded rectangle element in terms of a s:
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Strain-displacement equations in matrix form:

	 B d« 5{ } [ ]{ }	 (6.6.8)

where the gradient matrix is

	 [ ]
1

4

( ) 0 ( ) 0

0 ( ) 0 ( )

( ) ( ) ( ) ( )

















B
bh

h y h y

b x b x

b x h y b x h y

5

2 2 2

2 2 2 1

2 2 2 2 2 1 2

	
(6.6.9)

	

( ) 0 ( ) 0

0 ( ) 0 ( )

( ) ( ) ( ) ( )

















h y h y

b x b x

b x h y b x h y

1 2 1

1 2

1 1 2 2 1

Stiffness matrix for four-noded rectangular element:
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Element force matrix for four-noded rectangular element:

	 { } [ ] { } { } [ ] { }5 1 1f N X dV P N T dST
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S
∫∫∫ ∫∫ 	 (6.6.12)
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PROBLEMS

	 6.1		  Sketch the variations of the shape functions Nj and Nm, given by Eqs. (6.2.18), 
over the surface of the triangular element with nodes i, j, and m. Check that 

11 1 5N N Ni j m  anywhere on the element.
	 6.2		  For a simple three-noded triangular element, show explicitly that differentiation of 

Eq. (6.2.47) indeed results in Eq. (6.2.48); that is, substitute the expression for [B] 
and the plane stress condition for [D] into Eq. (6.2.47), and then differentiate pπ  
with respect to each nodal degree of freedom in Eq. (6.2.47) to obtain Eq. (6.2.48).

	 6.3		  Evaluate the stiffness matrix for the elements shown in Figure P6–3. The coor-
dinates are in units of inches. Assume plane stress conditions. Let 5 210 GPaE ,  
v 5 0.25, and thickness 5 1cmt

■■ Figure P6–3

	 6.4		  For the elements given in Problem 6.3, the nodal displacements are given as

	 5 5 5

5 5 5

0.0 mm 0.0625 mm 0.03 mm

0.0 mm 0.0 mm 0.0625 mm
1 1 2

2 3 3

u v u

v u v

			   Determine the element stresses sx , sy, xyτ , s1, and s2 and the principal angle pu . Use 
the values of E, v, and t given in Problem 6.3.

	 6.5		  Determine the von Mises stress for Problem 6.4.
	 6.6		  Evaluate the stiffness matrix for the elements shown in Figure P6–6. The coordinates 

are given in units of millimeters. Assume plane stress conditions. Let E 5 105 GPa,  
v 5 0.25, and t 5 10 mm.
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	 6.7		  For the elements given in Problem 6.6, the nodal displacements are given as

	
2.0 mm 1.0 mm 0.5 mm

0.0 mm 3.0 mm 1.0 mm

1 1 2

2 3 3

5 5 5

5 5 5

u v u

v u v

■■ Figure P6–6

3

1 2

(10, 0)

(c)

(0, 0)

(5, 10)

y

x

			   Determine the element stresses sx , sy, xyτ , s1, and s2 and the principal angle pu . Use 
the values of E, v, and t given in Problem 6.6.

	 6.8		  Determine the von Mises stress for Problem 6.7.
	 6.9		  For the plane strain elements shown in Figure P6–9, the nodal displacements are 

given as

			 
5 5 5

5 5 5

0.001 cm 0.005 cm 0.001 cm

0.0025 cm 0.0 cm 0.0 cm
1 1 2

2 3 3

u v u

v u v

			   Determine the element stresses sx , sy, xyτ , s1, and s2 and the principal angle pu .  
Let 5 210 GPaE  and v 5 0.25, and use unit thickness for plane strain. All coordi-
nates are in centimeters.
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	 6.10		  For the plane strain elements shown in Figure P6–10, the nodal displacements are 
given as

			 
5 5 5

5 5 5

0.005 mm 0.002 mm 0.0 mm

0.0 mm 0.005 mm 0.0 mm
1 1 2

2 3 3

u v u

v u v

			   Determine the element stresses sx, sy, xyτ , s1, and s2 and the principal angle pu . Let 
E 5 105 GPa and v 5 0.3, and use unit thickness for plane strain. All coordinates 
are in millimeters.

	 6.11		  Determine the nodal forces for (1) a linearly varying pressure px on the edge of the 
triangular element shown in Figure P6–11(a); and (2) the quadratic varying pressure 
shown in Figure P6–11(b) by evaluating the surface integral given by Eq. (6.3.7). 
Assume the element thickness is equal to t.

	 6.12		  Determine the nodal forces for (1) the quadratic varying pressure loading shown 
in Figure P6–12(a) and (2) the sinusoidal varying pressure loading shown in 
Figure P6–12(b) by the work equivalence method [use the surface integral expression 
given by Eq. (6.3.7)]. Assume the element thickness to be t.

■■ Figure P6–9

(d) (e)

(0, 2)

(2, 0)

(0, 0)
(c)

x

y

(1, 2)

(2, 0)

(0, 0) (f)
x

y
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■■ Figure P6–10

■■ Figure P6–11

y

x

p1

p2

p(x)

p3

1

(a)

2 3
L
2

L
2

y

x

p0

px
L

p = p0 sin

1

(b)

2

L

■■ Figure P6–12
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	 6.13		  Determine the nodal displacements and the element stresses, including principal 
stresses, for the thin plate of Section 6.5 with a uniform shear load (instead of a 
tensile load) acting on the right edge, as shown in Figure P6–13. Use 5 210 GPaE ,  
v 5 0.30, and 5 25 mmt  (Hint: The [K] matrix derived in Section 6.5 and given by 
Eq. (6.5.22) can be used to solve the problem.)

180 kN/m

0.5 m

0.25 m

■■ Figure P6–13

	 6.14		  Determine the nodal displacements and the element stresses, including prin-
cipal stresses, due to the loads shown for the thin plates in Figure P6–14. Use 
E 5 105 GPa, v 5 0.30, and t 5 5 mm. Assume plane stress conditions apply. The 
recommended discretized plates are shown in the figures. Use a computer program 
to solve these.

■■ Figure P6–14

4 3

2

5

1

100 mm

(b)

100 mm

20 kN

20 kN

4 3

2

5

1

400 mm

(d)

400 mm

px = 10 MPa
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	 6.15		  Determine the nodal displacements and the element stresses, including prin-
cipal stresses, due to the loads shown for the thin plates in Figure P6–15. Use 

5E 210 GPa, 5v 0.30, and 5t 5 mm. Assume plane stress conditions apply. The 
recommended discretized plates are shown in the figures. Use a computer program 
to solve these.

	 6.16		  Evaluate the body force matrix for the plates shown in Figures P6–14(a) and (c). 
Assume the weight density to be 154.2 kN/m3.

	 6.17		  Why is the triangular stiffness matrix derived in Section 6.2 called a constant-strain 
triangle?

	 6.18		  How do the stresses vary within the constant-strain triangle element?
	 6.19		  Can you use the plane stress or plane strain element to model the following? If so, 

indicate which ones are best modeled using plane stress or best modeled using plane 
strain elements.

			   a.	 a flat slab floor of a building with vertical loading perpendicular to the slab
			   b.	 a uniform concrete dam subjected to hydrostatic loading along the whole length 

of the dam
			   c.	 a tensile plate with a hole drilled tranversely through it
			   d.	 a connecting rod with loads in the plane of the rod
			   e.	 a soil mass subjected to a strip footing loading
			   f.	 a wrench subjected to a force in the plane of the wrench

■■ Figure P6–15

4 3

2

5

1

100 mm

(b)

100 mm

20 kN

20 kN

4 3

2

5

1

400 mm

(d)

400 mm

px = 10 MPa

250 mm

400 mm

30 kN

500 mm

400 mm

40 kN
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			   g.	 a wrench subjected to twisting forces (the twisting forces act out of the plane of 
the wrench)

			   h.	 a triangular plate connection with loads in the plane of the triangle
			   i.	 a triangular plate connection with out-of-plane loads

	 6.20		  The plane stress element only allows for in-plane displacements, while the frame or 
beam element resists displacements and rotations. How can we combine the plane 
stress and beam elements and still ensure compatibility?

	 6.21		  For the plane structures modeled by triangular elements shown in Figure P6–21, 
show that numbering in the direction that has fewer nodes, as in Figure P6–21(a) 
(as opposed to numbering in the direction that has more nodes), results in a reduced 
bandwidth. Illustrate this fact by filling in, with X s, the occupied elements in [K] for 
each mesh, as was done in Appendix B.4. Compare the bandwidths for each case.

■■ Figure P6–21

	 6.22		  Go through the detailed steps to evaluate Eq. (6.3.6).
	 6.23		  How would you treat a linearly varying thickness for a three-noded triangle?
	 6.24		  Compute the stiffness matrix of element 1 of the two-triangle element model of the 

rectangular plate in plane stress shown in Figure P6–24. Then use it to compute the 
stiffness matrix of element 2.

■■ Figure P6–24

	 6.25		  Show that the sum N N N N1 1 11 2 3 4 is equal to 1 anywhere on a rectangular 
element, where N1 through N4 are defined by Eqs. (6.6.5).

	 6.26		  For the rectangular element of Figure 6–20 on page 374 the nodal displacements are 
given by

	

0 cm 0 cm 0.005 cm

0.0025 cm 0.0025 cm 0.0025 cm

0 cm 0 cm

1 1 2

2 3 3

4 4

5 5 5

5 5 52

5 5

u v u

v u v

u v

  	

			    For 2 cmb 5 , 1 cmh 5 , 5 210 GPaE , and v 5 0.3, determine the element strains 
and stresses at the centroid of the element and at the corner nodes.
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Practical Considerations 
in Modeling; Interpreting 
Results; and Examples of 
Plane Stress/Strain Analysis

Chapter Objectives

At the conclusion of this chapter, you will be able to:

■	 Present concepts that should be considered when modeling for a solution by 
the finite element method, such as aspect ratio, symmetry, natural subdivisions, 
sizing of elements and the h, p, and r methods of refinement, concentrated 
loads and infinite stress, infinite medium, and connecting different kinds of 
elements.

■	 Describe some of the approximations inherent in finite element solutions.

■	 Illustrate convergence of solution and introduce the patch test for convergence of 
solution.

■	 Discuss the interpretation of stresses in an element, including a common method of 
averaging the nodal values (also called smoothing).

■	 Present a flowchart of a typical finite element process used for the analysis of plane 
stress and plane strain.

■	 Describe a computer assisted step-by-step solution of a bicycle wrench.

■	 Demonstrate various real-world applications where plane stress/strain element 
models are applicable. Such examples include a bicycle wrench, a connecting rod 
with notch and hole stress concentrations, an irregularly shaped overload protection 
device, an adjustable wrench, and a beam welded to a column with surface contact 
elements to allow the separation of surface between beam and column during the 
beam flexing.

Introduction
In this chapter, we will describe some modeling guidelines, including generally recom-
mended mesh size, natural subdivisions modeling around concentrated loads, and more 
on use of symmetry and associated boundary conditions. This is followed by discussion of 

C h ap  t er

7
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7  |  Practical Considerations in Modeling; Interpreting Results392

equilibrium, compatibility, and convergence of solution. We will then consider interpretation 
of stress results.

We then show some computer program results. A computer program facilitates the 
solution of complex, large-number-of-degrees-of-freedom plane stress/plane strain prob-
lems that generally cannot be solved longhand because of the larger number of equations 
involved. Also, problems for which longhand solutions do not exist (such as those involv-
ing complex geometries and complex loads or where unrealistic, often gross, assumptions 
were previously made to simplify the problem to allow it to be described via a classical 
differential equation approach) can now be solved with a higher degree of confidence in 
the results by using the finite element approach (with its resulting system of algebraic 
equations).

	 7.1 	 Finite Element Modeling
We will now discuss various concepts that should be considered when modeling any problem 
for solution by the finite element method.

General Considerations
Finite element modeling is partly an art guided by visualizing physical interactions taking 
place within the body. One appears to acquire good modeling techniques through experience 
and by working with experienced people. General-purpose programs provide some guidelines 
for specific types of problems [12, 15]. In subsequent parts of this section, some significant 
concepts that should be considered are described.

In modeling, the user is first confronted with the sometimes difficult task of under-
standing the physical behavior taking place and understanding the physical behavior of 
the various elements available for use. Choosing the proper type of element or elements to 
match as closely as possible the physical behavior of the problem is one of the numerous 
decisions that must be made by the user. Understanding the boundary conditions imposed 
on the problem can, at times, be a difficult task. Also, it is often difficult to determine the 
kinds of loads that must be applied to a body and their magnitudes and locations. Again, 
working with more experienced users and searching the literature can help overcome these 
difficulties.

Aspect Ratio and Element Shapes
The aspect ratio is defined as the ratio of the longest dimension to the shortest dimension 
of a quadrilateral element. In many cases, as the aspect ratio increases, the inaccuracy 
of the solution increases. To illustrate this point, Figure 7–1(a) shows five different finite 
element models used to analyze a beam subjected to bending. The element used here is 
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the rectangular one described in Section 6.6. Figure 7–1(b) is a plot of the resulting error 
in the displacement at point A of the beam versus the aspect ratio. Table 7–1 reports a 
comparison of results for the displacements at points A and B for the five models, and the 
exact solution [2].

There are exceptions for which aspect ratios approaching 50 still produce satisfactory 
results; for example, if the stress gradient is close to zero at some location of the actual prob-
lem, then large aspect ratios at that location still produce reasonable results.

In general, an element yields best results if its shape is compact and regular. Although dif-
ferent elements have different sensitivities to shape distortions, try to maintain (1) aspect ratios 

■■ Figure 7–1  (a) Beam with loading (b) effects of the aspect ratio (AR) illustrated by five 
cases with different aspect ratios
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■■ Figure 7–1  (c) Inaccuracy of solution as a function of the aspect ratio (numbers in 
parentheses correspond to the cases listed in Table 7–1)

(c)

 Table 7–1  Comparison of results for various aspect ratios

Case
Aspect  
Ratio

Number of  
Nodes

Number of  
Elements

Vertical  
Displacement,  

v (mm)

Percent 
Error in 

Displacement 
at APoint A Point B

1 1.1 84 60 227.76 28.78 5.2

2 1.5 85 64 227.38 28.61 6.4

3 3.6 77 60 225.75 28.33 11.9

4 6.0 81 64 222.50 27.11 23.0

5 24.0 85 64 212.7 24.01 56.0

Exact solution [2] 229.26 29.14

low as in Figure 7–1, cases 1 and 2, and (2) corner angles of quadrilaterals near 890 . Figure 7–2 
on the next page shows elements with poor shapes that tend to promote poor results. If few of 
these poor element shapes exist in a model, then usually only results near these elements are 
poor. In the Autodesk program [12], when a > 8170  in Figure 7–2(c), the program automat-
ically divides the quadrilateral into two triangles.
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Use of Symmetry
The appropriate use of symmetry* will often expedite the modeling of a problem. Use of sym-
metry allows us to consider a reduced problem instead of the actual problem. Thus, we can use 
a finer subdivision of elements with less labor and computer costs. For another discussion on 
the use of symmetry, see Reference [3].

Figures 7–3 through 7–5 illustrate the use of reflective or mirror symmetry in modeling a 
soil mass subjected to foundation loading, a uniaxially loaded member with a fillet, and a plate 
with a hole subjected to internal pressure, respectively. Note that at the plane of symmetry the 
displacement in the direction perpendicular to the plane must be equal to zero. This is modeled 
by the rollers at nodes 2–6 in Figure 7–3, where the plane of symmetry is the vertical plane 
passing through nodes 1–6, perpendicular to the plane of the model. In Figures 7–4(a) and 
7–5(a), there are two planes of symmetry. Thus, we need model only one-fourth of the actual 
members, as shown in Figures 7–4(b) and 7–5(b). Therefore, rollers are used at nodes along 
both the vertical and horizontal planes of symmetry.

As previously indicated in Chapter 3, in vibration and buckling problems, symmetry must 
be used with caution since symmetry in geometry does not imply symmetry in all vibration 
or buckling modes.

Natural Subdivisions at Discontinuities
Figure 7–6 illustrates various natural subdivisions for finite element discretization. For 
instance, nodes are required at locations of concentrated loads or discontinuity in loads, as 
shown in Figure 7–6(a) and (b). Nodal lines are defined by abrupt changes of plate thickness, 
as in Figure 7–6(c), and by abrupt changes of material properties, as in Figure 7–6(d) and (e). 

*Again, reflective symmetry means correspondence in size, shape, and position of loads; material properties; and boundary 
conditions that are on opposite sides of a dividing line or plane.

■■ Figure 7–2  Elements with poor shapes
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■■ Figure 7–3  Use of symmetry applied to a soil mass subjected to foundation loading (the 
model shows the right half) ( 5number of nodes 66, 5number of elements 50) ( 52.54 cm 1 in., 

54.445 N 1 lb)

■■ Figure 7–4  Use of symmetry applied to a uniaxially loaded member with a fillet
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■■ Figure 7–5  Problem reduction using axes of symmetry applied to a plate with a hole 
subjected to tensile force

Other natural subdivisions occur at re-entrant corners, as in Figure 7–6(f), and along holes in 
members, as in Figure 7–5.

Mesh Revision (Refinement) and Convergence  
and h, p, and r Methods of Refinement
In this section we describe three methods often used to revise a finite element mesh with the 
goal of increasing the accuracy of the results by using only as many degrees of freedom as 
necessary. One then starts with a basic mesh using the fewest, reasonable number of elements, 
often based on some default parameter setting(s) of a computer program, such as for mesh 
density or mesh size or both, and then analyzes the model to obtain a bench mark solution. 
The model is then revised in some manner, such as by increasing the mesh density, reanalyzed 
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■■ Figure 7–6  Natural subdivisions at discontinuities
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and compared to the previous mesh results. This process is continued until the results converge 
satisfactorily, based on some user-defined criteria.

For structural problems, to obtain displacements, rotations, stresses, and strains, many 
computer programs include two basic methods of revising a mesh and some a third. (These 
same methods apply to nonstructural problems as well.) These are called the h method; the p 
method; and the r method. These methods are then used to revise or refine a finite element mesh 
to improve the results in the next revised analysis. The goal of the analyst is to revise the mesh 
to obtain the necessary accuracy by using only as many degrees of freedom as necessary. The 
final objective of this so called adaptive refinement is to obtain equal distribution of an error 
indicator over all elements.

The discretization depends on the geometry of the structure, the loading pattern, and the 
boundary conditions. For instance, regions of stress concentration or high stress gradient due 
to fillets, holes, or re-entrant corners require a finer mesh near those regions, as indicated in 
Figures 7–4, 7–5, and 7–6(f).

We will briefly describe the h, p, and r methods of refinement and provide references for 
those interested in more in-depth understanding of these methods.

h Method of Refinement
In the h method of refinement, we use the particular element based on the shape functions 
for that element (for example, linear functions for the bar, quadratic for the beam, bilinear 
for the CST). We then start with a baseline mesh to provide a baseline solution for error 
estimation and to provide guidance for mesh revision. We then add elements of the same 
kind to refine or make smaller elements in the model. Sometimes a uniform refinement 
is done where the original element size [Figure 7–7(a)] is perhaps divided in two in both 
directions as shown in Figure 7–7(b). More often, the refinement is a nonuniform h refine-
ment as shown in Figure 7–7(c) (perhaps even a local refinement used to capture some 
physical phenomenon, such as a shock wave or a thin boundary layer in fluids) [19]. The 
mesh refinement is continued until the results from one mesh compare closely to those of 
the previously refined mesh. It is also possible that part of the mesh can be enlarged instead 
of refined. For instance, in regions where the stresses do not change or change slowly, larger 
elements may be quite acceptable. The h-type mesh refinement strategy had its beginnings 
in [20, 21, 22, 23]. Many commercial computer codes, such as [12], are based on the h 
refinement.

p Method of Refinement
In the p method of refinement [24, 25, 26, 27, 28], the polynomial p is increased from perhaps 
quadratic to a higher-order polynomial based on the degree of accuracy specified by the user. 
In the p method of refinement, the p method adjusts the order of the polynomial or the p level 
in the element field quantity, such as displacement, to better fit the conditions of the problem, 
such as the boundary conditions, the loading, and the geometry changes. A problem is solved 
at a given p level, and then the order of the polynomial is normally increased while the element 
geometry remains the same and the problem is solved again. The results of the iterations are 
compared to some set of convergence criteria specified by the user. Higher-order polynomials 
normally yield better solutions. This iteration process is done automatically within the com-
puter program. Therefore, the user does not need to manually change the size of elements by 
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■■ Figure 7–7  Examples of h, p, and r refinement

P
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(a) Original mesh

P
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(b) A uniformly re�ned h mesh

P

P

(c) A possible nonuniform h re�nement

P

P

(d) A possible uniform p re�nement

P

P

(e) A possible r re�nement
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Displacement Mag
Deformed Original Model
Max Disp +7.4182E-04
Scale 1.6176E+03
Load: LoadSet 1

"window3" - Design_2_MPA - Design_2_MPA

(f) Pro/MECHANICA model of pulley.

■■ Figure 7–7  (Continued )

creating a finer mesh, as must be done in the h method. (The h refinement can be automated 
using a remeshing algorithm within the finite element software.) Depending on the problem, 
a coarse mesh will often yield acceptable results. An extensive discussion of error indicators 
and estimates is given in the literature [19].

The p refinement may consist of adding degrees of freedom to existing nodes, adding 
nodes on existing boundaries between elements, and/or adding internal degrees of freedom. A 
uniform p refinement (same refinement performed on all elements) is shown in Figure 7–7(d). 
One of the more common commercial computer programs, Pro/MECHANICA [29], uses 
the p method exclusively. A typical discretized finite element model of a pulley using Pro/
MECHANICA is shown in Figure 7–7f.

r Method of Refinement
In the r method of refinement, the nodes are rearranged or relocated without changing the 
number of elements or the polynomial degree of their field quantities, i.e., displacements. 
Figure  7–7(e) illustrates a possible r refinement of the original coarse mesh shown in 
Figure 7–7(a). Notice in this r refinement that we have refined the mesh closer to the loads 
with resulting coarseness in the mesh away from the end loads.
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Transition Triangles
Figure 7–4 illustrates the use of triangular elements for transitions from smaller quadrilaterals 
to larger quadrilaterals. This transition is necessary because for simple CST elements, inter-
mediate nodes along element edges are inconsistent with the energy formulation of the CST 
equations. If intermediate nodes were used, no assurance of compatibility would be possible, 
and resulting holes could occur in the deformed model. Using higher-order elements, such 
as the linear-strain triangle described in Chapter 8, allows us to use intermediate nodes along 
element edges and maintain compatibility.

Concentrated or Point Loads and Infinite Stress
Concentrated or point loads can be applied to nodes of an element provided the element sup-
ports the degree of freedom associated with the load. For instance, truss elements and two- 
and three-dimensional elements support only translational degrees of freedom, and therefore 
concentrated nodal moments cannot be applied to these elements; only concentrated forces 
can be applied. However, we should realize that physically concentrated forces are usually an 
idealization and mathematical convenience that represent a distributed load of high intensity 
acting over a small area.

According to classical linear theories of elasticity for beams, plates, and solid bodies 
[2, 16, 17], at a point loaded by a concentrated normal force there is finite displacement and 
stress in a beam, finite displacement but infinite stress in a plate, and infinite stress in a two- or 
three-dimensional solid body. These results are the consequences of the differing assumptions 
about the stress fields in standard linear theories of beams, plates, and solid elastic bodies. A 
truly concentrated force would cause material under the load to yield, and linear elastic theories 
do not predict yielding.

In a finite element analysis, when a concentrated force is applied to a node of a finite 
element model, infinite displacement and stress are never computed. A concentrated force on 
a plane stress or strain model has a number of equivalent distributed loadings, which would 
not be expected to produce infinite stresses. Infinite stresses can be approached only as the 
mesh around the load is highly refined. The best we can hope for is that we can highly refine 
the mesh in the vicinity of the concentrated load as shown in Figure 7–6(a), with the under-
standing that the deformations and stresses will be approximate around the load, or that these 
stresses near the concentrated force are not the object of study, while stresses near another 
point away from the force, such as B in Figure 7–6(f), are of concern. The preceding remarks 
about concentrated forces apply to concentrated reactions as well.

Finally, another way to model with a concentrated force is to use additional elements and 
a single concentrated load as shown in Figure 7–6(h). The shape of the distribution used to 
simulate a distributed load can be controlled by the relative stiffness of the elements above the 
loading plane to the actual structure by changing the modulus of elasticity of these elements. 
This method spreads the concentrated load over a number of elements of the actual structure.

Infinite stress based on elasticity solutions may also exist for special geometries and load-
ings, such as the re-entrant corner shown in Figure 7–6(f). The stress is predicted to be infinite 
at the re-entrant corner. Hence, the finite element method based on linear elastic material mod-
els will never yield convergence (no matter how many times you refine the mesh) to a correct 
stress level at the re-entrant corner [18]. We must either change the sharp re-entrant corner to 
one with a radius or use a theory that accounts for plastic or yielding behavior in the material.
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Infinite Medium
Figure 7–3 shows a typical symmetric model used to represent an infinite medium (a soil mass 
subjected to a foundation load). The guideline for the finite element model is that enough 
material must be included such that the displacements at nodes and stresses within the ele-
ments become negligibly small at locations far from the foundation load. Just how much of 
the medium should be modeled can be determined by a trial-and-error procedure in which 
the horizontal and vertical distances from the load are varied and the resulting effects on the 
displacements and stresses are observed. Alternatively, the experiences of other investigators 
working on similar problems may prove helpful. For a homogeneous soil mass, experience 
has shown that the influence of the footing becomes insignificant if the horizontal distance of 
the model is taken as approximately four to six times the width of the footing and the vertical 
distance is taken as approximately four to ten times the width of the footing [4, 5, 6]. Also, the 
use of infinite elements is described in Reference [13].

After choosing the horizontal and vertical dimensions of the model, we must idealize the 
boundary conditions. Usually, the horizontal displacement becomes negligible far from the load, 
and we restrain the horizontal movement of all the nodal points on that boundary (the right-side 
boundary in Figure 7–3). Hence, rollers are used to restrain the horizontal motion along the right 
side. The bottom boundary can be completely fixed, as is modeled in Figure 7–3 by using pin 
supports at each nodal point along the bottom edge. Alternatively, the bottom can be constrained 
only against vertical movement. The choice depends on the soil conditions at the bottom of the 
model. Usually, complete fixity is assumed if the lower boundary is taken as bedrock.

In Figure 7–3, the left-side vertical boundary is taken to be directly under the center 
of the load because symmetry has been assumed. As we said before when discussing sym-
metry, all nodal points along the vertical line of symmetry are restrained against horizontal 
displacement.

Finally, Reference [11] is recommended for additional discussion regarding guidelines in 
modeling with different element types, such as beams, plane stress/plane strain, and three-di-
mensional solids.

Connecting (Mixing) Different Kinds of Elements
Sometimes it becomes necessary in a model to combine different kinds of elements, such 
as beams and plane elements, such as CSTs. The problem with combining these elements is 
that they have different degrees of freedom at each node. The beam allows for transverse dis-
placement and rotation at each node, while the plane element only has in-plane displacements 
at each node. The beam can resist a concentrated moment at a node, whereas a plane element 
(CST) cannot. Therefore, if a beam element is connected to a plane element at a single node 
as shown in Figure 7–8(a), the result will be a hinge connection at A. This means only a force 
can be transmitted through the node between the two kinds of elements. This also creates a 
mechanism, as shown by the stiffness matrix being singular. This problem can be corrected 
by extending the beam into the plane element by adding one or more beam elements, shown 
as AB, for one beam element in Figure 7–8(b). Moment can now be transferred through the 
beam to the plane element. This extension assures that translational degrees of freedom of 
beam and plane element are connected at nodes A and B. Nodal rotations are associated with 
only the beam element, AB. The calculated stresses in the plane element will not normally be 
accurate near node A.
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For more examples of connecting different kinds of elements see Figures 1–6, 1–11, 
12–11 and 16–33. These figures show examples of beam and plate elements connected together 
(Figures 1–6, 12–11, and 16–33) and solid (brick) elements connected to plates (Figure 1–11).

Checking the Model for Errors
The discretized finite element model should be checked carefully before results are computed. 
Ideally, a model should be checked by an analyst not involved in the preparation of the model, 
who is then more likely to be objective.

Preprocessors with their detailed graphical display capabilities now make it compar-
atively easy to find errors, particularly the more obvious ones involved with a misplaced 
node or missing element or a misplaced load or boundary support. Preprocessors include 
such niceties as color, shrink plots (showing elements separated from each other as in 
Figure 7–9), rotated views, sectioning, exploded views, and removal of hidden lines to aid 
in error detection.

Most commercial codes also include warnings regarding overly distorted element 
shapes and checking for sufficient supports. However, the user must still select the proper 
element types, define sufficient support, and place supports and forces in proper locations 
with proper directions and magnitudes, use consistent units, etc., to obtain a successful 
analysis.

Checking the Results and Typical Postprocessor Results
The results should be checked for consistency by making sure that intended support nodes 
have zero displacement, as required. Also, mesh convergence studies should be done as 
previously described to observe convergence of results, such as displacements and stresses. 
If reflective symmetry exists, then stresses and displacements should exhibit this symme-
try. That is, we should understand that for symmetry with respect to one plane, analysis 
of either half of the structure yields a complete solution, because symmetric loading in 
a symmetric structure produces symmetric results. Computed results from the finite ele-
ment program should be compared with results from other available techniques, even if 
these techniques may be cruder than the finite element results. For instance, approximate 
mechanics of material formulas, experimental data, and numerical analysis of simpler 
but similar problems may be used for comparison, particularly if you have no real idea of 
the magnitude of the answers. Remember to use all results with some degree of caution, 

■■ Figure 7–8  Connecting beam element to plane elements: (a) no moment is transferred, 
(b) moment is transferred
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as errors can crop up in such sources as textbook or handbook comparison solutions and 
experimental results.

In the end, the analyst should probably spend as much time processing, checking, and 
analyzing results as is spent in data preparation.

Finally, we present an additional typical postprocessor result for the plane stress problem of 
Figure 7–9 (Figure 7–10, on page 406). Other examples with results are shown in Section 7.6.

	 7.2 	 Equilibrium and Compatibility  
of Finite Element Results

An approximate solution for a stress analysis problem using the finite element method based 
on assumed displacement fields does not generally satisfy all the requirements for equilibrium 
and compatibility that an exact theory-of-elasticity solution satisfies. However, remember that 
relatively few exact solutions exist. Hence, the finite element method is a very practical one 
for obtaining reasonable, but approximate, numerical solutions. Recall the advantages of the 
finite element method as described in Chapter 1 and as illustrated numerous times throughout 
this text.

We now describe some of the approximations generally inherent in finite element solutions.

1.	 Equilibrium of nodal forces and moments is satisfied. This is true because the global equa-
tion F K d5{ } [ ]{ } is a nodal equilibrium equation whose solution for d{ } is such that the 
sums of all forces and moments applied to each node are zero. Equilibrium of the whole 
structure is also satisfied because the structure reactions are included in the global forces 

■■ Figure 7–9  Plate of ASTM-A36 steel (2.5 m long, 2.5 m wide, 0.1 m thick, and with a hole 
radius 0.05 m) discretized using a preprocessor program with automatic mesh generation  
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and hence in the nodal equilibrium equations. Numerous example problems, particularly 
involving truss and frame analysis in Chapter 3 and 5, respectively, have illustrated the 
equilibrium of nodes and of total structures.

2.	 Equilibrium within an element is not always satisfied. However, for the constant-strain bar 
of Chapter 3 and the constant-strain triangle of Chapter 6, element equilibrium is satisfied. 
Also the cubic displacement function is shown to satisfy the basic beam equilibrium differ-
ential equation in Chapter 4 and hence to satisfy element force and moment equilibrium. 
However, elements such as the linear-strain triangle of Chapter 8, the axisymmetric ele-
ment of Chapter 9, and the rectangular element of Chapter 10 usually only approximately 
satisfy the element equilibrium equations.

3.	 Equilibrium is not usually satisfied across interelement boundaries. A differential element 
including parts of two adjacent finite elements is usually not in equilibrium (Figure 7–11). 
For line elements, such as used for truss and frame analysis, interelement equilibrium is 
satisfied, as shown in example problems in Chapters 3 through 5. However, for two- and 
three-dimensional elements, interelement equilibrium is not usually satisfied. For instance, 
the results of Example 6.2 indicate that the normal stress along the diagonal edge between 
the two elements is different in the two elements. Also, the coarseness of the mesh causes 

■■ Figure 7–10  Plate with a hole showing the deformed shape of a plate superimposed over 
an undeformed shape. Plate is fixed on the left edge and subjected to 10 MPa tensile stress 
along the right edge. Maximum horizontal displacement is 2.41 mm at the center of the 
right edge. (Plate is steel with 0.1 m thickness)
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this lack of interelement equilibrium to be even more pronounced. The normal and shear 
stresses at a free edge usually are not zero even though theory predicts them to be. Again, 
Example 6.2 illustrates this, with free-edge stresses ys  and xys  not equal to zero. However, 
as more elements are used (refined mesh) the ys  and xys  stresses on the stress-free edges 
will approach zero.

4.	 Continuity is satisfied within an element as long as the element displacement field is 
continuous. Hence, individual elements do not tear apart.

5.	 In the formulation of the element equations, continuity is invoked at the nodes. Hence, 
elements remain connected at their common nodes. Similarly, the structure remains con-
nected to its support nodes because boundary conditions are invoked at these nodes.

6.	 Continuity may or may not be satisfied along interelement boundaries. For line elements 
such as bars and beams, interelement boundaries are merely nodes. Therefore, the 
preceding statement 5 applies for these line elements. The constant-strain triangle and 
the rectangular element of Chapter 6 remain straight-sided when deformed. Therefore, 
interelement continuity exists for these elements; that is, these plane elements deform 

■■ Figure 7–11  Example 6.2, illustrating violation of equilibrium of a differential element 
and along the diagonal edge between two elements (the coarseness of the mesh amplifies the 
violation of equilibrium)
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along common lines without openings, overlaps, or discontinuities. Incompatible ele-
ments, those that allow gaps or overlaps between elements, can be acceptable and even 
desirable. Incompatible element formulations, in some cases, have been shown to converge 
more rapidly to the exact solution [1]. (For more on this special topic, consult References 
[7] and [8].)

	 7.3 	 Convergence of Solution and Mesh Refinement
In Section 3.2, we presented guidelines for the selection of so-called compatible and complete 
displacement functions as they related to the bar element. Those four guidelines are generally 
applicable, and satisfaction of them has been shown to ensure monotonic convergence of the 
solution of a particular problem [9]. Furthermore, it has been shown [10] that these compatible 
and complete displacement functions used in the displacement formulation of the finite ele-
ment method yield an upper bound on the true stiffness (yielding models that are stiffer than 
the actual physical devise), and hence a lower bound on the displacement of the problem, as 
shown in Figure 7–12.

Hence, as the mesh size is reduced—that is, as the number of elements is increased—we 
are ensured of monotonic convergence of the solution when compatible and complete displace-
ment functions are used. Examples of this convergence are given in References [1] and [11], 
and in Table 7–2 for the beam with loading shown in Figure 7–1(a). All elements in the table 
are rectangular. The results in Table 7–2 indicate the influence of the number of elements (or 
the number of degrees of freedom as measured by the number of nodes) on the convergence 
toward a common solution, in this case the exact one. We again observe the influence of the 
aspect ratio. The higher the aspect ratio, even with a larger number of degrees of freedom, the 
worse the answer, as indicated by comparing cases 2 and 3.

Patch Test
To test the convergence of a solution of an element being used in your model, a test called 
the patch test was originally developed by Irons [30, 31] to examine the soundness of a 
nonconforming plate element and is further discussed by Taylor, et al. [32], MacNeal and 
Harder [33], Bathe [34], Belytschko, et al. [35], and Cook, et al. [7] (among others). The 
patch test is based in part on the same requirements described in Section 3.2: that the ele-
ment must be able to accommodate both rigid-body motion and constant state of strain, as 

■■ Figure 7–12  Convergence of a finite element solution based on the compatible 
displacement formulation
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both are possible within a structure. The patch test then can be used to determined if the 
element satisfies convergence requirements, although, in general, the patch test is “neither 
sufficient nor necessary for convergence” [34]. The test also can be applied to determine if 
sufficient Gauss points have been used in the numerical integration process to evaluate the 
stiffness matrix when the concept of isoparametric formulation of stiffness matrices is used 
as described in Chapter 10.

Patch Test Example
In the example to follow, we show that when properly formulated displacement-based elements 
(as for instance given by Eqs. (6.2.2) for the plane stress/strain element) are used in compatible 
meshes (those meshes that satisfy both continuity between adjacent elements and continuity 
within an element), the patch test is automatically satisfied.

The patch test is performed by considering a simple finite element model composed of 
four irregular shaped elements of the same material with at least one node inside of the patch 
(called the patch node), as shown in Figure 7–13. The elements should be irregular, as some 
regular elements (such as rectangular) may pass the test whereas irregular ones will not. The 
elements may be all triangles or quadrilaterals or a mix of both. The boundary can be a rect-
angle though.

■■ Figure 7–13  A patch of quadrilateral elements used for displacement patch test
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 Table 7–2  Comparison of results for different numbers of elements

Case Number of Nodes Number of Elements Aspect Ratio
Vertical Displacement, 

v (mm) Point A

1 21 12 2 218.80

2 39 24 1 224.90

3 45 32 3 222.22

4 85 64 1.5 227.38

5 105 80 1.2 229.74

Exact solution [2] 229.26
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The “displacement” patch test can be used to check if the elements can represent  
rigid-body motion and a constant state of strain. To verify if the elements can represent 
rigid-body motion, we do the following:

Step 1  �Set the x-displacements of all nodes on the boundary to a value (say 1). That is, 
let 11 2 3 4 6 7 8 95 5 5 5 5 5 5 5u u u u u u u u  (x-translational rigid-body motion 
check). Set the y-displacement of these nodes to zero.

Step 2  Set the applied forces to zero at all nodes, including the interior node 5.
Step 3  �Using the displacement values of 1 from step 1, set up the finite element equations 

using the stiffness method.
Step 4  Solve for the unknown displacements at node 5.
Step 5  �To pass the rigid-body motion test, the computed x- and y-displacements at node 5 

should be equal to u 5 15  and v 5 05 :
Step 6  �Repeat the steps by now setting all vi’s to 1 except at node 5 (y-translational 

rigid-body motion check). The displacement at node 5 should now become u 5 05  
and v 5 15 .

Step 7  �Repeat the steps with all ui 5’s 1 and all vi 5’s 1 except at node 5 (x – y diago-
nal rigid-body motion check). The displacements at node 5 should be u 5 15  and  
v 5 15 .

Step 8  ��The strains should be calculated within each element and should be zero.

To verify that the elements can represent a state of constant strain, the following steps 
are taken:

Step 1  �As strains are derivatives of displacements, constant strain conditions can be obtained 
by assuming linear displacement functions. So set u x y x5( , )  and v x y 5( , ) 0.  
This yields � �u xx« 5 5 1. The other in-plane strains, � �v yy« 5 5 0 and 

� � � �u y v xxyg 5 1 5 0. The displacement at each node must then be equal to its 
x-coordinate. In order to pass the patch test, the calculated x-displacement at node 5 
must equal its x-coordinate; that is, u 5 0.35  and v 5 0.05 .

Step 2  �Repeat step 1 with u x y 5( , ) 0 and v x y y5( , ) . This yields, x« 5 0, y« 5 1, and 
xyg 5 0. The displacement at each node must then be equal to its y-coordinate. In 

order to pass the patch test, the calculated y-displacement at node 5 must equal its 
y-coordinate; that is, u 5 0.05  and v 5 0.45 .

Step 3  �Repeat the steps again with the shear strain becoming xyg 5 1 and the normal strains 
equal to zero.

The “force” patch test validates that errors associated with the applied loads do not occur. 
The steps are as follows:

Step 1  �Assume a uniform traction of xs 5 1 or some convenient constant value is applied 
along the right side of the patch. Replace this traction with its work-equivalent 
nodal load.

Step 2  Internal node 5 is not loaded.
Step 3  �The patch has just enough supports to prevent rigid-body motion. In Figure 7–14, 

the left edge has one pin support and two rollers. (One roller would be sufficient to 
prevent rigid-body motion.) The roller supports allow for strain y«  due to the Poisson 
effect. This strain will occur for Poisson’s ratio not equal to zero and therefore should 
be accounted for.
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Step 4  �The finite element direct stiffness method is again used to obtain the displacements 
and element stresses. The uniform traction xs 5 1 should be obtained within each 
element. The other in-plane stresses, ys  and xys , should be zero.

Step 5  �Repeat the steps assuming first that ys 5 1 along the top edge and the other stresses 
are zero. Then assume that 5 1xys  and the two normal stresses equal zero.

The patch test also can be applied to other element types. For instance, a patch of solid ele-
ments described for a three-dimensional stress state in Chapter 11 should be able to properly yield 
all six constant states of stress. The patch test for the plate bending analysis described in Chapter 12 
should yield constant bending moments Mx and My and constant twisting moment Mxy.

An element that passes the patch test is capable of meeting the following requirements:

	(a)	 Predicting rigid-body motion without strain when this state exists.
	(b)	 Predicting states of constant strain if they occur.
	(c)	 Compatibility with adjacent elements when a state of constant strain exists in adjacent 

elements.

When these requirements are met, it is sufficient to guarantee that a mesh of these elements 
will yield convergence to the solution as the mesh is continually refined.

The patch test is then a standard test for developers of new elements to test whether the 
element has the necessary convergence properties. But the test does not indicate how well an 
element works in other applications. An element passing the patch test may still yield poor 
accuracy in a coarse mesh or show slow convergence as the mesh is refined.

	 7.4 	 Interpretation of Stresses
In the stiffness or displacement formulation of the finite element method used throughout 
this text, the primary quantities determined are the interelement nodal displacements of the 
assemblage. The secondary quantities, such as strain and stress in an element, are then obtained 
through use of B d« 5{ } [ ]{ } and D B ds 5{ } [ ][ ]{ }. For elements using linear-displacement 
models, such as the bar and the constant-strain triangle, [B] is constant, and since we assume 
[D] to be constant, the stresses are constant over the element. In this case, it is common practice 
to assign the stress to the centroid of the element with acceptable results.

However, as illustrated in Section 3.11 for the axial member, stresses are not predicted 
as accurately as the displacements (see Figures 3–31 and 3–32). For example, remember the 

■■ Figure 7–14  A patch of quadrilateral elements for the force patch test
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constant-strain or constant-stress element has been used in modeling the beam in Figure 7–1. 
Therefore, the stress in each element is assumed constant. Figure 7–15 compares the exact 
beam theory solution for bending stress through the beam depth at the centroidal location of 
the elements next to the wall with the finite element solution of case 4 in Table 7–2. This finite 
element model consists of four elements through the beam depth. Therefore, only four stress 
values are obtained through the depth. Again, the best approximation of the stress appears to 
occur at the midpoint of each element, since the derivative of displacement is better predicted 
between the nodes than at the nodes.

For higher-order elements, such as the linear-strain triangle of Chapter 8, [B], and hence 
the stresses, are functions of the coordinates. The common practice is then to directly evaluate 
the stresses at the centroid of the element.

An alternative procedure sometimes is to use an average (possibly weighted) value of 
the stresses evaluated at each node of the element. This averaging method is often based on 
evaluating the stresses at the Gauss points located within the element (described in Chapter 10) 
and then interpolating to the element nodes using the shape functions of the specific element. 
Then these stresses in all elements at a common node are averaged to represent the stress at the 
node. This averaging process is called smoothing. Figure 7–9 shows a von Mises stress “fringe 
carpet” (dithered) contour plot obtained by smoothing.

Smoothing results in a pleasing, continuous plot which may not indicate some serious 
problems with the model and the results. You should always view the unsmoothed contour 
plots as well. Highly discontinuous contours between elements in a region of an unsmoothed 
plot indicate modeling problems and typically require additional refinement of the element 
mesh in the suspect region.

If the discontinuities in an unsmoothed contour plot are small or are in regions of little con-
sequence, a smoothed contour plot can normally be used with a high degree of confidence in the 
results. There are, however, exceptions when smoothing leads to erroneous results. For instance, 
if the thickness changes significantly between adjacent elements [See Figure 7–6(c)], the stresses 
will normally be different from one element to the next across the change in thickness. Smoothing 
will likely hide the actual stress results. If there is a change in material stiffness due to different E’s, 
this change will cause an abrupt change in strain across the different materials [See Figure 7–6(d)]. 

■■ Figure 7–15  Comparison of the finite element solution and the exact solution of bending 
stress through a beam cross section
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Again, smoothing will likely hide this abrupt change in strain. Also, for shrink-fit problems 
involving one cylinder being expanded enough by heating to slip over the smaller one, the cir-
cumferential stress between the mating cylinders is normally quite different [16].

The computer program examples in Section 7.6 show additional results, such as displaced 
models, along with smoothed stress plots. The stresses to be plotted can be von Mises (used in 
the maximum distortion energy theory to predict failure of ductile materials subjected to static 
loading as described in Section 6.5); Tresca (used in the Tresca or maximum shear stress theory 
also to predict failure of ductile materials subjected to static loading) [14, 16], and maximum 
and minimum principal stresses.

	 7.5 	 Flowchart for the Solution of Plane  
Stress/Strain Problems

In Figure 7–16, we present a flowchart of a typical finite element process used for the analysis 
of plane stress and plane strain problems on the basis of the theory presented in Chapter 6.

■■ Figure 7–16  Flowchart of plane stress/strain finite element process

START

END

Draw the geometry and apply forces
and boundary conditions

De�ne the element type and mechanical
properties (here the 2-D element is used)

Compute the element stiffness matrix[k]
and the load vector {f} in global coordinates

Use the direct stiffness procedure to add [k] and distributed loads {f}
to the proper locations in assemblage stiffness [K] and loads {F}

DO JE = 1, NELE

Solve [K]{d} = {F} for {d}

Compute the element stresses

Output results
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	 7.6 	 Computer Program–Assisted Step-by-Step  
Solution, Other Models, and Results  
for Plane Stress/Strain Problems

In this section, we present a computer-assisted step-by-step solution of a plane stress problem, 
along with results of some plane stress/strain problems solved using a computer program [12].  
These results illustrate the various kinds of difficult problems that can be solved using a gen-
eral-purpose computer program.

The computer-assisted step-by-step problem is the bicycle wrench shown in Figure 7–17(a) 
on page 415. The following steps have been used to solve for the stresses in the wrench. (Some 
of these steps may be interchanged.)

Step 1   �The first step is to draw the outline of the wrench using a standard drawing program 
as shown in Figure 7–17(a). The exact dimensions of the wrench are obtained from 
Figure P7–38, where the overall depth of the wrench is 20 mm, the length is 140 mm, 
and the sides of the hexagons are 9 mm long for the middle one and 7 mm long for 
the side ones. The radius of the enclosed ends is 15 mm.

Step 2   �The second step is to use a two-dimensional mesh generator to create the model mesh 
as shown in Figure 7–17(b)–(d).

Step 3   �The third step is to apply the boundary conditions to the proper nodes using the proper 
boundary condition command. This is shown in Figure 7–17(c) as indicated by the 
small D signs at the nodes on the inside of the left hexagonal shaped hole. The D sign 
indicates complete fixity for a node. This means these nodes are constrained from 
translating in the y and z directions in the plane of the wrench.

Step 4   �The fourth step requires us to select the surface where the distributed loading is to 
be applied and then the magnitude of the surface traction. This is the upper surface 
between the middle and right hexagonal holes where the surface traction of 4.41 MPa 
is applied as also shown in Figure 7–17(c). In the computer program this surface 
changes to the color red as selected by the user.

Step 5   �In step 5 we choose the material properties. Here ASTM A-514 steel has been 
selected, as this is quenched and tempered steel with high yield strength and will 
allow for the thickness to be minimized.

Step 6   �In step six we select the element type for the kind of analysis to be performed. Here 
we select the plane stress element, as this is a good approximation to the kind of 
behavior that is produced in a plane stress analysis. For the plane stress element a 
thickness is required. An initial guess of 10 mm is made. This thickness appears to 
be compatible with the other dimensions of the wrench.

Step 7   �The seventh step is an optional check of the model. If you choose to perform this 
step you will see the boundary conditions now appear as triangles at the left nodes 
corresponding to full fixity and the surface traction arrows, indicating the location 
and direction of the surface traction shown also in Figure 7–17(c).

Step 8   In step 8 we perform the stress analysis of the model.
Step 9   �In step 9 we select the results, such as the displacement plot, the principal stress plot, 

and the von Mises stress plot. The von Mises stress plot is used to determine the 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



415
7.6  Computer Program–Assisted Step-by-Step Solution, Other Models, and Results 

■■ Figure 7–17  Bicycle wrench (a) outline drawing of wrench, (b) meshed model of wrench,  
(c) boundary conditions and surface traction on wrench, and (d) von Mises stress plot (By 
Joseph McIlree and David Knopp) (See the full-color insert for a color version of this figure.)
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failure of the wrench based on the maximum distortion energy theory as described 
in Section 6.5. The von Mises stress plot is shown in Figure 7–17(d). The maximum 
von Mises stress indicated in Figure 7–17(d) is 290 MPa, and the yield strength of 
the ASTM A-514 steel is 690 MPa. Therefore, the wrench is safe from yielding. 
Additional trials can be made if the factor of safety is satisfied and if the maximum 
deflection appears to be satisfactory.

Figure 7–18(a) shows a finite element model of a steel connecting rod that is fixed on its 
left edge and loaded around the right inner edge of the hole with a total force of 13.35 kN. For 
more details, including the geometry of this rod, see Figure P7–15 at the end of this chapter. 
Figure 7–18(b) shows the resulting maximum principal stress. The largest principal stress of 
79,750 kPa occurs at the top and bottom inside edges of the hole.

Figure 7–19 shows a finite element model along with the von Mises stress plot of an over-
load protection device (see Problem 7.33 for details of this problem). The upper member of the 

4450 N
4450 N
4450 N

■■ Figure 7–18  (a) Connecting rod subjected to tensile loading and (b) resulting principal 
stress throughout the rod (See the full-color insert for a color version of this figure.)  
(By Jeff Artus) 

4.702

Stress
Maximun Principal

kN/m2

79750
71775
63800
55210
47610
39870
31895
23925
15950
7985
6.85e-13

0.000

Load Case: 1 of 1

Load Case Description: Load Case Description

Maximum Value 79750 kN/m2

Minimum Value 6.85e-13 kN/m2

1 < Design Scenario 1 >
cm 9.401 16.642
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■■ Figure 7–19  von Mises stress plot of overload protection device (See the full-color insert for 
a color version of this figure.)

B

S A

E

7.6  Computer Program–Assisted Step-by-Step Solution, Other Models, and Results 

device was modeled. Node S at the shear pin location was constrained from vertical motion, 
five nodes along the left side of pin hole B were constrained in both the horizontal and vertical 
directions, and all nodes at the pin hole at A were constrained in the vertical direction. A load 
of 700 N was spread over the three lowest nodes at the inner side of the right section hanging 
down near point E to simulate the load to fail the pin at S in shear at a stress of 40 MPa. The 
largest von Mises stress of 201 MPa occurs at the inner edge of the cutout section for a device 
with thickness of 12 mm.

Figure 7–20 shows the plot of the von Mises stress of a  tapered plate with a hole in it, 
subjected to tensile loading of 5 kN acting along the right edge. The left edge is fixed. For more 
details of this problem, see Problem 7.26. The largest von Mises stress of 6.17 MPa occurs at 
the top edge of the hole, whereas the second largest von Mises stress of 5.78 MPa occurs at 
the elbow between the smallest cross section and where the taper begins.

Figure 7–21 shows the plot of the von Mises stresses in an adjustable wrench subjected to 
700 N of force applied over the top 50 mm of the wrench as shown. The largest von Mises stress 
of 29.72 MPa occurs at the outer edge of the right side at the lowest location of the narrow part 
of the handle. The lower inside surface of the wrench is fixed to simulate the wrench engaged 
with a bolt. For more details of this problem, see Problem 7.28.

Finally, Figure 7–22(a) shows a finite element model and the von Mises stress plot for a 
beam welded to a column by top and bottom fillet welds. A surface contact between the beam 
and column was used that allowed the beam and column to separate wherever tension existed 
along the surfaces in contact. The beam is 70 mm thick by 120 mm deep by 200 mm long with 
a load of 10 kN applied vertically 160 mm from the left end of the beam and at 60 mm down 
from the top edge of the beam. The material is steel with E 5 205 GPa and ν 5 0.25 for all 
material. The weld leg size is 6 mm.
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■■ Figure 7–21  von Mises stress plot of an adjustable wrench (By John Schuster and  
Nick Soper)

■■ Figure 7–20  von Mises stress plot in a tapered plate with hole (By Matthew Groshek and 
Caleb Johnson)

5 kN

After mesh refinement around the top weld to double the number of elements in the weld, 
the maximum von Mises stress was determined to be 87.3 MPa at the toe of the top weld as 
seen best in the zoomed-in Figure 7–22(b). This value compares reasonably well with that 
obtained by the classical method shown on pages 458–460 of Reference [36] where a value 
of 94 MPa was obtained.
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(a)

■■ Figure 7–22  (a) von Mises stress plot of beam welded to column (largest von Mises stress 
of 87.3 MPa is located at toe of top fillet weld as shown by (b) zoomed-in view of top fillet 
weld (notice also that a surface contact was used between the beam and column that allowed 
for the gap to form where the beam separated from the column) (See the full-color insert for a 
color version of this figure.)

(b)

7.6  Computer Program–Assisted Step-by-Step Solution, Other Models, and Results 
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Problems

	 7.1		  For the finite element mesh shown in Figure P7–1, comment on the appropriateness 
of the mesh. Indicate the mistakes in the model. Explain and show how to correct 
them.

■■ Figure P7–1

	 7.2		  Comment on the mesh sizing in Figure P7–2. Is it reasonable? If not, explain why not.

■■ Figure P7–2

Problems
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	 7.3		  What happens if the material property ν 5 0.5 in the plane strain case? Is this pos-
sible? Explain.

	 7.4		  Under what conditions is the structure in Figure P7–4 a plane strain problem? Under 
what conditions is the structure a plane stress problem?

■■ Figure P7–4

	 7.5		  When do problems occur using the smoothing (averaging of stress at the nodes from 
elements connected to the node) method for obtaining stress results?

	 7.6		  What thickness do you think is used in computer programs for plane strain problems?
	 7.7		  Which one of the CST models shown in Figure P7–7 is expected to give the best 

results for a cantilever beam subjected to an end shear load? Why?

■■ Figure P7–7

	 7.8		  The plane stress element only has in-plane displacements, while the frame element 
resists displacements and rotations. How can we combine the plane stress and beam 
elements and still insure compatibility? That is, how can we make sure the frame 
element and plane stress element remain together?

	 7.9		  In considering the patch test, answer the following questions:
a.	 Can elements of different mechanical properties be used? Why?
b.	 Can the patch be arbitrary in shape? Why?
c.	 Can we mix triangular and quadrilateral elements in the patch test?
d.	 Can we mix bar elements with triangular or quadrilateral elements? Why?
e.	 When should the patch test be applied?
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	 7.10		  Consider the bar with two elements shown in Figure P7.10. Perform a patch test 
using these two elements. Let E 5 200 GPa, and A 5 3 21 10 m4 2. Use the stan-
dard bar element stiffness matrix [Eq. (3.1.14)] derived using the shape functions 
N x x L5( )1  and N x x L5 2( ) 12 .
a.	� For the rigid body motion test, set u 5 11  m and u 5 13  m and verify that u 5 12  m  

by using the direct stiffness method.
b.	� For the constant strain test, assume linear displacement function u x x5( )  for 

the nodes at the boundaries, such that u 5 01  and u 5 23  m, and verify that 
u 5 0.62  m.

■■ Figure P7–10

1 1 22 3

1.4 m0.6 m

Solve the following problems using a computer program. In some of these 
problems, we suggest that students be assigned separate parts (or models) to 
facilitate parametric studies.

	 7.11		  Consider the rectangular plate shown (Figure P7–11) in plane stress. Using a com-
puter program, verify that the plane stress element of the code satisfied the patch 
test. That is, apply constant displacement of u 5 0.005 m to the right-side nodes, 
3, 6, and 9, and determine the displacement at interior node 5. Use E 5 200 GPa, 
v 5 0.3, and plate thickness of 0.1 m. Explain your results.

■■ Figure P7–11

(0.5, 0) (1, 0)

987

1 2 3

4
5

6
(1, 0.5)

x

y

u = 0.005 m

(0.5, 1) (1, 1)(0, 1)

(0.3, 0.3)

(0, 0.5)

	 7.12		  Determine the free-end displacements and the element stresses for the plate dis-
cretized into four triangular elements and subjected to the tensile forces shown in 
Figure P7–12. Compare your results to the solution given in Section 6.5. Why are 
these results different? Let 5 210 GPaE , ν 5 0.30, and 5 20t  mm.

■■ Figure P7–12

15 kN

15 kN

25 cm

50 cm

Problems
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	 7.13		  Determine the stresses in the plate with the hole subjected to the tensile stress shown 
in Figure P7–13. Graph the stress variation xs  versus the distance y from the hole. 
Let E 5 200 GPa, ν 5 0.25, and t 5 25 mm. (Use various mesh densities, depend-
ing on your computer program in your finite element model.) Use symmetry as 
appropriate.

■■ Figure P7–13

	 7.14		  Solve the following problem of a steel tensile plate with a concentrated load applied 
at the top, as shown in Figure P7–14. Determine at what depth the effect of the load 
dies out. Plot stress ys  versus distance from the load. At distances of 25 mm, 50 mm, 
100 mm, 150 mm, 250 mm, 375 mm, 500 mm, and 750 mm from the load, list ys  
versus these distances. Let the width of the plate be 5 100 mmb , thickness of the 

■■ Figure P7–14

L

b

4 kN

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



425

plate be 5 6.25 mmt , and length be 5 1 mL . Look up the concept of St. Venant’s 
principle to see how it explains the stress behavior in this problem.

	 7.15		  For the flat connecting rod shown in Figure P7–15, determine the maximum prin-
cipal stresses and their location. Let 5 210 GPaE , ν 5 0.25, 5 25 mmt , and 

5 4000 NP .

■■ Figure P7–15

43 mm radius

40
 m

m

	 7.16		  Determine the maximum principal stresses and their locations for the member with 
fillet subjected to tensile surface tractions shown in Figure P7–16. Let E 5 200 GPa 
and ν 5 0.25. Then let E 5 73 GPa and ν 5 0.30. Let t 5 25 mm for both cases. 
Compare your answers for the two cases.

■■ Figure P7–16

1.5 N/mm2
1.5 N/mm2

	 7.17		  Determine the maximum principal stresses in the member with a re-entrant corner 
as shown in Figure P7–17. At what location are the principal stresses largest? Let 

5 210E  GPa and ν 5 0.25. Use plane strain conditions.
	 7.18		  Determine the maximum principal stresses in the soil mass subjected to the strip foot-

ing load shown in Figure P7–18. Use a width of 2D and depth of D, where D is 0.75, 
1, 1.5, 2 and 2.5 m. Plot the maximum stress contours on your finite element model 
for each case. Compare your results. Comment regarding your observations on mod-
eling infinite media. Let E 5 30,000 psi and ν 5 0.30. Use plane strain conditions.

Problems
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	 7.19		  For the tooth implant subjected to loads shown in Figure P7–19, determine the 
maximum principal stresses. Let 5 12E  GPa and ν 5 0.3 for the dental restor-
ative implant material (cross-hatched), and let 5 7.5E  GPa and ν 5 0.35 for the 
bony material. Let 5 1.25X  mm, 2.5 mm, 5.0 mm, 7.5 mm, and 12.5 mm, where 
X represents the various depths of the implant beneath the bony surface. Rectangular 
elements are used in the finite element model shown in Figure P7–19. Assume the 
thickness of each element to be 5 6.25t  mm.

■■ Figure P7–17 ■■ Figure P7–18

■■ Figure P7–19

	 7.20		  Determine the middepth deflection at the free end and the maximum principal stresses 
and their location for the beam subjected to the shear load variation shown in Figure 
P7–20. Do this using 64 rectangular elements all of size 3300 mm 12.5 mm; then 
all of size 3150 mm 25 mm; then all of size 375 mm 50 mm. Then use 60 rectan-
gular elements all of size 360 mm 66.67 mm; then all of size 3120 mm 33.33 mm.  
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Compare the free-end deflections and the maximum principal stresses in each case 
to the exact solution. Let 5 210E  GPa, ν 5 0.3, and 5 25t  mm. Comment on the 
accuracy of both displacements and stresses.

■■ Figure P7–20

	 7.21		  Determine the stresses in the shear wall shown in Figure P7–21. At what location 
are the principal stresses largest? Let E 5 21 GPa, ν 5 0.25, t 5 0.10wall  m, and 
t 5 0.20beam  m. Use 0.1 m radii at the re-entrant corners.

■■ Figure P7–21

	 7.22		  Determine the stresses in the plates with the round and square holes subjected to the 
tensile stresses shown in Figure P7–22. Compare the largest principal stresses for 
each plate. Let E 5 210 GPa, ν 5 0.25, and t 5 5 mm.

■■ Figure P7–22

1 mm rad.
each corner

Problems
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	 7.23		  For the concrete overpass structure shown in Figure P7–23, determine the max-
imum principal stresses and their locations. Assume plane strain conditions. Let 

5 20E  GPa and ν 5 0.30.

■■ Figure P7–23

■■ Figure P7–24

7 kN/m2

0.25 m

3 m

3 m

	 7.24		  For the steel culvert shown in Figure P7–24, determine the maximum von Mises 
stresses and their locations and the largest displacement and its location. Let 
E 5 210steel  GPa and let ν 5 0.30.

	 7.25		  For the tensile member shown in Figure P7–25 on the next page with two holes, 
determine the maximum principal stresses and their locations. Let E 5 210 GPa, 
ν 5 0.25, and t 5 10 mm. Then let E 5 70 GPa and ν 5 0.30. Compare your 
results. Use 2 kN/m2 spread uniformly over the right side.

	 7.26		  For the plate shown in Figure P7–26 on the next page, determine the maximum von 
Mises stresses and their locations. Let E 5 210 GPa and ν 5 0.25.

	 7.27		  For the concrete dam shown subjected to water pressure in Figure P7–27, determine 
the principal stresses. Let 5 25 GPaE  and ν 5 0.15. Assume plane strain condi-
tions. Perform the analysis for self-weight and then for hydrostatic (water) pressure 
against the dam vertical face as shown.
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■■ Figure P7–25

l m

0.3 m 0.3 m0.4 m 0.75 m

2 kN/m2

t = 10 mm75-mm radius

■■ Figure P7–26

(total force)

■■ Figure P7–27

Problems

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7  |  Practical Considerations in Modeling; Interpreting Results430

	 7.28		  Determine the von Mises stresses in the wrench shown in Figure P7–28. Let 
E 5 200 GPa and ν 5 0.25, and assume uniform thickness t 5 10 mm. Assume the 
bottom inside surface is fixed.

■■ Figure P7–28

700 N
spread over

50 mm
length

	 7.29		  Determine the principal stresses in the blade implant and the bony material shown 
in Figure P7–29 on page 431. Let E 5 20blade  GPa, ν 5 0.30blade , E 5 12bone  GPa, 
and ν 5 0.35bone . Assume plane stress conditions with t 5 5 mm.

	 7.30		  Determine the stresses in the plate shown in Figure P7–30 on page 431. Let E 5 210 GPa  
and ν 5 0.25. The element thickness is 10 mm.

	 7.31		  For the 12.5 mm thick canopy hook shown in Figure P7–31 on page 432, used to 
hold down an aircraft canopy, determine the maximum von Mises stress and max-
imum deflection. The hook is subjected to a concentrated upward load of 100 kN 
as shown. Assume boundary conditions of fixed supports over the lower half of the 
inside hole diameter. The hook is made from AISI 4130 steel, quenched and tem-
pered at 8200 C. Remember that the stress at the load is not accurate. (This problem 
is by Mr. Steven Miller.)
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	 7.32		  For the 6.25 mm thick L-shaped steel bracket shown in Figure P7–32 on page 432, 
show that the stress at the 890  re-entrant corner never converges. Try models with 
increasing numbers of elements to show this while plotting the maximum principal 
stress in the bracket. That is, start with one model, then refine the mesh around the 
re-entrant corner and see what happens, say, after two refinements. Why? Then add 
a fillet, say, of radius 12.5 mm and see what happens as you refine the mesh. Again 
plot the maximum principal stress for each refinement.

Use a computer program to help solve the design-type problems, 7.33 through 7.39.
	 7.33		  The machine shown in Figure P7–33 on page 433 is an overload protection device 

that releases the load when the shear pin S fails. Determine the maximum von Mises 
stress in the upper part ABE if the pin shears when its shear stress is 40 MPa. Assume 
the upper part to have a uniform thickness of 6 mm. Assume plane stress conditions 
for the upper part. The part is made of 6061 aluminum alloy. Is the thickness suf-
ficient to prevent failure based on the maximum distortion energy theory? If not, 
suggest a better thickness. (Scale all dimensions as needed.)

■■ Figure P7–29

0.1 mm rad.
(typ.)

■■ Figure P7–30

Problems
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	 7.34		  The steel triangular plate 6 mm thick shown in Figure P7–34 on page 433 is bolted to 
a steel column with 18 mm-diameter bolts in the pattern shown. Assuming the column 
and bolts are very rigid relative to the plate and neglecting friction forces between the 
column and plate, determine the highest load exerted on any bolt. The bolts should not 

■■ Figure P7–31

■■ Figure P7–32

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



433

be included in the model; just fix the nodes around the bolt circles and consider the 
reactions at these nodes as the bolt loads. If 18 mm-diameter bolts are not sufficient, rec-
ommend another standard diameter. Assume a standard material for the bolts. Compare 
the reactions from the finite element results to those found by classical methods.

	 7.35		  A 6 mm thick machine part supports an end load of 4.5 kN as shown in Figure P7–35. 
Determine the stress concentration factors for the two changes in geometry located at the 
radii shown on the lower side of the part. Compare the stresses you get to classical beam 
theory results with and without the change in geometry, that is, with a uniform depth of 
24 mm instead of the additional material depth of 26 mm. Assume standard mild steel 
is used for the part. Recommend any changes you might make in the geometry.

■■ Figure P7–33

■■ Figure P7–34

■■ Figure P7–35

Problems
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	 7.36		  A plate with an off-center hole is shown in Figure P7–36. Determine how close to the top 
edge the hole can be placed before yielding of the A36 steel occurs (based on the maximum 
distortion energy theory). The applied tensile stress is 70,000 kPa, and the plate thick-
ness is 6 mm. Now if the plate is made of 6061-T6 aluminum alloy with a yield strength 
of 255 MPa, does this change your answer? If the plate thickness is changed to 12 mm,  
how does this change the results? Use same total load as when the plate is 6 mm thick.

■■ Figure P7–36

	 7.37		  One arm of a crimper tool shown in Figure P7–37 is to be designed of 1080 as-rolled 
steel. The loads are shown in the figure. Fix the nodes around the two holes. Select 
a thickness for the arm based on the material not yielding with a factor of safety of 
1.5. Recommend any other changes in the design. (Scale any other dimensions that 
you need.) Remember stresses at concentrated loads are false.

■■ Figure P7–37
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	 7.38		  Design the bicycle wrench with the approximate dimensions shown in Figure P7–38. 
If you need to change dimensions explain why. The wrench should be made of steel 
or aluminum alloy. Determine the thickness needed based on the maximum distor-
tion energy theory. Plot the deformed shape of the wrench and the principal stress 
and von Mises stress. The boundary conditions are shown in the figure, and the 
loading is shown as a distributed load acting over the right part of the wrench. Use 
a factor of safety of 1.5 against yielding. Round each corner with a 10 mm radius.

■■ Figure P7–38

40 mm

Fixed all the way around this hexagon.

10 mm10 mm

R = 15 mm

20 mm

The sides of the middle
hexagon are 9 mm long.

The sides of the corner
hexagons are 7 mm long.

1 mm rad. (typ.)

1 mm rad. (typ.)

10 N/mm

	 7.39		  For the various parts shown in Figure P7–39 on the next page determine the best 
one to relieve stress. Make the original part have a small radius of 2.5 mm at the 
inside reentrant corners. Place a uniform pressure load of 6.4 MPa on the right end 
of each part and fix the left end. All units shown are taken in millimeters. Let the 
material be A36 steel.

Problems
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■■ Figure P7–39
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Development of the Linear-
Strain Triangle Equations

Chapter Objectives

At the conclusion of this chapter, you will be able to:

■	 Develop the linear-strain triangular (LST) element stiffness matrix.

■	 Describe how the LST stiffness matrix can be determined.

■	 Compare the difference in results using the CST and LST elements.

Introduction
In this chapter, we consider the development of the stiffness matrix and equations for a high-
er-order triangular element, called the linear-strain triangle (LST). This element is available 
in many commercial computer programs and has some advantages over the constant-strain 
triangle described in Chapter 6.

The LST element has six nodes and twelve unknown displacement degrees of freedom. 
The displacement functions for the element are quadratic instead of linear (as in the CST).

The procedures for development of the equations for the LST element follow the same 
steps as those used in Chapter 6 for the CST element. However, the number of equations now 
becomes twelve instead of six, making a longhand solution extremely cumbersome. Hence, 
we will use a computer to perform many of the mathematical operations.

After deriving the element equations, we will compare results from problems solved using 
the LST element with those solved using the CST element. The introduction of the higher-
order LST element will illustrate the possible advantages of higher order elements and should 
enhance your general understanding of the concepts involved with finite element procedures.

	 8.1 	 Derivation of the Linear-Strain Triangular Element 
Stiffness Matrix and Equations

We will now derive the LST stiffness matrix and element equations. The steps used here are 
identical to those used for the CST element, and much of the notation is the same.

Step 1 Select Element Type
Consider the triangular element shown in Figure 8–1 with the usual end nodes and three 
additional nodes conveniently located at the midpoints of the sides. Thus, a computer program 

C h a p te  r 

8

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8  |  Development of the Linear-Strain Triangle Equations438

can automatically compute the midpoint coordinates once the coordinates of the corner nodes 
are given as input.

The unknown nodal displacements are now given by
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	 (8.1.1)

Step 2 Select a Displacement Function
We now select a quadratic displacement function in each element as

	
5 1 1 1 1 1

5 1 1 1 1 1

( , )

( , )

1 2 3 4
2

5 6
2

7 8 9 10
2

11 12
2

u x y a a x a y a x a xy a y

v x y a a x a y a x a xy a y
	 (8.1.2)

Again, the number of coefficients ai (12) equals the total number of degrees of freedom for the 
element. The displacement compatibility among adjoining elements is satisfied because three 
nodes are located along each side and a parabola is defined by three points on its path. Since 
adjacent elements are connected at common nodes, their displacement compatibility across 
the boundaries will be maintained.

In general, when considering triangular elements, we can use a complete polynomial in 
Cartesian coordinates to describe the displacement field within an element. Using internal 
nodes as necessary for the higher-order cubic and quartic elements, we use all terms of a trun-
cated Pascal triangle in the displacement field or, equivalently, the shape functions, as shown 

■■ Figure 8–1  Basic six-node triangular element showing degrees of freedom

x, u
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by Figure 8–2; that is, a complete linear function is used for the CST element considered 
previously in Chapter 6. The complete quadratic function is used for the LST of this chapter. 
The complete cubic function is used for the quadratic-strain triangle (QST), with an internal 
node necessary as the tenth node.

The general displacement functions, Eqs. (8.1.2), expressed in matrix form are now
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	 (8.1.3)

Alternatively, we can express Eq. (8.1.3) as

	 c 5{ } [ ]{ }M ap 	 (8.1.4)

where M[ ]*  is defined to be the first matrix on the right side of Eq. (8.1.3). The coefficients a1 
through a12 can be obtained by substituting the coordinates into u and v as follows:
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	 (8.1.5)

■■ Figure 8–2  Relation between type of plane triangular element and polynomial coefficients 
based on a Pascal triangle

1
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Solving for the ai’s, we have
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	 (8.1.6)

or, alternatively, we can express Eq. (8.1.6) as

	 5 2{ } [ ] { }1a X d 	 (8.1.7)

where [X ] is the 312 12 matrix on the right side of Eq. (8.1.6). It is best to invert the [X ] matrix 
by using a digital computer. Then the ai’s, in terms of nodal displacements, are substituted into 
Eq. (8.1.4). Note that only the 36 6 part of [X ] in Eq. (8.1.6) really must be inverted. Finally, 
using Eq. (8.1.7) in Eq. (8.1.4), we can obtain the general displacement expressions in terms 
of the shape functions and the nodal degrees of freedom as

	 c 5{ } [ ]{ }N d 	 (8.1.8)

where	 5 2[ ] [ ][ ] 1N M Xp 	 (8.1.9)

Step 3 Define the Strain-Displacement and Stress/Strain Relationships
The element strains are again given by
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or, using Eq. (8.1.3) for u and v in Eq. (8.1.10), we obtain the strain-generalized displacement 
equations as
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	 (8.1.11)

We observe that Eq. (8.1.11) yields a linear strain variation in the element. Therefore, the ele-
ment is called a linear-strain triangle (LST). Rewriting Eq. (8.1.11), we have

	 « 95{ } [ ]{ }M a 	 (8.1.12)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8.1  Derivation of the Linear-Strain Triangular Element Stiffness Matrix and Equations 441

where [ ]M9  is the first matrix on the right side of Eq. (8.1.11). Substituting Eq. (8.1.6) for the 
’sai  into Eq. (8.1.12), we have {«} in terms of the nodal displacements as

	 « 5{ } [ ]{ }B d 	 (8.1.13)

where [B] is a function of the variables x and y and the coordinates ( , )1 1x y  through ( , )6 6x y  
given by

	 95 2[ ] [ ][ ] 1B M X 	 (8.1.14)

where Eq. (8.1.7) has been used in expressing Eq. (8.1.14). Note that [B] is now a matrix of 
order 3 123 .

The stresses are again given by
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	 (8.1.15)

where [D] is given by Eq. (6.1.8) for plane stress or by Eq. (6.1.10) for plane strain. These 
stresses are now linear functions of x and y coordinates.

Step 4 Derive the Element Stiffness Matrix and Equations
We determine the stiffness matrix in a manner similar to that used in Section 6.2 by using 
Eq. (6.2.50) repeated here as

	 5[ ] [ ] [ ][ ]∫∫∫k B D B dVT

V

	 (8.1.16)

However, the [B] matrix is now a function of x and y as given by Eq. (8.1.14). Therefore, we 
must perform the integration in Eq. (8.1.16). Finally, the [B] matrix is of the form
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








	 (8.1.17)

where the b’s and g’s are now functions of x and y as well as of the nodal coordinates, as is 
illustrated for a specific linear-strain triangle in Section 8.2 by Eq. (8.2.8). The stiffness matrix 
is then seen to be a 12 123  matrix on multiplying the matrices in Eq. (8.1.16). The stiffness 
matrix, Eq. (8.1.16), is very cumbersome to obtain in explicit form, so it will not be given here. 
However, if the origin of the coordinates is considered to be at the centroid of the element, 
the integrations become amenable [9]. Alternatively, area coordinates [3, 8, 9] can be used 
to obtain an explicit form of the stiffness matrix. However, even the use of area coordinates 
usually involves tedious calculations. Therefore, the integration is best carried out numerically. 
(Numerical integration is described in Section 10.3.)

The element body forces and surface forces should not be automatically lumped at the 
nodes, but for a consistent formulation (one that is formulated from the same shape functions 
used to formulate the stiffness matrix), Eqs. (6.3.1) and (6.3.7), respectively, should be used. 
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(Problems 8.3 and 8.4 illustrate this concept.) These forces can be added to any concentrated 
nodal forces to obtain the element force matrix. Here the element force matrix is of order 12 13  
because, in general, there could be an x and a y component of force at each of the six nodes 
associated with the element. The element equations are then given by
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	 (8.1.18)

Steps 5 through 7
Steps 5 through 7, which involve assembling the global stiffness matrix and equations, deter-
mining the unknown global nodal displacements, and calculating the stresses, are identical to 
those in Section 6.2 for the CST. However, instead of constant stresses in each element, we 
now have a linear variation of the stresses in each element. Common practice was to use the 
centroidal element stresses. Current practice is to use the average of the nodal element stresses.

	 8.2 	 Example LST Stiffness Determination
To illustrate some of the procedures outlined in Section 8.1 for deriving an LST stiffness 
matrix, consider the following example. Figure 8–3 shows a specific LST and its coordinates. 
The triangle is of base dimension b and height h, with midside nodes.

Using the first six equations of Eq. (8.1.5), we calculate the coefficients 1a  through 6a  by 
evaluating the displacement u at each of the six known coordinates of each node as follows:
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	 (8.2.1)

Solving Eqs. (8.2.1) simultaneously for the ’sai , we obtain
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	 (8.2.2)
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Substituting Eqs. (8.2.2) into the displacement expression for u from Eqs. (8.1.2), we have
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Similarly, solving for 7a  through 12a  by evaluating the displacement v at each of the six nodes 
and then substituting the results into the expression for v from Eqs. (8.1.2), we obtain
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Using Eqs. (8.2.3) and (8.2.4), we can express the general displacement expressions in terms 
of the shape functions as
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where the shape functions are obtained by collecting coefficients that multiply each ui term in 
Eq. (8.2.3). For instance, collecting all terms that multiply by 1u  in Eq. (8.2.3), we obtain 1N .  
These shape functions are then given by
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	 (8.2.6)

■■ Figure 8–3  LST triangle for evaluation of a stiffness matrix

(b, 0)
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Using Eq. (8.2.5) in Eq. (8.1.10), and performing the differentiations indicated on u and v, 
we obtain

	 « 5{ } [ ]{ }B d 	 (8.2.7)

where  [B] is of the form of Eq. (8.1.17), with the resulting b’s and g’s in Eq. (8.1.17) given by
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These b’s and g’s are specific to the element in Figure 8–3. Specifically, using Eqs. (8.1.1) and 
(8.1.17) in Eq. (8.2.7), we obtain
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The stiffness matrix for a constant-thickness element can now be obtained on substituting 
Eqs. (8.2.8) into Eq. (8.1.17) to obtain [B], then substituting [B] into Eq. (8.1.16) and using 
calculus to set up the appropriate integration. The explicit expression for the 12 123  stiffness 
matrix, being extremely cumbersome to obtain, is not given here. Stiffness matrix expressions 
for higher-order elements are found in References [1] and [2].

	 8.3 	 Comparison of Elements
For a given number of nodes, a better representation of true stress and displacement is generally 
obtained using the LST element than is obtained with the same number of nodes using a much 
finer subdivision into simple CST elements. For example, using one LST yields better results 
than using four CST elements with the same number of nodes (Figure 8–4) and hence the same 
number of degrees of freedom (except for the case when constant stress exists).

We now present results to compare the CST of Chapter 6 with the LST of this chapter. 
Consider the cantilever beam subjected to a concentrated load acting as shown in Figure 8–5. 
Let 5 210 GPaE , ν 5 0.25, 5 180 kNP  and 5 25.4 mmt .

Table 8–1 lists the series of tests run to compare results using the CST and LST elements. 
Table 8–2 shows comparisons of free-end (tip) deflection and stress xs  for each element type 
used to model the cantilever beam. From Table 8–2, we can observe that the larger the number 
of degrees of freedom for a given type of triangular element, the closer the solution converges 
to the exact one (compare run A-1 to run A-2, and B-1 to B-2). For a given number of nodes, the 
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LST analysis yields somewhat better results for displacement than the CST analysis (compare 
run A-1 to run B-1).

However, one of the reasons that the bending stress xs  predicted by the LST model B-1 
compared to CST model A-1 is not as accurate is as follows. Recall that the stress is calculated 
at the centroid of the element. We observe from the table that the location of the bending stress 
is closer to the wall and closer to the top for the CST model A-1 compared to the LST model 
B-1. As the classical bending stress is a linear function with increasing positive linear stress 
from the neutral axis for the downward applied load in this example, we expect the largest 
stress to be at the very top of the beam. So the model A-1 with more and smaller elements 
(with eight elements through the beam depth) has its centroid closer to the top (at 18.75 mm 
from the top) than model B-1 with few elements (two elements through the beam depth) with 
centroidal stress located at 37.5 mm from the top. Similarly, comparing A-2 to B-2 we observe 
the same trend in the results—displacement at the top end being more accurately predicted by 
the LST model, but stresses being calculated at the centroid making the A-2 model appear more 
accurate than the LST model due to the location where the stress is reported.

■■ Figure 8–5  Cantilever beam used to compare the CST and LST elements with a 
4 163  mesh

P = 180 kN

0.3 m

1.2 m

 Table 8–1  Models used to compare CST and LST results for the cantilever beam of Figure 8–5 using 
ANSYS computer program [10]

Series of Tests 
Run

Number of 
Nodes

Number of Degrees of 
Freedom, nd

Number of Triangular 
Elements

A-1 4 × 16 mesh 85 160 128 CST

A-2 8 × 32 297 576 512 CST

B-1 2 × 8 85 160 32 LST

B-2 4 × 16 297 576 128 LST

■■ Figure 8–4  Basic triangular element: (a) four-CST and (b) one-LST
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Although the CST element is rather poor in modeling bending, we observe from 
Table 8–2 that the element can be used to model a beam in bending if a sufficient number 
of elements are used through the depth of the beam. In general, both LST and CST analy-
ses yield results good enough for most plane stress/strain problems, provided a sufficient 
number of elements are used. In fact, most commercial programs incorporate the use of 
CST and/or LST elements for plane stress/strain problems, although these elements are 
used primarily as transition elements (usually during mesh generation). The four-sided 
isoparametric plane stress/strain element is most frequently used in commercial programs 
and is described in Chapter 10.

Also, recall that finite element displacements will always be less than (or equal to) the 
exact ones, because finite element models are normally predicted to be stiffer than the actual 
structures when the displacement formulation of the finite element method is used. (The rea-
son for the stiffer model was discussed in Sections 3.10 and 7.3. Proof of this assertion can be 
found in References [4-7].

Finally, Figure 8–6 (from Reference [8]) illustrates a comparison of CST and LST models 
of a plate subjected to parabolically distributed edge loads. Figure 8–6 shows that the LST 
model converges to the exact solution for horizontal displacement at point A faster than does 
the CST model. However, the CST model is quite acceptable even for modest numbers of 
degrees of freedom. For example, a CST model with 100 nodes (200 degrees of freedom) often 
yields nearly as accurate a solution as does an LST model with the same number of degrees 
of freedom.

In conclusion, the results of Table 8–2 and Figure 8–6 indicate that the LST model might 
be preferred over the CST model for plane stress applications when relatively small numbers 
of nodes are used. However, the use of triangular elements of higher order, such as the LST, is 
not visibly advantageous when large numbers of nodes are used, particularly when the cost of 
formation of the element stiffnesses, equation bandwidth, and overall complexities involved 
in the computer modeling are considered.

The Q4 rectangle and CST were compared in Section 6.6 (See Table 6.1). The general 
quadrilateral elements Q4, Q6, Q8, Q9, and Q12 are described in Chapter 10, and a comparison 
of the Q4 and Q6 results for a beam bending problem is given in Table 10.3. There is also a 
comparison of CST, LST, Q4, Q6, Q8, and Q9 results for a differently meshed beam bending 
problem in Table 10.4.

 Table 8–2  Comparison of CST and LST results for the cantilever beam of Figure 8–5

Run nd

Bandwidth  
nb

Tip Deflection 
(mm) xss  (MPa)

Location (mm), 
x; y

A-1 160 14 –7.51 463.6 5.71, 28.57

A-2 576 22 –8.60 560.6 2.86, 29.54

B-1 160 18 –8.50 406.0 11.43, 26.67

B-2 576 22 –8.93 482.3 5.71, 28.57

Beam theory solution, ν 5 1
PL

EI

PL

AG3

6

5
end

3 –9.18 551.6 0, 30

Bandwidth is described in Appendix B.4.1
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Summary Equations

Displacement functions for linear-strain triangle (LST) element:
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	 (8.1.2)

Shape function matrix:

  	 5 2[ ] [ ][ ] 1N M Xp 	 (8.1.9)

where
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■■ Figure 8–6  Plates subjected to parabolically distributed edge loads; comparison of results 
for triangular elements. (Gallagher, Richard H., Finite Element Analysis: Fundamentals, 
1st,© 1975. Printed and electronically reproduced by permission of Pearson Education, Inc., 
Upper Saddle River, New Jersey.)
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and
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Strain-generalized displacement equations:
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Problems

	 8.1		  Evaluate the shape functions given by Eq. (8.2.6). Sketch the variation of each 
function over the surface of the triangular element shown in Figure 8–3.

	 8.2		  Express the strains x« , y« , and xyg  for the element of Figure 8–3 by using the results 
given in Section 8.2. Evaluate these strains at the centroid of the element; then evaluate 
the stresses at the centroid in terms of E and ν. Assume plane stress conditions apply.
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449Problems

	 8.3		  For the element of Figure 8–3 (shown again as Figure P8–3) subjected to the uniform 
pressure shown acting over the vertical side, determine the nodal force replacement 
system using Eq. (6.3.7). Assume an element thickness of t.

■■ Figure P8–3

	 8.4		  For the element of Figure 8–3 (shown as Figure P8–4) subjected to the linearly 
varying line load shown acting over the vertical side, determine the nodal force 
replacement system using Eq. (6.3.7). Compare this result to that of Problem 6.11. 
Are these results expected? Explain.

■■ Figure P8–4

	 8.5		  For the linear-strain elements shown in Figure P8–5, determine the strains ,x y« « ,  
and xyg . Evaluate the stresses , , andx y xys s t  at the centroids. The coordinates 
of the nodes are shown in units of centimeters. Let 5 210 GPaE , ν 5 0.25, and 

5 6 mmt  for both elements. Assume plane stress conditions apply. The nodal dis-
placements are given as 
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			   (Hint: Use the results of Section 8.2.)
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	 8.6		  For the linear-strain element shown in Figure P8–6, determine the strains ,x y« « , and 
xyg . Evaluate these strains at the centroid of the element; then evaluate the stresses 

,x ys s , and xyτ  at the centroid. The coordinates of the nodes are shown in units 
of millimeters. Let 210 GPaE 5 , ν 5 0.25, and 10 mmt 5 . Assume plane stress 
conditions apply. Use the nodal displacements given in Problem 8.5 (converted to  
millimeters). Note that the β’s and γ’s from the example in Section 8.2 cannot be used 
here as the element in Figure P8–6 is oriented differently than the one in Figure 8–3.

■■ Figure P8–5

■■ Figure P8–6

■■ Figure P8–7

	 8.7		  Evaluate the shape functions for the linear-strain triangle shown in Figure P8–7. 
Then evaluate the [ ]B  matrix. Units are millimeters.

	 8.8		  Use the LST element to solve Example 6.2. Compare the results.
	 8.9		  Write a computer program to solve plane stress problems using the LST element.
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Axisymmetric Elements

Chapter Objectives

At the conclusion of this chapter, you will be able to:

■	 Review the basic concepts and theory of elasticity equations for axisymmetric 
behavior.

■	 Derive the axisymmetric element stiffness matrix, body force, and surface traction 
equations.

■	 Demonstrate the solution of an axisymmetric pressure vessel using the stiffness 
method.

■	 Compare the finite element solution to an exact solution for a cylindrical pressure vessel.

■	 Illustrate some practical applications of axisymmetric elements.

Introduction
In previous chapters, we have been concerned with line or one-dimensional elements (Chap-
ters 2 through 5) and two-dimensional elements (Chapters 6 through 8). In this chapter, we 
consider a special two-dimensional element called the axisymmetric element. This element is 
quite useful when symmetry with respect to geometry and loading exists about an axis of the 
body being analyzed. Problems that involve soil masses subjected to circular footing loads or 
thick-walled pressure vessels can often be analyzed using the element developed in this chapter.

We begin with the development of the stiffness matrix for the simplest axisymmetric ele-
ment, the triangular torus, whose vertical cross section is a plane triangle.

We then present the longhand solution of a thick-walled pressure vessel to illustrate the 
use of the axisymmetric element equations. This is followed by a description of some typical 
large-scale problems that have been modeled using the axisymmetric element.

	 9.1 	 Derivation of the Stiffness Matrix
In this section, we will derive the stiffness matrix and the body and surface force matrices for 
the axisymmetric element. However, before the development, we will first present some fun-
damental concepts prerequisite to the understanding of the derivation. Axisymmetric elements 
are triangular tori such that each element is symmetric with respect to geometry and loading 

C h a p t e r

9
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9  |  Axisymmetric Elements452

about an axis such as the z axis in Figure 9–1. Hence, the z axis is called the axis of symmetry 
or the axis of revolution. Each vertical cross section of the element is a plane triangle. The 
nodal points of an axisymmetric triangular element describe circumferential lines, as indicated 
in Figure 9–1.

In plane stress problems, stresses exist only in the x – y plane. In axisymmetric problems, 
the radial displacements develop circumferential strains that induce stresses rs , su , zs , and 

rzτ , where r, u , and z indicate the radial, circumferential, and longitudinal directions, respec-
tively. Triangular torus elements are often used to idealize the axisymmetric system because 
they can be used to simulate complex surfaces and are simple to work with. For instance, the 
axisymmetric problem of a semi-infinite half-space loaded by a circular area (circular footing) 
shown in Figure 9–2(a), the domed pressure vessel shown in Figure 9–2(b), and the engine 
valve stem shown in Figure 9–2(c) can be solved using the axisymmetric element developed 
in this chapter.

Because of symmetry in geometry, material properties, boundary conditions, and loads 
about the z axis, the stresses are independent of the u  coordinate. Therefore, all derivatives with 
respect to u  vanish, and the displacement component v (tangent to the u  direction), the shear 
strains rg u  and zgu , and the shear stresses us r  and us z  are all zero.

Figure 9–3 shows an axisymmetric ring element and its cross section to represent the 
general state of strain for an axisymmetric problem. It is most convenient to express the dis-
placements of an element ABCD in the plane of a cross section in cylindrical coordinates. We 
then let u and w denote the displacements in the radial and longitudinal directions, respectively. 
The side AB of the element is displaced an amount u, and side CD is then displaced an amount 

� �u u r dr( / )1  in the radial direction. The normal strain in the radial direction is then given by

	
�

�

u

r
r« 5 	 (9.1.1a)

In general, the strain in the tangential direction depends on the tangential displacement v and 
on the radial displacement u. However, for axisymmetric deformation behavior, recall that the 
tangential displacement v is equal to zero. Hence, the tangential strain is due only to the radial 
displacement. Having only radial displacement u, the new length of the arc �AB is r u d( ) u1 , 
and the tangential strain is then given by

	
r u d r d

r d

u

r

( )
«

u u

u
5

1 2
5u 	 (9.1.1b)

■■ Figure 9–1  Typical axisymmetric element ijm
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9.1  Derivation of the Stiffness Matrix 453

■■ Figure 9–2  Examples of axisymmetric problems: (a) semi-infinite half-space (soil mass) 
modeled by axisymmetric elements, (b) enclosed pressure vessel (Courtesy of Autodesk, Inc.) 
(See the full-color insert for a color version of this figure.), and (c) an engine valve stem

SI, MPa

300.8
271.8
242.8
213.8
184.8
155.7
126.7
97.7
68.7
39.7
10.7

(a) soil mass

(b) enclosed presure vessel (c) engine value stem

■■ Figure 9–3  (a) Plane cross section of (b) axisymmetric element
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9  |  Axisymmetric Elements454

Next, we consider the longitudinal element BDEF to obtain the longitudinal strain and the 
shear strain. In Figure 9–4, the element is shown to displace by amounts u and w in the radial 
and longitudinal directions at point E, and to displace additional amounts � �w z dz( / )  along line 
BE and � �u r dr( / )  along line EF. Furthermore, observing lines EF and BE, we see that point  
F moves upward an amount ( / )w r dr� �  with respect to point E and point B moves to the right 
an amount � �u z dz( / )  with respect to point E. Again, from the basic definitions of normal and 
shear strain, we have the longitudinal normal strain given by

 	
�

�

w

z
z« 5 	 (9.1.1c)

and the shear strain in the r-z plane given by

	
�

�

�

�

u

z

w

r
rzg 5 1 	 (9.1.1d)

Summarizing the strain–displacement relationships of Eqs. (9.1.1a–d) in one equation for 
easier reference, we have

	
�

�

�

�

�

�

�

�

u

r

u

r

w

z

u

z

w

r
r z rz« « « g5 5 5 5 1u 	 (9.1.1e)

The isotropic stress/strain relationship, obtained by simplifying the general stress/strain 
relationships given in Appendix C, is

	
E

r

z

rz

r

z

rz

ν ν

ν ν ν
ν ν ν
ν ν ν

ν
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
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5
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	 (9.1.2)

The theoretical development follows that of the plane stress/strain problem given  
in Chapter 6.

■■ Figure 9–4  Displacement and rotations of lines of element in the r-z plane
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9.1  Derivation of the Stiffness Matrix 455

Step 1  Select Element Type
An axisymmetric solid is shown discretized in Figure 9–5(a), along with a typical triangular 
element. The element has three nodes with two degrees of freedom per node (that is, ui, wi at 
node i). The stresses in the axisymmetric problem are shown in Figure 9–5(b).

Step 2  Select Displacement Functions
The element displacement functions are taken to be

	
u r z a a r a z

w r z a a r a z

( , )

( , )
1 2 3

4 5 6

5 1 1

5 1 1
	 (9.1.3)

so that we have the same linear displacement functions as used in the plane stress, 
constant-strain triangle. Again, the total number of ai’s (six) introduced in the displace-
ment functions is the same as the total number of degrees of freedom for the element. The 
nodal displacements are
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
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w

u

w

i

j

m

i

i

j

j

m

m

{ }

{ }

{ }

{ }

5 5 	 (9.1.4)

and u evaluated at node i is

	 u r z u a a r a zi i i i i( , ) 1 2 35 5 1 1 	 (9.1.5)

■■ Figure 9–5  Discretized axisymmetric solid
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Using Eq. (9.1.3), the general displacement function is then expressed in matrix form as

	



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1
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c 5 5
1 1

1 1
5 	 (9.1.6)

Substituting the coordinates of the nodal points shown in Figure 9–5(a) into Eq. (9.1.6), we 
can solve for the ai’s in a manner similar to that in Section 6.2. The resulting expressions are
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	 (9.1.7)

and	
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	 (9.1.8)

Performing the inversion operations in Eqs. (9.1.7) and (9.1.8), we have
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and	
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	 (9.1.10)

where

	

r z z r r z z r r z z r

z z z z z z

r r r r r r

i j m j m j m i m i m i j i j

i j m j m i m i j

i m j j i m m j i

a a a

b b b

g g g

5 2 5 2 5 2

5 2 5 2 5 2

5 2 5 2 5 2

	 (9.1.11)

We define the shape functions, similar to Eqs. (6.2.18), as
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	 (9.1.12)
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9.1  Derivation of the Stiffness Matrix 457

Substituting Eqs. (9.1.7) and (9.1.8) into Eq. (9.1.6), along with the shape function 
Eqs. (9.1.12), we find that the general displacement function is
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or	 N d{ } [ ]{ }c 5 	 (9.1.14)

Step 3  Define the Strain/Displacement and Stress/Strain Relationships
When we use Eqs. (9.1.3) in (9.1.1e), the strains become
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	 (9.1.15)

Rewriting Eq. (9.1.15) with the ai’s as a separate column matrix, we have
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	 (9.1.16)

Substituting Eqs. (9.1.9) and (9.1.10) into Eq. (9.1.16) and simplifying, we obtain
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	 (9.1.17)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9  |  Axisymmetric Elements458

or, rewriting Eq. (9.1.17) in simplified matrix form,

	































B B B

u

w

u

w

u

w

i j m

i

i

j

j

m

m

{ } [[ ] [ ] [ ]]« 5 	 (9.1.18)
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Similarly, we obtain submatrices Bj[ ] and Bm[ ] by replacing the subscript i with j and then with 
m in Eq. (9.1.19). Rewriting Eq. (9.1.18) in compact matrix form, we have

	 B d{ } [ ]{ }« 5 	 (9.1.20)

where	 B B B Bi j m[ ] [[ ] [ ] [ ]]5 	 (9.1.21)

is called the gradient matrix.
Note that [B] is a function of the r and z coordinates. Therefore, in general, the strain «u 

will not be constant.
The stresses are given by

	 D B d{ } [ ][ ]{ }s 5 	 (9.1.22)

where [D] is given by the first matrix on the right side of Eq. (9.1.2). (As mentioned in 
Chapter 6, for ν 0.55 , a special formula must be used; see Reference [9].)

Step 4  Derive the Element Stiffness Matrix and Equations
The stiffness matrix is

	 ∫∫∫k B D B dVT

V

[ ] [ ] [ ][ ]5 	 (9.1.23)

or	 k B D B r dr dzT

A
∫∫π5[ ] 2 [ ] [ ][ ] 	 (9.1.24)

after integrating along the circumferential boundary. The [B] matrix, Eq. (9.1.21), is a function 
of r and z. Therefore, [k] is a function of r and z and is of order 6 63 .

We can evaluate Eq. (9.1.24) for [k] by one of three methods:

1.	 Numerical integration (Gaussian quadrature) as discussed in Chapter 10.
2.	 Explicit multiplication and term-by-term integration [1].
3.	 Evaluate [B] for a centroidal point (r , z ) of the element
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	 r r
r r r

z z
z z zi j m i j m

3 3
5 5

1 1
5 5

1 1
	 (9.1.25)

and define B r z B[ ( , )] [ ]5 . Therefore, as a first approximation,

	 k rA B D BTπ5[ ] 2 [ ] [ ][ ]	 (9.1.26)

If the triangular subdivisions are consistent with the final stress distribution (that is, small ele-
ments in regions of high stress gradients), then acceptable results can be obtained by method 3.

Distributed Body Forces
Loads such as gravity (in the direction of the z axis) or centrifugal forces in rotating machine 
parts (in the direction of the r axis) are considered to be body forces (as shown in Figure 9–6). 
The body forces can be found by

	 f N
R

Z
r dr dzb

T
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b

b
∫∫π


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
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5{ } 2 [ ] 	 (9.1.27)

where R rb
2v r5  for a machine part moving with a constant angular velocity v  about the 

z axis, with material mass density r and radial coordinate r, and where Zb is the body force 
per unit volume due to the force of gravity.

Considering the body force at node i, we have
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Multiplying and integrating in Eq. (9.1.28), we obtain
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■■ Figure 9–6  Axisymmetric element with body forces per unit volume
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9  |  Axisymmetric Elements460

where the origin of the coordinates has been taken as the centroid of the element, and Rb is 
the radially directed body force per unit volume evaluated at the centroid of the element. The 
body forces at nodes j and m are identical to those given by Eq. (9.1.30) for node i. Hence, for 
an element, we have

	 f
rA

R

Z

R

Z

R

Z

b

b

b

b

b

b

b

π































5{ }
2

3
	 (9.1.31)

where	 R rb
2v r5 	 (9.1.32)

Equation (9.1.31) is a first approximation to the radially directed body force distribution.

Surface Forces
Surface forces can be found by

	 ∫∫f N T dSs s
T

S

{ } [ ] { }5 	 (9.1.33)

where again NS[ ] denotes the shape function matrix evaluated along the surface where the 
surface traction acts.

For radial and axial pressures pr  and pz, respectively, we have

	 ∫∫











f N

p

p
dSs S

T

S

r

z
{ } [ ]5 	 (9.1.34)

For example, along the vertical face jm of an element, let uniform loads pr  and pz be applied, 
as shown in Figure 9–7 along surface =r rj . We can use Eq. (9.1.34) written for each node 
separately. For instance, for node j, substituting Nj from Eqs. (9.1.12) into Eq. (9.1.34), we have

	 f
A

r z

r z

p

p
r dzsj

z

z j j j

j j j

r

z
j

j

m a b g

a b g
p5

1 1

1 1
{ }

1

2

0

0
2∫
























	 (9.1.35)

■■ Figure 9–7  Axisymmetric element with surface forces

z

r
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9.1  Derivation of the Stiffness Matrix 461

Performing the integration of Eq. (9.1.35) explicitly, along with similar evaluations for fsi and 
fsm, we obtain the total distribution of surface force to nodes i, j, and m as

	
π





























{ }
2 ( )

2

0
0

f
r z z p

p

p

p

s
j m j r

z

r

z

5
2

	 (9.1.36)

Steps 5 through 7
Steps 5 through 7, which involve assembling the total stiffness matrix, total force matrix, and 
total set of equations; solving for the nodal degrees of freedom; and calculating the element 
stresses, are analogous to those of Chapter 6 for the CST element, except the stresses are not 
constant in each element. They are usually determined by one of two methods that we use to 
determine the LST element stresses. Either we determine the centroidal element stresses, or 
we determine the nodal stresses for the element and then average them. The latter method has 
been shown to be more accurate in some cases [2].

Example 9.1

For the element of an axisymmetric body rotating with a constant angular velocity 
100 rev/minv 5  as shown in Figure 9–8, evaluate the approximate body force matrix. 

Include the weight of the material, where the weight density wr  is 77000 N/m3. The coor-
dinates of the element (in cm) are shown in the figure.

We need to evaluate Eq. (9.1.31) to obtain the approximate body force matrix. There-
fore, the body forces per unit volume evaluated at the centroid of the element are 

	 5 77000 N/m3Zb

■■ Figure 9–8  Axisymmetric element subjected to angular velocity
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and by Eq. (9.1.32), we have

	

v r

p

5 5

5

5
3

5 3

5 3 5

5 2 3 5 2

100
rev

min
2

rad

rev

1 min

60 s

(77000 N/m )

(9.81) m/s
(0.06 m)

51645 kg/m

2

3

2 (0.06)(4.5 10 )

3
5.655 10 m

(5.655 10 )(51645) 2.92 N

(5.655 10 )(77000) 4.35 N (downward)

2
2 3

2

3

4
5 3

1
5

1
5

R r

R

rA

f

f

b

b

b r

b z

π

π

























−
−

−

−

	

Because we are using the first approximation Eq. (9.1.31), all r-directed nodal body 
forces are equal, and all z-directed body forces are equal. Therefore,

	
5 5 2

5 5 2

2.92 N 4.35 N

2.92 N 4.35 N

2 2

3 3

f f

f f

b r b z

b r b z
	

	 9.2 	S olution of an Axisymmetric Pressure Vessel
To illustrate the use of the equations developed in Section 9.1, we will now solve an axisym-
metric stress problem.

Example 9.2

For the long, thick-walled cylinder under internal pressure p equal to 1 pa shown in 
Figure 9–9, determine the displacements and stresses.

Discretization
To illustrate the finite element solution for the cylinder, we first discretize the cylinder 
into four triangular elements, as shown in Figure 9–10. A horizontal slice of the cylinder 
represents the total cylinder behavior. Because we are performing a longhand solution, a 

■■ Figure 9–9  Thick-walled cylinder subjected to internal pressure
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9.2  Solution of an Axisymmetric Pressure Vessel 463

coarse mesh of elements is used for simplicity’s sake (but without loss of generality of the 
method). The governing global matrix equation is
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w
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z
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z
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z
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z
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

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
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
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

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
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
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
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
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
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


5 	 (9.2.1)

where the [K ] matrix is of order 10 103 .

Assemblage of the Stiffness Matrix
We assemble the [K] matrix in the usual manner by superposition of the individual element 
stiffness matrices. For simplicity’s sake, we will use the first approximation method given 
by Eq. (9.1.26) to evaluate the element matrices. Therefore,

	 k rA B D BT[ ] 2 [ ] [ ][ ]p5 	 (9.2.2)

For element 1 (Figure 9–11), the coordinates are 5 1.0ri , zi 05 , 5 2.0rj , z j 05 , 5 1.5rm ,  
and 5 0.5zm  (i 15 , j 25 , and m 55  for element 1) for the global-coordinate axes as set 
up in Figure 9–10.

■■ Figure 9–10  Discretized cylinder slice

Pa 1 cm

1 cm

2.0 cm

■■ Figure 9–11  Element 1 of the discretized cylinder
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We now evaluate B[ ], where B[ ] is given by Eq. (9.1.19) evaluated at the centroid of the 
element r r5 , z z5 , and expanded here as

B
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z

r r

z

r r
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i j m
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j m
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g g g
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b
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g b g b g b
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



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

	 (9.2.3)

where, using element coordinates in Eqs. (9.1.11), we have
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5 2 5 2 5

5 2 5 2 5 2

5 2 5 2 5

5 2 5 2 5 2

5 2 5 2 5

5 2 5 2 5

5 2 5 2 5 2
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5 2 5 2 5
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(1.0)(0.0) (0)(2.0) 0.0 cm
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	 (9.2.4)

and
	

5 1 5 5 5

5 5

1.0
1

2
(1.0) 1.5 cm

1

3
(0.5) 0.167 cm

1

2
(1.0)(0.5) 0.25 cm2

r z

A
	

Substituting the results from Eqs. (9.2.4) into Eq. (9.2.3), we obtain

	 5

2

2 2

2 2 2

[ ]
10

0.5

0.5 0 0.5 0 0 0

0 0.5 0 0.5 0 1.0

0.11 0 0.11 0 0.11 0

0.5 0.5 0.5 0.5 1.0 0

1

m

2

B





















	 (9.2.5)

For the axisymmetric stress case, the matrix [D] is given in Eq. (9.1.2) as

	 D
E

ν ν

ν ν ν
ν ν ν
ν ν ν

ν





















[ ]
(1 )(1 2 )

1 0
1 0

1 0

0 0 0
1 2

2

5
1 2

2

2

2

2

	 (9.2.6)
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With ν 0.35  and 5 200 GPaE , we obtain

	 5
3

1 2

2

2

2

2

[ ]
200 10

(1 0.3)[1 2(0.3)]

1 0.3 0.3 0.3 0
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

	 (9.2.7)

or, simplifying Eq. (9.2.7),

	 5 3[ ] 384.6 10

0.7 0.3 0.3 0
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	 (9.2.8)

Using Eqs. (9.2.5) and (9.2.8), we obtain

	 5
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2 2 2 2

2 2 2 2

2
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(10 )(384.6 10 )
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0.383 0.183 0.227 0.10
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

	 (9.2.9)

Substituting Eqs. (9.2.5) and (9.2.9) into Eq. (9.2.2), we obtain the stiffness matrix for 
element 1 as

	

5 5 5

5

2 2 2

2 2 2

2 2 2 2

2 2

2 2 2

2 2 2

1 2 5

[ ] (10 )

36.25 19.66 21.11 1.54 19.57 21.2
19.66 40.78 7.52 22.65 21.12 63.43
21.11 7.52 48.20 25.64 13.59 33.16
1.54 22.65 25.64 40.78 15.13 63.43

19.57 21.12 13.59 15.13 37.69 5.98
21.2 63.43 33.16 63.43 5.98 126.86

N

m
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i j m
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
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
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

	(9.2.10)

where the numbers above the columns indicate the nodal orders of degrees of freedom in 
the element 1 stiffness matrix.
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For element 2 (Figure 9–12), the coordinates are 5 2.0ri , zi 0.05 , 5 2.0rj , 5 1.0z j ,  
5 1.5rm , and 5 0.5zm  (i 25 , j 35 , and m 55  for element 2). Therefore,

	

a

a

a

5 2 5 2

5 2 5 2

5 2 5

(2.0)(0.5) (1.0)(1.5) 0.5 cm
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i
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m

	 (9.2.11)

	

b b

b g

g g

5 2 5 5 2 5
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0.0 1.0 1.0 cm 1.5 2.0 0.5 cm

2.0 1.5 0.5 cm 2.0 2.0 0.0 cm

i j

m i

j m

	

and	 5 5 51.833 cm 0.5 cm 0.25 cm2r z A 	

Using Eqs. (9.2.11) in Eq. (9.2.2) and proceeding as for element 1, we obtain the stiffness 
matrix for element 2 as

5 5 5

5

2 2

2 2 2 2
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2 3 5

[ ] (10 )

57.14 30.7 34.99 8.55 79.25 22.14
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i j m

k
	 (9.2.12)

We obtain the stiffness matrices for elements 3 and 4 in a manner similar to that used 
to obtain the stiffness matrices for elements 1 and 2. Thus,
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k
	 (9.2.13)

■■ Figure 9–12  Element 2 of the discretized cylinder
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and

5 5 5
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	 (9.2.14)

Using superposition of the element stiffness matrices [Eqs. (9.2.10) and (9.2.12) through 
(9.2.14)], where we rearrange the elements of each stiffness matrix in order of increasing 
nodal degrees of freedom, we obtain the global stiffness matrix as

5
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2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2
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63.93 34.27 21.11 1.54 0 0 13.62 0.51 63.84 35.3

34.27 71.47 7.52 22.65 0 0 0.51 17.62 45.28 77.53

21.11 7.52 105.34 56.34 34.99 8.55 0 0 92.84 55.30

1.54 22.65 56.34 90.53 8.55 27.68 0 0 45.33 85.57

0 0 39.99 8.55 105.5 56.38 21.05 7.54 92.80 55.34

0 0 8.55 27.68 56.38 90.59 1.52 22.65 45.31 85.52

13.62 0.51 0 0 21.05 1.52 63.96 34.26 63.85 35.25

0.51 17.62 0 0 7.57 22.65 34.26 72.45 45.32 77.48
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(9.2.15)
The applied nodal forces are given by Eq. (9.1.36) as

	
p

5 5 5
2 (0.01)(0.01)

2
(1) 0.0003141 N1 4F Fr r 	 (9.2.16)

All other nodal forces are zero. Using Eq. (9.2.15) for [K] and Eq. (9.2.16) for the nodal 
forces in Eq. (9.2.1), and solving for the nodal displacements, we obtain

	

5 3 5 2 3

5 3 5 3

5 3 5 2 3

5 3 5 2 3

5 3 5 3

2 2

2 2

2 2

2 2

2 2

0.0967 10 mm 0.0071 10 mm

0.0658 10 mm 0.0104 10 mm

0.0658 10 mm 0.0104 10 mm

0.0967 10 mm 0.0075 10 mm

0.0731 10 mm 0.00417 10 mm

1
9

1
9

2
9

2
9

3
9

3
9

4
9

4
9

5
9

5
9

u w

u w

u w

u w

u w

	 (9.2.17)

The results for nodal displacements are as expected because radial displacements at the 
inner edge are equal u u( )1 45  and those at the outer edge are equal u u( )2 35 . In addition, 
the axial displacements at the outer nodes and inner nodes are equal but opposite in sign 
( and )1 4 2 3w w w w5 2 5 2  as a result of the Poisson effect and symmetry. Finally, the 
axial displacement at the center node is zero w( 0)5 5 , as it should be because of symmetry.
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By using Eq. (9.1.22), we now determine the stresses in each element as

	 D B d{ } [ ][ ]{ }s 5 	 (9.2.18)

For element 1, we use Eq. (9.2.5) for B[ ], Eq. (9.2.8) for [D], and Eq. (9.2.17) for {d} in 
Eq. (9.2.18) to obtain

	
s s

s

5 2 5 2

5 5 2u

0.1695 N/m 0.00638 N/m

0.4711 N/m 0.05199 N/m

2 2

2 2s
r z

rz
	

Similarly, for element 2, we obtain

	
s s

s

5 2 5 2

5 5u

0.0525 N/m 0.0373 N/m

0.345 N/m 0.00 N/m

2 2

2 2s
r z
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For element 3, the stresses are

	
s s

s

5 2 5 2

5 5u

0.1685 N/m 0.00625 N/m

0.471 N/m 0.05185 N/m

2 2

2 2s
r z

rz
	

For element 4, the stresses are

	
s s

s

5 2 5

5 5u

0.235 N/m 0.07465 N/m

0.713 N/m 0.00 N/m

2 2

2 2s
r z

rz
	

Figure 9–13 shows the exact solution [10] along with the results determined here and 
the results from Reference [5]. Observe that agreement with the exact solution is quite 
good except for the limited results due to the very coarse mesh used in the longhand 
example, and in case 1 of Reference [5]. In Reference [5], stresses have been plotted at 
the center of the quadrilaterals and were obtained by averaging the stresses in the four 
connecting triangles.

	 9.3 	 Applications of Axisymmetric Elements
Numerous structural (and nonstructural) systems can be classified as axisymmetric. Some typ-
ical structural systems whose behavior is modeled accurately using the axisymmetric element 
developed in this chapter are represented in Figures 9–14, 9–15, and 9–17.

Figure 9–14 illustrates the finite element model of a steel-reinforced concrete pressure 
vessel. The vessel is a thick-walled cylinder with flat heads. An axis of symmetry (the z axis) 
exists such that only one-half of the r-z plane passing through the middle of the structure need 
be modeled. The concrete was modeled by using the axisymmetric triangular element devel-
oped in this chapter. The steel elements were laid out along the boundaries of the concrete 
elements so as to maintain continuity (or perfect bond assumption) between the concrete and 
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■■ Figure 9–13  Finite element analysis of a thick-walled cylinder under internal pressure
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the steel. The vessel was then subjected to an internal pressure as shown in the figure. Note 
that the nodes along the axis of symmetry should be supported by rollers preventing motion 
perpendicular to the axis of symmetry.

Figure 9–15 shows a finite element model of a high-strength steel die used in a thin-
plastic-film-making process [7]. The die is an irregularly shaped disk. An axis of symmetry 
with respect to geometry and loading exists as shown. The die was fixed along the top surface 
as it was mounted to a stiff platen. The die was modeled by using simple quadrilateral axisym-
metric elements. The locations of high stress were of primary concern. Figure 9–16 shows a 
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9  |  Axisymmetric Elements470

plot of the von Mises stress contours for the die of Figure 9–15. The von Mises (or equivalent, 
or effective) stress [8] is often used as a failure criterion in design. Notice the artificially high 
stresses at the location of load F as explained in Section 7.1.

(Recall that the failure criterion based on the maximum distortion energy theory for ductile 
materials subjected to static loading predicts that a material will fail if the von Mises stress 
reaches the yield strength of the material.) Also recall from Eqs. (6.5.37) and (6.5.38), the von 
Mises stress vms  is related to the principal stresses by the expression

	
1

2
( ) ( ) ( )vm 1 2

2
2 3

2
3 1

2s s s s s s s5 2 1 2 1 2 	 (9.3.1)

■■ Figure 9–14  Model of steel-reinforced concrete pressure vessel (Reprinted from Nuclear 
Engineering and Design Volume 3, Issue 1, Rashid, Yosef R., Analysis of Axisymmetric 
Composite Structures by the Finite Element Method, Pages No. 163–182, Copyright 1966, 
with permission from Elsevier.)

1 ft 5 0.305 m
1 psi 5 6.9 kPa

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.3  Applications of Axisymmetric Elements 471

■■ Figure 9–15  Model of a high-strength steel die (924 nodes and 830 elements)
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20 kN
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■■ Figure 9–16  von Mises stress contour plot of axisymmetric model of Figure 9-15 (also 
producing a radial inward deflection of about 0.375 mm) 
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■■ Figure 9–17  (a) Stepped shaft subjected to axial load and (b) the discretized model

(a) (b)

5
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(1.875, 5)

5.0 dia. 3.75 dia.

0.375 rad

700 N/cm2

(1.875, 2.875)
R = 0.375

(2.5, 2.5)

(2.5, 1.875)

2.5 cm

where the principal stresses are given by 1s , 2s , and 3s . These results were obtained from the 
commercial computer code ANSYS [12].

Other dies with modifications in geometry were also studied to evaluate the most suitable 
die before the construction of an expensive prototype. Confidence in the acceptability of the 
prototype was enhanced by doing these comparison studies. Finally, Figure 9–17 shows a 
stepped 4130 steel shaft with a fillet radius subjected to an axial pressure of 700 N/cm2 in 
tension. Fatigue analysis for reversed axial loading required an accurate stress concentration 
factor to be applied to the average axial stress of 700 N/cm2. The stress concentration factor 
for the geometry shown was to be determined. Therefore, locations of highest stress were 
necessary. Figure 9–18 shows the resulting maximum principal stress plot using a computer 
program [11]. The largest principal stress was 1507.4 N/cm2 at the fillet. Other examples of 
the use of the axisymmetric element can be found in References [2–6].

In this chapter, we have shown the finite element analysis of axisymmetric systems using 
a simple three-noded triangular element to be analogous to that of the two-dimensional plane 
stress problem using three-noded triangular elements as developed in Chapter 6. Therefore, the 
two-dimensional element in commercial computer programs with the axisymmetric element 
selected will allow for the analysis of axisymmetric structures.
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473Summary Equations

Finally, note that other axisymmetric elements, such as a simple quadrilateral (one with 
four corner nodes and two degrees of freedom per node, as used in the steel die analysis of 
Figure 9–15) or higher-order triangular elements, such as in Reference [6], in which a cubic 
polynomial involving ten terms (ten a’s) for both u and w, could be used for axisymmetric 
analysis. The three-noded triangular element was described here because of its simplicity and 
ability to describe geometric boundaries rather easily.

Summary Equations

(All pertain to axisymmetric element.)
Strain-displacement relationships for axisymmetric behavior:
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Stress/strain relationships for isotropic material:
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	 (9.1.2)

■■ Figure 9–18  Three-dimensional visual of shaft of Figure 9–17 showing principal stress plot 
(See the full-color insert for a color version of this figure.)
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Displacement functions for axisymmetric triangle element:

	
u r z a a r a z

w r z a a r a z

( , )

( , )
1 2 3

4 5 6

5 1 1

5 1 1
	 (9.1.3)

Shape functions for axisymmetric triangle element:
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	 (9.1.12)

Gradient matrix:
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	 (9.1.19)

and	 B B B Bi j m[ ] [[ ] [ ] [ ]]5 	 (9.1.21)

Strain–displacement equations in matrix form:

	 B d{ } [ ]{ }« 5 	 (9.1.20)

Stress–displacement equations in matrix form:

	 D B d{ } [ ][ ]{ }s 5 	 (9.1.22)

Element stiffness matrix:

	 k B D B r dr dzT

A
∫∫π5[ ] 2 [ ] [ ][ ] 	 (9.1.24)

First approximation stiffness matrix:

	 k rA B D BTπ5[ ] 2 [ ] [ ][ ]	 (9.1.26)

Body force matrix (first approximation):
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	 R rb
2v r5 	 (9.1.32)
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475Problems

Surface force matrix on side j–m of element subjected to uniform radial and axial pressure:
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	 (9.1.36)
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Problems

	 9.1		  For the elements shown (in cm) in Figure P9–1, evaluate the stiffness matrices using  
Eq. (9.2.2). The coordinates are shown in the figures. Let 5 210 GPaE  and ν 0.255  
for each element.

	 9.2		  Evaluate the nodal forces used to replace the linearly varying surface traction shown 
in Figure P9–2. Hint: Use Eq. (9.1.34).

■■ Figure P9–1

(1, 2)

(2, 0)(0, 0)
1 2

3

1 2

3

1 2

3

(c)(b)(a)
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9  |  Axisymmetric Elements476

	 9.3		  For an element of an axisymmetric body rotating with a constant angular velocity 
20 rpmv 5  as shown in Figure P9–3, evaluate the body-force matrix. The coor-

dinates of the element (in cm) are shown in the figure. Let the mass density wr  be 
7850 kg / m3.

■■ Figure P9–2

■■ Figure P9–3

■■ Figure P9–4

(c)

(0, 2)3

2
(2, 0)(0, 0)

1

	 9.4		  For the axisymmetric elements shown in Figure P9–4, determine the element stresses. 
Let 5 210 GPaE  and ν 0.255 . The coordinates (in centimeters) are shown in 
the figures, and the nodal displacements for each element are u 5 0.00025 cm1 , 
w 5 0.0005 cm1 , u 5 0.00125 cm2 , w 5 0.0015 cm2 , u 03 5 , and w 03 5 .

	 9.5		  Explicitly show that the integration of Eq. (9.1.35) yields the j surface forces given 
by Eq. (9.1.36).

	 9.6		  For the elements shown in Figure P9–6, evaluate the stiffness matrices using Eq. 
(9.2.2). The coordinates (in millimeters) are shown in the figures. Let E 105 GPa5  
and ν 0.255  for each element.
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	 9.7		  For the axisymmetric elements shown in Figure P9–7, determine the element 
stresses. Let E 105 GPa5  and ν 0.255 . The coordinates (in millimeters) are shown 
in the figures, and the nodal displacements for each element are

	

u w

u w

u w

0.05 mm 0.03 mm

0.01 mm 0.01 mm

0.0 mm 0.0 mm

1 1

2 2

3 3

5 5

5 5

5 5

	

■■ Figure P9–6

■■ Figure P9–7

	 9.8		  Can we connect plane stress elements with axisymmetric ones? Explain.
	 9.9		  Is the three-noded triangular element considered in Section 9.1 a constant strain 

element? Why or why not?
	 9.10		  How should one model the boundary conditions of nodes acting on the axis of symmetry?
	 9.11		  How would you evaluate the circumferential strain, «u, at r 05 ? What is this strain 

in terms of the a’s given in Eq. (9.1.15). Hint: Elasticity theory tells us that the radial 
strain must equal the circumferential strain at r 05 .

	 9.12		  What will be the stresses rs  and su  at r 05 ? Hint: Look at Eq. (9.1.2) after consid-
ering Problem 9.11.

Solve the following axisymmetric problems using a computer program.
	 9.13		  The soil mass in Figure P9–13 is loaded by a force transmitted through a circular 

footing as shown. Determine the stresses in the soil. Compare the values of rs  
using an axisymmetric model with the ys  values using a plane stress model. Let 

5 20 MPaE  and ν 0.455  for the soil mass.

Problems
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■■ Figure P9–13

24 kN total force

0.3 m

■■ Figure P9–14

33 cm

0.4 m

5 cm

7.5 cm radius hole
19 cm

1.25 m

0.6 m

0.75 m

	 9.14		  Perform a stress analysis of the pressure vessel shown in Figure P9–14. Let 
5 32 GPaE  and ν 0.155  for the concrete, and let 5 200 GPaE  and ν 0.255  for 

the steel liner. The steel liner is 50 mm thick. Let the pressure p equal 3.2 MPa. Use 
a 6 mm radius in the re-entrant corners.

	 9.15		  Perform a stress analysis of the concrete pressure vessel with the steel liner shown in 
Figure P9–15. Let E 30 GPa5  and ν 0.155  for the concrete, and let E 205 GPa5  
and ν 0.255  for the steel liner. The steel liner is 50 mm thick. Let the pressure p 
equal 700 kPa. Use a 10 mm radius in the re-entrant corners.

	 9.16		  Perform a stress analysis of the disk shown in Figure P9–16 if it rotates with constant 
angular velocity of 50 rpmv 5 . Let 5 210 GPaE , ν 0.255 , and the mass density 
r 5 72.44 kN/m3 (mass density, r r5 5/( 9.81 m/s )2gw . (Use 8 and then 16 ele-
ments symmetrically modeled similar to Example 9.4. Compare the finite element 
solution to the theoretical circumferential and radial stresses given by
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	 9.17		  For the die casting shown in Figure P9–17, determine the maximum stresses and their 
locations. Let 5 210 GPaE  and ν 0.255 . The dimensions are shown in the figure.
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■■ Figure P9–15

1250 mm

ConcreteSteel liner

400 mm

325 mm

750 mm

p

■■ Figure P9–16

300 mm

75 mm

■■ Figure P9–17

165 mm
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100 mm
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60 mm
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Problems
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	 9.19		  For the thick-walled open-ended cylindrical pipe subjected to internal pressure shown 
in Figure P9–19, use five layers of elements to obtain the circumferential stress, su, 
and the principal stresses and maximum radial displacement. Compare these results 
to the exact circumferential stress and radial displacement equations given by
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			   where

			 
P P

a b r
i inner pressure, outer pressure (set to zero in this problem)

inner radius of vessel, outer radius of vessel, any radial location
05 5

5 5 5

			   Let E 205 GPa5  and ν 0.35 .
	 9.20		  A steel cylindrical pressure vessel with flat plate end caps is shown in Figure P9–20 

with vertical axis of symmetry. Addition of thickened sections helps to reduce stress 
concentrations in the corners. Analyze the design and identify the most critically 
stressed regions. Note that inside sharp re-entrant corners produce infinite stress 
concentration zones, so refining the mesh in these regions will not help you get 
a better answer unless you use an inelastic theory or place small fillet radii there. 
Recommend any design changes in your report. Let the pressure inside be 1000 kPa.

	 9.21		  For the cylindrical vessel with hemispherical ends (heads) under uniform internal 
pressure of intensity 5 3.2 MPap  shown in Figure P9–21, determine the maximum 
von Mises stress and where it is located. The material is ASTM—A242 quenched 

	 9.18		  For the axisymmetric connecting rod shown in Figure P9–18, determine the stresses 
zs , rs , su , and s rz . Plot stress contours (lines of constant stress) for each of the 

normal stresses. Let 5 210 GPaE  and ν 0.255 . The applied loading and boundary 
conditions are shown in the figure. A typical discretized rod is shown in the figure 
for illustrative purposes only.

■■ Figure P9–18

42 mm radius

25 mm 15 mm 50 mm

25 mm

180 mm

5000 N

5000 N 25 mm
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■■ Figure P9–19

■■ Figure P9–20

310 dia.

200 dia.

250 dia.

25

30°

60°

25 18.75

225300 Dimensions in millimetersp

■■ Figure P9–21

p

a

and tempered alloy steel. Use a factor of safety of 3 against yielding. The inner 
radius is 5 2.5 ma  and the thickness 5 50 mmt

Problems
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			   For modeling purposes, the equation of an ellipse is given by b x a y a b2 2 2 2 2 21 5 , 
where a is the major axis and b is the minor axis of the ellipse shown in Figure P9–22(b).

	 9.23		  The syringe with plunger is shown in Figure P9–23. The material of the syringe is 
glass with E 69 GPa5 , ν 0.155 , and tensile strength of 5 MPa. The bottom hole is 
assumed to be closed under test conditions. Determine the deformation and stresses 
in the glass. Compare the maximum principal stress in the glass to the ultimate 
tensile strength. Do you think the syringe is safe? Why?

	 9.22		  For the cylindrical vessel with ellipsoidal heads shown in Figure P9–22a under 
loading 5 3.2 MPap , determine if the vessel is safe against yielding. Use the same 
material and factor of safety as in Problem 9.21. Now let 5 2.5 ma , 5 1.25 mb ,  
and thickness 5 50 mmt  Which vessel has the lowest hoop stress? Recommend the 
preferred head shape of the two based on your answers.

a

b

p p h b r2 r1

df

f

a
x

y

(a) (b)

■■ Figure P9–22

■■ Figure P9–23

90 mm

Plunger

Liquid

Glass syringe

20 mm

25 mm

15 mm

45 N
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8 mm

4 mm
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12 mm

45
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	 9.24		  For the tapered solid circular shaft shown in Figure P9–24, a semicircular groove 
has been machined into the side. The shaft is made of a hot rolled 1040 steel alloy 
with yield strength of 500 MPa. The shaft is subjected to a uniform axial pressure 
of 28 MPa. Determine the maximum principal stresses and von Mises stresses at 
the fillet and at the semicircular groove. Is the shaft safe from failure based on the 
maximum distortion energy theory?

	 9.25		  A steel hole punch is shown in Figure P9–25a. Investigate the proper material for 
a hole punch. Tell me what material you used and why? Model the punch without 
the side groove (Figure P9–25b) and with the side groove (Figure P9–25c). Deter-
mine the von Mises stress distribution throughout the punch for both cases. Are the 
punches safe under the loading shown?

■■ Figure P9–25

(a) (b)

21 MPa

50 mm

100 mm
31.25

mm

6.25 mm
rad

150 mm

100 mm

18.25 mm

31.25 mm
rad

31.25 mm
rad

■■ Figure P9–24

75 mm

25 mm
12.5 mm

28 MPa

50 mm75 mm75 mm

25 mm

	 9.26		  A drawing of a cannon is shown in Figure P 9-26a. It is in the shape of a truncated 
cone. The material of the cannon is a bronze with yield strength of 255 MPa. The 
uniform thickness of the cannon wall is 7.5 centimeters. The cannon is tapered from 
25 centimeters outer diameter at the left end to 20 centimeters at 155 centimeters 

Problems
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9  |  Axisymmetric Elements484

from the left end and then tapered back out at the breach (right) end. Figure P 9–26b 
shows the dimensions to be used for the finite element model. The pressure inside 
during firing can reach 138 MPa. Determine the largest von Mises stress and show 
its location on a proper stress plot. Based on the maximum distortion energy theory, 
will the cannon material yield? Use a small fillet radius of 2.5 centimeters at the 
transitions at points C and F shown in Figure P 9–26b. You may want to neglect any 
other small details, such as the left end knob and the stiffener rings.

E
Breach

Knob

A B

FG

(0, 0, 0)

(b) Simpli�ed cannon cross-section for axisymmetric modeling
      (dimentions shown in centimeter units)

(0, 0, 2.5)

2.5 cm

2.5 cm rad

2.5 cm rad at c

(0, 10, 155)

(0, 2.5, 162.5)
(0, 11.25, 162.5)

C

DE

(0, 12.5, 0)

B

A

C D

(a) Cannon

162.5 cm
100 cm

■■ Figure P9–26
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	 9.27		  A simplified model of a flywheel as shown in Figure P9–27 is considered as a 
uniform thin disk with center hole for mounting on a shaft. Assume the flywheel 
with inner radius of hole of 2.5 centimeters and outer radius of the flywheel of 
10  centimeters. Assume the flywheel is made of 1045 high carbon steel. The 
flywheel shaft is turning at 2000 rpm. Determine: (a) the highest circumferential 
stress in the flywheel and its radial location. Compare this value to that obtained 
using analytical equations for a rotating thin hollow disk. (b) What speed can the 
flywheel tolerate before yielding based on the maximum distortional energy theory 
(MDET)? (c) If the flywheel is instead made of 6061-T6 aluminum alloy, what 
maximum speed can the flywheel tolerate based on MDET?

Motor

Shaft

Flywheel

TM

■■ Figure P9–27

Problems
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CHAPTER OBJECTIVES

At the conclusion of this chapter, you will be able to:

■	 Formulate the isoparametric formulation of the bar element stiffness matrix.

■	 Present the isoparametric formulation of the plane four-noded quadrilateral (Q4) 
element stiffness matrix.

■	 Describe two methods for numerical integration—Newton-Cotes and Gaussian 
Quadrature—used for numerical evaluation of definite integrals and to demonstrate 
their application to specific examples.

■	 Present a flowchart describing how to evaluate the stiffness matrix for the plane 
quadrilateral element by a four-point Gaussian quadrature rule.

■	 Solve an explicit example showing the evaluation of the stiffness matrix for the plane 
quadrilateral element by the four-point Gaussian quadrature rule.

■	 Illustrate by example how to evaluate the stresses at a given point in a plane quadri-
lateral element using Gaussian quadrature.

■	 Evaluate the stiffness matrix of the three-noded bar using Gaussian quadrature and 
compare the result to that found by explicit evaluation of the stiffness matrix for the 
bar.

■	 Describe some higher-order shape functions for the three-noded linear strain bar, the 
improved bilinear quadratic(Q6), the eight and nine-noded quadratic quadrilateral 
(Q8 and Q9) elements, and the twelve-noded cubic quadrilateral (Q12) element.

■	 Compare the performance of the CST, Q4, Q6, Q8, and Q9 elements to beam element.

Introduction
In this chapter, we introduce the isoparametric formulation of the element stiffness matrices. 
After considering the linear-strain triangular element in Chapter 8, we can see that the devel-
opment of element matrices and equations expressed in terms of a global coordinate system 
becomes an enormously difficult task (if even possible) except for the simplest of elements such 
as the constant-strain triangle of Chapter 6. Hence, the isoparametric formulation was devel-
oped [1]. The isoparametric method may appear somewhat tedious (and confusing initially), 
but it will lead to a simple computer program formulation, and it is generally applicable for 

Isoparametric Formulation
C H A P T E R

10
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10.1  Isoparametric Formulation of the Bar Element Stiffness Matrix 487

two- and three-dimensional stress analysis and for nonstructural problems. The isoparametric 
formulation allows elements to be created that are nonrectangular and have curved sides. Fur-
thermore, numerous commercial computer programs  (as described in Chapter 1) have adapted 
this formulation for their various libraries of elements.

We first illustrate the isoparametric formulation to develop the simple bar element stiff-
ness matrix. Use of the bar element makes it relatively easy to understand the method because 
simple expressions result.

We then consider the development of the isoparametric formulation of the simple quadri-
lateral element stiffness matrix.

Next, we will introduce numerical integration methods for evaluating the quadrilateral 
element stiffness matrix and illustrate the adaptability of the isoparametric formulation to 
common numerical integration methods.

Finally, we will consider some higher-order elements and their associated shape functions 
and compare their performance to the beam element.

	10.1 	 Isoparametric Formulation of the Bar Element 
Stiffness Matrix

The term isoparametric is derived from the use of the same shape functions (or interpolation 
functions) N[ ] to define the element’s geometric shape as are used to define the displacements 
within the element. Thus, when the shape function is u a a s1 25 1  for the displacement, we 
use x a a s1 25 1  for the description of the nodal coordinate of a point on the bar element and, 
hence, the physical shape of the element.

Isoparametric element equations are formulated using a natural (or intrinsic) coordinate 
system s that is defined by element geometry and not by the element orientation in the glob-
al-coordinate system. In other words, axial coordinate s is attached to the bar and remains 
directed along the axial length of the bar, regardless of how the bar is oriented in space. There 
is a relationship (called a transformation mapping) between the natural coordinate system s 
and the global coordinate system x for each element of a specific structure, and this relation-
ship must be used in the element equation formulations.

We will now develop the isoparametric formulation of the stiffness matrix of a simple 
linear bar element [with two nodes as shown in Figure 10–1(a)].

Step 1 Select Element Type
First, the natural coordinate s is attached to the element, with the origin located at the center 
of the element, as shown in Figure 10–1(b). The s axis need not be parallel to the x axis—this 
is only for convenience.

■■ Figure 10–1  Linear bar element in (a) a global coordinate system x and (b) a natural 
coordinate system s
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10  |  Isoparametric Formulation488

We consider the bar element to have two degrees of freedom—axial displacements u1 and 
u2 at each node associated with the global x axis.

For the special case when the s and x axes are parallel to each other, the s and x coordinates 
can be related by

	 x x
L

sc5 1
2

	 (10.1.1a)

where xc is the global coordinate of the element centroid.
Using the global coordinates x1 and x2 in Eq. (10.1.1a) with x x xc ( ) / 21 25 1 , we can 

express the natural coordinate s in terms of the global coordinates as

	 s x x x x x5 2 1 2[ ( ) / 2][2 / ( )]1 2 2 1 	 (10.1.1b)

The shape functions used to define a position within the bar are found in a manner similar 
to that used in Chapter 3 to define displacement within a bar (Section 3.1). We begin by relating 
the natural coordinate to the global coordinate by

	 x a a s5 11 2 	 (10.1.2)

where we note that s is such that s1 12 < < . Solving for the a si’  in terms of x1 and x2, we 
obtain

	 x s x s x5 2 1 1
1

2
[(1 ) (1 ) ]1 2 	 (10.1.3)

or, in matrix form, we can express Eq. (10.1.3) as

	 x N N
x

x
5












{ } [ ]1 2

1

2
	 (10.1.4)

where the shape functions in Eq. (10.1.4) are

	 N
s

N
s

5
2

5
11

2

1

2
1 2 	 (10.1.5)

The linear shape functions in Eqs. (10.1.5) map the s coordinate of any point in the element 
to the x coordinate when used in Eq. (10.1.3). For instance, when we substitute s 15 2  into 
Eq. (10.1.3), we obtain x x15 . These shape functions are shown in Figure 10–2, where we can 
see that they have the same properties as defined for the interpolation functions of Section 3.1. 
Hence, N1 represents the physical shape of the coordinate x when plotted over the length of the 
element for x 11 5  and x 02 5 , and N2 represents the coordinate x when plotted over the length 
of the element for x 12 5  and x 01 5 . Again, we must have N N 11 21 5 .

These shape functions must also be continuous throughout the element domain and have 
finite first derivatives within the element.

Step 2 Select a Displacement Function
The displacement function within the bar is now defined by the same shape functions, 
Eqs. (10.1.5), as are used to define the element shape; that is,

	 u N N
u

u
5












{ } [ ]1 2

1

2
	 (10.1.6)
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10.1  Isoparametric Formulation of the Bar Element Stiffness Matrix 489

When a particular coordinate s of the point of interest is substituted into N[ ], Eq. (10.1.6) 
yields the displacement of a point on the bar in terms of the nodal degrees of freedom u1 and 
u2 as shown in Figure 10–2(c). Since u and x are defined by the same shape functions at the 
same nodes, comparing Eqs. (10.1.4) and Eqs. (10.1.6), the element is called isoparametric.

Step 3 Define the Strain–Displacement and Stress/Strain Relationships
We now want to formulate element matrix B[ ] to evaluate k[ ] for the bar element. We use the 
isoparametric formulation to illustrate its manipulations. For a simple bar element, no real 
advantage may appear evident. However, for higher-order elements, the advantage will become 
clear because relatively simple computer program formulations will result.

To construct the element stiffness matrix, we must determine the strain, which is defined 
in terms of the derivative of the displacement with respect to x. The displacement u, however, 
is now a function of s as given by Eq. (10.1.6). Therefore, we must apply the chain rule of 
differentiation to the function u as follows:

	
du

ds

du

dx

dx

ds
5 	 (10.1.7)

We can evaluate (du/ds) and (dx/ds) using Eqs. (10.1.6) and (10.1.3). We seek du dx x( / ) 5 « . 
Therefore, we solve Eq. (10.1.7) for (du/dx) as

	
du

dx

du

ds
dx

ds

5













	 (10.1.8)

Using Eq. (10.1.6) for u, we obtain

	
du

ds

u u
5

2

2
2 1 	 (10.1.9a)

■■ Figure 10–2  Shape function variations with natural coordinates: (a) shape function 1N , 
(b) shape function 2N , and (c) linear displacement field u plotted over element length
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and using Eq. (10.1.3) for x, we have

	
dx

ds

x x L
5

2
5

2 2
2 1 	 (10.1.9b)

because x x L2 12 5 .
Using Eqs. (10.1.9a) and Eq (10.1.9b) in Eq. (10.1.8), we obtain 

	
L L

u

ux« 5 2
















{ }

1 1 1

2
	 (10.1.10)

Since B d{ } [ ]{ }« 5 , the strain–displacement matrix B[ ] is then given in Eq. (10.1.10) as

	 B
L L

5 2





[ ]
1 1

	 (10.1.11)

We recall that use of linear shape functions results in a constant B[ ] matrix, and hence, in a 
constant strain within the element. For higher-order elements, such as the quadratic bar with 
three nodes, B[ ] becomes a function of natural coordinate s [see Eq. (10.5.16)].

The stress matrix is again given by Hooke’s law as

	 E E B ds 5 « 5{ } { } [ ]{ }	

Step 4 Derive the Element Stiffness Matrix and Equations
The stiffness matrix is

	 k B D B A dxT
L

5[ ] [ ] [ ][ ]
0∫ 	 (10.1.12)

However, in general, we must transform the coordinate x to s because B[ ] is, in general, a 
function of s. This general type of transformation is given by References [4] and [5]

	 ∫ ∫f x dx f s J ds
L

( ) ( ) [ ]
0 1

1
5

2
	 (10.1.13)

where J[ ] is called the Jacobian matrix. In the one-dimensional case, we have J J| [ ] | 5  . For 
the simple bar element, from Eq. (10.1.9b), we have

	 J
dx

ds

L
[ ]

2
5 5 	 (10.1.14)

Observe that in Eq. (10.1.14), the Jacobian determinant relates an element length (dx) in the 
global-coordinate system to an element length (ds) in the natural-coordinate system. In gen-
eral, J| [ ] | is a function of s and depends on the numerical values of the nodal coordinates. This 
can be seen by looking at Eq. (10.2.22) for the quadrilateral element. (Section 10.2 further 
discusses the Jacobian.) Using Eqs. (10.1.13) and (10.1.14) in Eq. (10.1.12), we obtain the 
stiffness matrix in natural coordinates as

	 k
L

B E B A dsT5
2

[ ]
2

[ ] [ ]
1

1

∫ 	 (10.1.15)
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10.1  Isoparametric Formulation of the Bar Element Stiffness Matrix 491

where, for the one-dimensional case, we have used the modulus of elasticity E D[ ]5  in 
Eq. (10.1.15). Substituting Eq. (10.1.11) in Eq. (10.1.15) and performing the simple integration, 
we obtain

	 k
AE

L
5

2

2









[ ] 1 1

1 1
	 (10.1.16)

which is the same as Eq. (3.1.14). For higher-order one-dimensional elements, the integration 
in closed form becomes difficult if not impossible (see Example 10.7). Even the simple rect-
angular element stiffness matrix is difficult to evaluate in closed form (Section 6.6). However, 
the use of numerical integration, as described in Section 10.3, illustrates the distinct advantage 
of the isoparametric formulation of the equations.

Body Forces
We will now determine the body-force matrix using the natural coordinate system s. Using 
Eq. (3.10.20b), the body-force matrix is

	 f N X dVb
T

V

b5 ∫∫∫{ } [ ] { } 	 (10.1.17)

Letting dV A dx5 , we have 

	 f A N X dxb
T

L
b5 ∫{ } [ ] { }

0
	 (10.1.18)

Substituting Eqs. (10.1.5) for N1 and N2 into N[ ] and noting that by Eq. (10.1.9b), dx L ds( / 2)5 ,  
we obtain

	 f A

s

s
X

L
dsb b5

2

12∫



















{ }

1

2
1

2

{ }
21

1
	 (10.1.19)

On integrating Eq. (10.1.19), we obtain

	 f
ALX

b
b

5








{ }
2

1
1

	 (10.1.20)

The physical interpretation of the results for fb{ } is that since AL represents the volume of the 
element and Xb the body force per unit volume, then ALXb is the total body force acting on 
the element. The factor 1

2 indicates that this body force is equally distributed to the two nodes 
of the element.

Surface Forces
Surface forces can be found using Eq. (3.10.20a) as

	 f N T dSs s
T

S

x5{ } [ ] { }∫∫ 	 (10.1.21)
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Assuming the cross section is constant and the traction is uniform over the perimeter and along 
the length of the element, we obtain

	 f N T dxs s
T

L
x5{ } [ ] { }

0∫ 	 (10.1.22)

where we now assume Tx is in units of force per unit length. Using the shape functions N1 and 
N2 from Eq. (10.1.5) in Eq. (10.1.22), we obtain

	 f

s

s
T

L
dss x5

2

12∫



















{ }

1

2
1

2

{ }
21

1
	 (10.1.23)

On integrating Eq. (10.1.23), we obtain

	 f T
L

s x5








{ } { }
2

1
1

	 (10.1.24)

The physical interpretation of Eq. (10.1.24) is that since Tx{ } is in force-per-unit-length units, 
T Lx{ }  is now the total force. The 1

2 indicates that the uniform surface traction is equally dis-
tributed to the two nodes of the element. Note that if Tx{ } were a function of x (or s), then the 
amounts of force allocated to each node would generally not be equal and would be found 
through integration as in Example 3.12.

	10.2 	 Isoparametric Formulation of the Plane Quadrilateral 
(Q4) Element Stiffness Matrix

Recall that the term isoparametric is derived from the use of the same shape functions 
to define the element shape as are used to define the displacements within the element. 
Thus, when the shape function is u a a s a t a st1 2 3 45 1 1 1  for the displacement, we use 
x a a s a t a st1 2 3 45 1 1 1  for the description of a coordinate point in the plane element.

The natural-coordinate system s-t is defined by element geometry and not by the element 
orientation in the global-coordinate system x – y. Much as in the bar element example, there is 
a transformation mapping between the two coordinate systems for each element of a specific 
structure, and this relationship must be used in the element formulation.

We will now formulate the isoparametric formulation of the simple linear plane quadrilat-
eral element stiffness matrix (also recall it is called the Q4 element because it has four corner 
nodes only). This formulation is general enough to be applied to more complicated (higher-
order) elements such as a quadratic plane element with three nodes along an edge, which can 
have straight or quadratic curved sides. Higher-order elements have additional nodes and use 
different shape functions as compared to the linear element, but the steps in the development 
of the stiffness matrices are the same. We will briefly discuss these elements after examining 
the linear plane element formulation.
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10.2  Isoparametric Formulation of the Plane Quadrilateral (Q4) Element Stiffness Matrix 493

Step 1  Select Element Type
First, the natural s-t coordinates are attached to the element, with the origin at the center of the 
element, as shown in Figure 10–3(a). The s and t axes need not be orthogonal, and neither has 
to be parallel to the x or y axis. The orientation of s-t coordinates is such that the four corner 
nodes and the edges of the quadrilateral are bounded by 11  or 12 . This orientation will later 
allow us to take advantage more fully of common numerical integration schemes.

We consider the quadrilateral to have eight degrees of freedom, u1, v1, . . . , u4, and v4 asso-
ciated with the global x and y directions. The element then has straight sides but is otherwise 
of arbitrary shape, as shown in Figure 10–3(b).

For the special case when the distorted element becomes a rectangular element with sides 
parallel to the global x – y coordinates, the s-t coordinates can be related to the global element 
coordinates x and y by

	 x x bs y y htc c5 1 5 1 	 (10.2.1)

where xc and yc are the global coordinates of the element centroid.
We begin by assuming global coordinates x and y are related to the natural coordinates s 

and t as follows:

	
x a a s a t a st

y a a s a t a st

5 1 1 1

5 1 1 1

1 2 3 4

5 6 7 8
	 (10.2.2)

and solving for the ai’s in terms of x x x x y y y, , , , , ,1 2 3 4 1 2 3 and y4, we obtain

	

x s t x s t x

s t x s t x

y s t y s t y

s t y s t y

5 2 2 1 1 2

1 1 1 1 2 1

5 2 2 1 1 2

1 1 1 1 2 1

1

4
[(1 )(1 ) (1 )(1 )

(1 )(1 ) (1 )(1 ) ]

1

4
[(1 )(1 ) (1 )(1 )

(1 )(1 ) (1 )(1 ) ]

1 2

3 4

1 2

3 4

	 (10.2.3)

■■ Figure 10–3  (a) Linear square element in s-t coordinates and (b) square element mapped 
into quadrilateral in x – y coordinates whose size and shape are determined by the eight nodal 
coordinates 1x , 1y , . . . , 4y . (P(x,y) is a point in the element)
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Or, in matrix form, we can express Eqs. (10.2.3) as
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where the shape functions of Eq. (10.2.4) are now
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The shape functions of Eqs. (10.2.5) are linear. These shape functions are seen to map the s and 
t coordinates of any point in the square element of Figure 10–3(a) to those x and y coordinates 
in the quadrilateral element of Figure 10–3(b). For instance, consider square element node 1  
coordinates, where s 15 2  and t 15 2 . Using Eqs. (10.2.4) and (10.2.5), the left side of 
Eq. (10.2.4) becomes

	 x x y y5 51 1	 (10.2.6)

Similarly, we can map the other local nodal coordinates at nodes 2, 3, and 4 such that the 
square element in s-t isoparametric coordinates is mapped into a quadrilateral element in global 
coordinates x y,1 1 through x y,4 4. Also observe the property that N N N N 11 2 3 41 1 1 5  for 
all values of s and t.

We further observe that the shape functions in Eq. (10.2.5) are again such that N1 through 
N4 have the properties that N ii ( 1, 2, 3, 4,)5  is equal to one at node i and equal to zero at all 
other nodes. The physical shapes of Ni  as they vary over the element with natural coordinates 
are shown in Figure 10–4. For instance, N1 represents the geometric shape for x y1, 11 15 5 , 
and x y x y x, , , ,2 2 3 3 4 and y4 all equal to zero.

Until this point in the discussion, we have always developed the element shape functions 
either by assuming some relationship between the natural and global coordinates in terms of 
the generalized coordinates ai( ’s) as in Eqs. (10.2.2) or, similarly, by assuming a displace-
ment function in terms of the ai’s. However, physical intuition  can often guide us in directly 
expressing shape functions based on the following two criteria set forth in Section 3.2 and used 
on numerous occasions:

	 ∑ N i n
i

n

i 1 ( 1, 2, . . . , )
1

5 5
5

	

where n 5  the number of shape functions corresponding to displacement shape functions Ni , 
and Ni 15  at node i and Ni 05  at all nodes other than i. In addition, a third criterion is based 
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on Lagrangian interpolation when displacement continuity is to be satisfied, or on Hermitian 
interpolation when additional slope continuity needs to be satisfied, as in the beam element of 
Chapter 4. (For a description of the use of Lagrangian and Hermitian interpolation to develop 
shape functions, consult References [4] and [6].)

Step 2  Select Displacement Functions
The displacement functions within an element are now similarly defined by the same shape 
functions as are used to define the element geometric shape; that is, 
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	 (10.2.7)

where u and v are displacements parallel to the global x and y coordinates, and the shape func-
tions are given by Eqs. (10.2.5). The displacement of an interior point P located at x y( , ) in the 
element of Figure 10–3(b) is described by u and v in Eq.  (10.2.7).

Comparing Eqs. (6.6.6) and (10.2.7), we see similarities between the rectangular element 
with sides of lengths 2b and 2h (Figure 6–20) and the square element with sides of length 2. If 
we let b 15  and h 15 , the two sets of shape functions, Eqs. (6.6.5) and (10.2.5), are identical.

■■ Figure 10–4  Variations of the shape functions over a linear square element
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Step 3 Define the Strain–Displacement and Stress/Strain Relationships
Recall for the Q4 rectangle element described in Section 6.6 and Eq. (6.6.7b), that the strains 
are given in global coordinates by

	

a a y

a a x

a a a x a y
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xyg

« 5 1

« 5 1
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,

,

( )

2 4
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So we observe that x«  varies with the y coordinate but not with the x coordinate, and y«  varies 
with the x coordinate but not with the y coordinate as shown in Figure 10–5. So the normal 
strain «x  not vary along the length of the element. This element then will not accurately model 
a varying moment in a beam unless many elements are used throughout the length and depth 
of the beam, as demonstrated in Table 6-1.

We now want to formulate element matrix B[ ] to evaluate k[ ] for a general shaped quad-
rilateral. However, because it becomes tedious and difficult (if not impossible) to write the 
shape functions in terms of the x and y coordinates, as seen in Chapter 8, we will carry out the 
formulation in terms of the isoparametric coordinates s and t. This may appear tedious, but it is 
easier to use the s- and t-coordinate expressions than to attempt to use the x- and y-coordinate 
expressions. This approach also leads to a simple computer program formulation.

To construct an element stiffness matrix, we must determine the strains, which are defined 
in terms of the derivatives of the displacements with respect to the x and y coordinates. The 
displacements, however, are now functions of the s and t coordinates, as given by Eq. (10.2.7), 
with the shape functions given by Eqs. (10.2.5). Before, we could determine f x( / )� �  and 

f y( / )� � , where, in general, ƒ is a function representing the displacement functions u or v. 
However, u and v are now expressed in terms of s and t. Therefore, we need to apply the chain 
rule of differentiation because it will not be possible to express s and t as functions of x and y 
directly. For ƒ as a function of x and y, the chain rule yields
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	 (10.2.8)

In Eq. (10.2.8), f s( / )� � , f t( / )� � , x s( / )� � , y s( / )� � , x t( / )� � , and y t( / )� �  are all known using 
Eqs. (10.2.7) and (10.2.4). We still seek f x( / )� �  and f y( / )� � . The strains can then be found; 

■■ Figure 10–5  Normal strain variations through the Q4 element
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for example, u xx ( / )� �« 5 . Therefore, we solve Eqs. (10.2.8) for f x( / )� �  and f y( / )� �  using 
Cramer’s rule, which involves evaluation of determinants (Appendix B), as

	 5 5
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

f

x

f

s

y

s
f

t

y

t

x

s

y

s
x

t

y

t

f

y

x

s

f

s
x

t

f

t

x

s

y

s
x

t

y

t

	 (10.2.9)

where the determinant in the denominator is the determinant of the Jacobian matrix [J]. Hence, 
the Jacobian matrix is given by
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We now want to express the element strains as

	 B d{ } [ ]{ }« 5 	

	where [B] must now be expressed as a function of s and t. We start with the usual relationship 
between strains and displacements given in matrix form as

	

x

y

y x

u
v

x

y

xyg

«

« 5

�

�

�

�

�

�

�

�





















































( )
0

0
( )

( ) ( )

	 (10.2.12)

where the rectangular matrix on the right side of Eq. (10.2.12) is an operator matrix; that 
is, x( ) /� �  and y( ) /� �  represent the partial derivatives of any variable we put inside the 
parentheses.

Using Eqs. (10.2.9) and evaluating the determinant in the numerators, we have
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	 (10.2.13)

where J[ ]  is the determinant of [J] given by Eq. (10.2.10). Using Eq. (10.2.13) in Eq. (10.2.12) 
we obtain the strains expressed in terms of the natural coordinates (s-t) as
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Using Eq. (10.2.7), we can express Eq. (10.2.14) in terms of the shape functions and global 
coordinates in compact matrix form as

	 D N d« 5 9{ } [ ][ ]{ }	 (10.2.15)

where D[ ]9  is an operator matrix given by
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and [N] is the 2 83  shape function matrix given as the first matrix on the right side of 
Eq. (10.2.7) and {d} is the column matrix on the right side of Eq. (10.2.7).

Defining [B] as

	
5 9

3 3 3

B D N[ ] [ ] [ ]

(3 8) (3 2) (2 8) 	 (10.2.17)

we have [B] expressed as a function of s and t and thus have the strains in terms of s and t. Here 
[B] is of order 3 83 , as indicated in Eq. (10.2.17).

The explicit form of [B] can be obtained by substituting Eq. (10.2.16) for D[ ]9  and 
Eqs. (10.2.5) for the shape functions into Eq. (10.2.17). The matrix multiplications yield
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where the submatrices of [B] are given by
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Here i is a dummy variable equal to 1, 2, 3, and 4, and
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Using the shape functions defined by Eqs. (10.2.5), we have

	 N t N ss t5 2 5 2
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where the comma followed by the variable s or t indicates differentiation with respect to that 
variable; that is, � �N N ss /1, 1; , and so on. The determinant J[ ]  is a polynomial in s and t 
and is tedious to evaluate even for the simplest case of the linear plane quadrilateral element. 
However, using Eq. (10.2.10) for [J ] and Eqs. (10.2.3) for x and y, we can evaluate J[ ]  as
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where	 X x x x xc
T 5{ } [ ]1 2 3 4 	 (10.2.23)
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We observe that J[ ]  is a function of s and t and the known global coordinates x1, x2, . . . , y4. 
Hence, B[ ] is a function of s and t in both the numerator and the denominator [because of J[ ]  
given by Eq. (10.2.22)] and of the known global coordinates x1 through y4.

The stress/strain relationship is again D B d{ } [ ][ ]{ }s 5 , where because the B[ ] matrix is a 
function of s and t, so also is the stress matrix { }s .

Step 4 Derive the Element Stiffness Matrix and Equations
We now want to express the stiffness matrix in terms of s-t coordinates. For an element with 
a constant thickness h, we have

	 k B D B h dx dyT

A

5[ ] [ ] [ ][ ]∫∫ 	 (10.2.25)

However, [B] is now a function of s and t, as seen by Eqs. (10.2.18) through (10.2.20), and so 
we must integrate with respect to s and t. Once again, to transform the variables and the region 
from x and y to s and t, we must have a standard procedure that involves the determinant of 
[J]. This general type of transformation [4, 5] is given by

	 ∫∫ ∫∫f x y dx dy f s t J ds dt
A A

( , ) ( , ) [ ]5 	 (10.2.26)
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where the inclusion of J| [ ] | in the integrand on the right side of Eq. (10.2.26) results from a 
theorem of integral calculus (see Reference [5] for the complete proof of this theorem). We 
also observe that the Jacobian (the determinant of the Jacobian matrix) relates an element area 
(dx dy) in the global coordinate system to an elemental area (ds dt) in the natural coordinate 
system. For rectangles and parallelograms, J is the constant value J A / 45 , where A represents 
the physical surface area of the element. Using Eq. (10.2.26) in Eq. (10.2.25), we obtain

	 ∫∫k B D B h J ds dtT[ ] [ ] [ ][ ] [ ]
1

1

1

1
5

22
	 (10.2.27)

The J[ ]  and [B] are such as to result in complicated expressions within the integral of Eq. 
(10.2.27), and so the integration to determine the element stiffness matrix is usually done 
numerically. A method for numerically integrating Eq. (10.2.27) is given in Section 10.3. The 
stiffness matrix in Eq. (10.2.27) is of the order 8 83 .

Body Forces
The element body-force matrix will now be determined from

	 ∫∫
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Like the stiffness matrix, the body-force matrix in Eq. (10.2.28) has to be evaluated by 
numerical integration.

Surface Forces
The surface-force matrix, say, along edge t 15  (Figure 10–6) with overall length L, is

	 ∫
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	 (10.2.30)

■■ Figure 10–6  Surface traction: ps and pt acting at edge 1t 5
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because N 01 5  and N 02 5  along edge t 15 , and hence, no nodal forces exist at nodes 1 
and 2. For the case of uniform (constant) ps and pt along edge t 15 , the total surface-force 
matrix is

	 f h
L

p p p ps s t s t
T5{ }

2
[0 0 0 0 ] 	 (10.2.31)

Surface forces along other edges can be obtained similar to Eq. (10.2.30) by merely using the 
proper shape functions associated with the edge where the tractions are applied.

EXAMPLE 10.1

For the four-noded linear plane quadrilateral element shown in Figure 10–7 with a uniform 
surface traction along side 2–3, evaluate the force matrix by using the energy equivalent 
nodal forces obtained from the integral similar to Eq. (10.2.29). Let the thickness of the 
element be h 5 0.25 cm.

■■ Figure 10–7  Element subjected to uniform surface traction
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SOLUTION:

Using Eq. (10.2.29), we have
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1
	 (10.2.32)

With length of side 2–3 given by

	 (12.5 20) (10 0) 56.25 100 12.5 cm2 25 2 1 2 5 1 5L 	 (10.2.33)

Shape functions N2 and N3 must be used, as we are evaluating the surface traction along 
side 2–3 s 5(at 1). Therefore, Eq. (10.2.32) becomes
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evaluated along s 15

The shape functions for the four-noded linear plane element are taken from Eq. (10.2.5) as
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1 2
5

2 2 1
5

1 1
5

1 1 1
N

s t s t st
N

s t s t st
	 (10.2.35)
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The surface traction matrix is given by

	 { }
14.0

0
1065 5 3T

p

p
s

t





















	 (10.2.36)

Substituting Eq. (10.2.33) for L and Eq. (10.2.36) for the surface traction matrix and the 
thickness 2.55h  mm into Eq. (10.2.32), we obtain

	{ } [ ] { }
2

0

0

0

0

14
0

10 (2.5 10 )
12.5 10

21

1

2

2

3

3

1

1
6 3

2

5 5 3 3 3 3
3

2 2

2
2

f N T h
L

dt

N

N

N

N

dts s
T∫ ∫

































	 evaluated along s 15 	 (10.2.37)
Simplifying Eq. (10.2.37), we obtain

	 { } 156.25

14

0
14

0

2.187 10
0

0

2

31

1
3

2

31

1
5 5 3

2 2
f

N

N
dt

N

N
dts ∫ ∫





































	 (10.2.38)

evaluated along s 15

Substituting the shape functions from Eq. (10.2.35) into Eq. (10.2.38), we have

	 { } 2.187 10

1

4
0

1

4
0

3
1

1
5 3

2 2 1

1 1 12
f

s t st

s t st
dts ∫

























	 (10.2.39)

evaluated along s 15

Upon substituting s 15  into the integrand in Eq. (10.2.39) and performing the explicit 
integration in Eq. (10.2.40), we obtain

	 { } 2.187 10

2 2

4
0

2 2

4
0

2.187 10

0.50
4

0

0.50
4

0

3
1

1
3

2

2

1

1

5 3

2

1
5 3

2

1
2

2

f

t

t
dt

t
t

t
t

s ∫

















































	 (10.2.40)

Evaluating the resulting integration expression for each limit, we obtain the final expression 
for the surface traction matrix as

5 3

2

1
2 3

2 2

2 1
5 3{ } 2.187 10

0.50 0.25
0

0.50 0.25
0

2.187 10

0.50 0.25
0

0.50 0.25
0

2.187 10

1
0
1
0

N3 3 3























































fs
  (10.2.41)
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Or in explicit form the surface tractions at nodes 2 and 3 are

	 5

2187
0

2187
0

N

2

2

3

3







































f

f

f

f

s s

s t

s s

s t

	 (10.2.42)

	10.3 	 Newton-Cotes and Gaussian Quadrature
In this section, we will describe two methods for numerical evaluation of definite integrals, 
because it has proven most useful for finite element work.

We begin with the simpler more common integration method of Newton-Cotes. The 
Newton-Cotes methods for one and two intervals of integration are the well-known trapezoid 
and Simpson’s one-third rule, respectively. We will then describe Gauss’ method for numerical 
evaluation of definite integrals. After describing both methods, we will then understand why 
the Gaussian quadrature method is used in finite element work.

Newton-Cotes Numerical Integration
We first describe the common numerical integration method called the Newton-Cotes method 
for evaluation of definite integrals. However, the method does not yield as accurate of results 
as the Gaussian quadrature method and so is not normally used in finite element method eval-
uations, such as to evaluate the stiffness matrix.

To evaluate the integral

	 I y dx5
21

1

∫ 	

we assume the sampling points of y x( ) are spaced at equal intervals. Since the limits of inte-
gration are from 21 to 1 using the isoparametric formulation, the Newton-Cotes formula is 
given by

	 ∫ ∑I y dx h C y h C y C y C y C y C y
i

n

i i n n[ . . . ]
1

1

0
0 0 1 1 2 2 3 35 5 5 1 1 1 1 1

2
5

	 (10.3.1)

where the Ci are the Newton-Cotes constants for numerical integration with i intervals (the 
number of intervals will be one less than the number of sampling points, n) and h is the interval 
between the limits of integration (for limits of integration between 21 and 1 this makes h 25 ). 
The Newton-Cotes constants have been published and are summarized in Table 10–1 for i 15  
to 6. The case i 15  corresponds to the well-known trapezoid rule illustrated by Figure 10–8. 
The case i 25  corresponds to the well-known Simpson one-third rule. It is shown [9] that 
the formulas for i 35  and i 55  have the same accuracy as the formulas for i 25  and i 45 ,  
respectively. Therefore, it is recommended that the even formulas with i 25  and i 45  be 
used in practice. To obtain greater accuracy one can then use a smaller interval (include more 
evaluations of the function to be integrated). This can be accomplished by using a higher-order 
Newton-Cotes formula, thus increasing the number of intervals i.

It is shown [9] that we need to use n equally spaced sampling points to integrate exactly a 
polynomial of order at most n 12 . On the other hand, using Gaussian quadrature we will show 
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that we use unequally spaced sampling points n and integrate exactly a polynomial of order at 
most n2 12 . For instance, using the Newton-Cotes formula with n 25  sampling points, the 
highest order polynomial we can integrate exactly is a linear one. However, using Gaussian 
quadrature, we can integrate a cubic polynomial exactly. Gaussian quadrature is then more 
accurate with fewer sampling points than Newton-Cotes quadrature. This is because Gaussian 
quadrature is based on optimizing the position of the sampling points (not making them equally 
spaced as in the Newton-Cotes method) and also optimizing the weights Wi given in Table 10–2.

Table 10–2  Table for Gauss points for integration from minus one to one, ( )
1

1

1

5
2

5

y x dx W y
i

n

i i∫ ∑

Number of 
Points Locations, xi

Associated
Weights, Wi

1 x 0.000 . . .1 5 2.000

2 x x, 0.577350269189621 2 5 6 1.000

3 x x

x

, 0.77459666924148

0.000 . . .
1 3

2

5 6

5

0.555 . . .

0.888 . . .

5
9

8
9

5

5

4 x1 x 0.86113631164 5 6   
x2 x 0.33998104363 5 6

0.3478548451 
0.6521451549

Table 10–1  Table for Newton-Cotes intervals and points for integration, ∫ ∑( )
1

1

0

y x dx h C y
i

n

i i5
2

5

Intervals,  
i

No. of 
Points,n 0C 1C 2C 3C 4C 5C 6C

1 2 1/2 1/2 (trapezoid rule)

2 3 1/6 4/6 1/6 (Simpson’s 1/3 rule)

3 4 1/8 3/8 3/8 1/8 (Simpson’s 3/8 rule)

4 5 7/90 32/90 12/90 32/90 7/90

5 6 19/288 75/288 50/288 50/288 75/288 19/288

6 7 41/840 216/840 27/840 272/840 27/840 216/840 41/840

■■ Figure 10–8  Approximation of numerical integration (approximate area under curve) using 

1i 5  interval, 2n 5  sampling points (trapezoid rule), for ∫ ∑( )
1

1

0

2

I y x dx h C y
i

i i5 5
2

5

y

x

y0

y1

−1 0 1
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After the function is evaluated at the sampling points, the corresponding weights are 
multiplied by these evaluated functions as is illustrated in Example 10.3.

Example 10.2 is used to illustrate the Newton-Cotes method and compare its accuracy to 
that of the Gaussian quadrature method subsequently described.

EXAMPLE 10.2

Using the Newton-Cotes method with i 25  intervals (n 35  sampling points), evaluate the 

integrals (a) ∫I x x dx[ cos( / 2)]2
1

1
5 1

2
 and (b) ∫I x dxx(3 )

1

1
5 2

2
.

SOLUTION:
Using Table 10–1 with three sampling points means we evaluate the function inside the inte-
grand at x 15 2 , x 05 , and x 15 , and multiply each evaluated function by the respective 
Newton-Cotes numbers, 1/6, 4/6, and 1/6. We then add these three products together and 
finally multiply this sum by the interval of integration h( 2)5  as follows:

	 I y y y5 1 1





2
1

6

4

6

1

6
0 1 2 	 (10.3.2)

(a): Using the integrand in part (a), we obtain

	

y x x x

y

y

y

5 1 5 2

5 2 1 2 5

5 1 5

5 1 5

cos( / 2) evaluated at 1, etc. as follows:

( 1) cos( 1 / 2 rad) 1.8775826

(0) cos(0 / 2) 1

(1) cos(1 / 2 rad) 1.8775826

0
2

0
2

1
2

2
2

	 (10.3.3)

Substituting y y0 22  from Eq. (10.3.3) into Eq. (10.3.2), we obtain the evaluation of the 
integral as

	 I 5 1 1 5





2
1

6
(1.8775826)

4

6
(1)

1

6
(1.8775826) 2.585	

This solution compares exactly to the evaluation performed using Gaussian quadrature sub-
sequently shown in Example 10.3 and to the exact solution. However, for higher-order func-
tions the Gaussian quadrature method yields more accurate results than the Newton-Cotes 
method as illustrated by part (b) as follows:

(b): Using the integrand in part (b), we obtain

	

y

y

y

5 2 2 5

5 2 5

5 2 5

23 ( 1)
4

3
3 0 1

3 (1) 2

0
( 1)

1
0

2
1
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Substituting y y0 22  into Eq. (10.3.2) we obtain I as

	 I 5 1 1 5












2
1

6

4

3

4

6
(1)

1

6
(2) 2.444	

The error is 2.444 2.427 0.0172 5 . This error is larger than that found using Gaussian 
quadrature [see Example 10.3(b)].

Gaussian Quadrature
To evaluate the integral

	 I y dx5
21

1

∫ 	 (10.3.4)

where y y x( )5 , we might choose (sample or evaluate) y at the midpoint y y(0) 15  and multi-
ply by the length of the interval, as shown in Figure 10–9, to arrive at I y2 15 , a result that is 
exact if the curve happens to be a straight line. This is an example of what is called one-point 
Gaussian quadrature because only one sampling point was used. Therefore,

	 I y x dx y>5
2

( ) 2 (0)
1

1

∫ 	 (10.3.5)

which is the familiar midpoint rule. Generalization of the formula [Eq. (10.3.5)] leads to

	 I y dx W y
i

n

i i5 5
2

5
1

1

1
∫ ∑ 	 (10.3.6)

That is, to approximate the integral, we evaluate the function at several sampling points n, mul-
tiply each value yi by the appropriate weight Wi, and add the terms. Gauss’s method chooses the 
sampling points so that for a given number of points, the best possible accuracy is obtained. Sam-
pling points are located symmetrically with respect to the center of the interval. Symmetrically 
paired points are given the same weight Wi. Table 10–2 gives appropriate sampling points and 
weighting  coefficients for the first three orders—that is, one, two, or three sampling points (see 
Reference [2] for more complete tables). For example, using two points (Figure 10–10), we simply 
have I y y1 25 1  because W W 1.0001 25 5 . This is the exact result if y f x( )5  is a polynomial 
containing terms up to and including x3. In general, Gaussian quadrature using n points (Gauss 
points) is exact if the integrand is a polynomial of degree 2n 2 1 or less. In using n points, we 
effectively replace the given function y 5 f(x) by a polynomial of degree 2n 2 1. The accuracy of 
the numerical integration depends on how well the polynomial fits the given curve.

■■ Figure 10–9  Gaussian quadrature using one sampling point
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If the function f x( ) is not a polynomial, Gaussian quadrature is inexact, but it becomes 
more accurate as more Gauss points are used. Also, it is important to understand that the ratio 
of two polynomials is, in general, not a polynomial; therefore, Gaussian quadrature will not 
yield exact integration of the ratio.

Two-Point Formula
To illustrate the derivation of a two-point n( 2)5  Gauss formula based on Eq. (10.3.6), we have

	 I y dx W y W y W y x W y x5 5 1 5 1
2

( ) ( )
1

1
1 1 2 2 1 1 2 2∫ 	 (10.3.7)

There are four unknown parameters to determine: W1, W2, x1, and x2. Therefore, we assume a 
cubic function for y as follows:

	 y C C x C x C x5 1 1 10 1 2
2

3
3	 (10.3.8)

In general, with four parameters in the two-point formula, we would expect the Gauss formula 
to exactly predict the area under the curve. That is,

	 A C C x C x C x dx C
C

5 1 1 1 5 1
2∫ ( ) 2

2

3
0 1 2

2
3

3
1

1
0

2 	 (10.3.9)

However, we will assume, based on Gauss’s method, that W W1 25  and x x1 25  as we use two 
symmetrically located Gauss points at x a5 6  with equal weights. The area predicted by 
Gauss’s formula is

	 A Wy a Wy a W C C aG 5 2 1 5 1( ) ( ) 2 ( )0 2
2 	 (10.3.10)

where y a( )2  and y a( ) are evaluated using Eq. (10.3.8). If the error, e A AG5 2 , is to vanish 
for any C0 and C2, we must have, using Eqs. (10.3.9) and (10.3.10) in the error expression,

	
e

C
W W5 5 2 5

�

�
0 2 2 or 1

0
	 (10.3.11)

and	
�

�

e

C
a W a0

2

3
2 or

1

3
0.5773 . . .

2

25 5 2 5 5 	 (10.3.12)

Now W 15  and a 0.57735  . . . are the Wi’s and ai’s (xi’s) for the two-point Gaussian quadra-
ture given in Table 10–2.

■■ Figure 10–10  Gaussian quadrature using two sampling points
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EXAMPLE 10.3

Evaluate the integrals I x x dx I x dxx5 1 5 2
2 2

[ cos( / 2)] and (b) (3 )2
1

1

1

1

∫ ∫  using three-
point Gaussian quadrature.

SOLUTION:
(a) Using Table 10–2 for the three Gauss points and weights, we have x x 0.77459 . . .1 35 5 6 , 

…x 0.0002 5 , W W W, and1 3
5
9 2

8
95 5 5 . The integral then becomes

	

I 5 2 1 2 1 1

1 1

5 1 5

( 0.77459) cos
0.77459

2
rad

5

9
0 cos

0

2

8

9

(0.77459) cos
0.77459

2
rad

5

9

1.918 0.667 2.585

2 2

2































	

Compared to the exact solution, we have I 2.585exact 5 .
In this example, three-point Gaussian quadrature yields the exact answer to four 

significant figures.
(b) Using Table 10–2 for the three Gauss points and weights as in part (a), the integral 

then becomes

	
I 5 2 2 1 2 1 2

5 1 1 5

2[3 ( 0.77459)]
5

9
[3 0]

8

9
[3 (0.77459)]

5

9
0.66755 0.88889 0.86065 2.4229(2.423 to four significant figures)

( 0.77459) 0 (0.77459)

	

Compared to the exact solution, we have I 2.427exact 5 . The error is 2.427 2.423 0.0042 5 .

In two dimensions, we obtain the quadrature formula by integrating first with respect to 
one coordinate and then with respect to the other as

	

I f s t ds dt W f s t dt

W W f s t W W f s t

i
i i

j
j

i
i i j

j j
i j i j

5 5

5 5

22 2∫∫ ∑∫

∑ ∑ ∑∑





















( , ) ( , )

( , ) ( , )

1

1

1

1

1

1

	 (10.3.13)

In Eq. (10.3.13), we need not use the same number of Gauss points in each direction (that is, 
i does not have to equal j), but this is usually done. Thus, for example, a four-point Gauss rule 
(often described as a 2 × 2 rule) is shown in Figure 10–11. Equation (10.3.13) with i 5 1, 2 
and j 5 1, 2 yields

	 I W W f s t W W f s t W W f s t W W f s t5 1 1 1( , ) ( , ) ( , ) ( , )1 1 1 1 1 2 1 2 2 1 2 1 2 2 2 2 	 (10.3.14)

where the four sampling points are at s ti i, 0.5773 . . . 1 / 35 6 5 6 , and the weights are all 
1.000. Hence, the double summation in Equation (10.3.13) can really be interpreted as a single 
summation over the four points for the rectangle.
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In general, in three dimensions, we have

	 I f s t z ds dt dz W W W f s t zi j k i j k
kji

5 5
222 ∫ ∑∑∑∫∫ ( , , ) ( , , )

1

1

1

1

1

1
	 (10.3.15)

	10.4 	 Evaluation of the Stiffness Matrix and Stress Matrix 
by Gaussian Quadrature

Evaluation of the Stiffness Matrix
For the two-dimensional element, we have shown in previous chapters that

	 k B x y D B x y h dx dyT

A

5[ ] [ ( , )] [ ][ ( , )]∫∫ 	 (10.4.1)

where, in general, the integrand is a function of x and y and nodal coordinate values.
We have shown in Section 10.2 that k[ ] for a quadrilateral element can be evaluated in 

terms of a local set of coordinates s-t, with limits from minus one to one within the element, 
and in terms of global nodal coordinates as given by Eq. (10.2.27). We repeat Eq. (10.2.27) 
here for convenience as

	 ∫∫k B s t D B s t J h ds dtT[ ] [ ( , )] [ ][ ( , )] [ ]
1

1

1

1
5

22
	 (10.4.2)

where J[ ]  is defined by Eq. (10.2.22) and [B] is defined by Eq. (10.2.18). In Eq. (10.4.2), each 
coefficient of the integrand B D B JT[ ] [ ][ ] [ ]  must be evaluated by numerical integration in the 
same manner as f (s,t) was integrated in Eq. (10.3.13).

A flowchart to evaluate [k] of Eq. (10.4.2) for an element using four-point Gaussian 
quadrature is given in Figure 10–12. When we use the four-point rule for the four-noded quad-
rilateral (Q4 element), this is called “full integration” as full integration refers to the number 
of Gauss points required to integrate the polynomial terms in an element’s stiffness matrix 
exactly when the element has a regular shape, such as the rectangular element. Furthermore, 
the Q4 fully integrated linear element then requires two integration points in each direction. 
The four-point Gaussian quadrature rule is relatively easy to use. Also, it has been shown to 

■■ Figure 10–11  Four-point Gaussian quadrature in two dimensions
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yield good results [7]. In Figure 10–12, in explicit form for four-point Gaussian quadrature 
(now using the single summation notation with i 1, 2, 3, 45 ), we have

	

k B s t D B s t J s t hW W

B s t D B s t J s t hW W

B s t D B s t J s t hW W

B s t D B s t J s t hW W

T

T

T

T

[ ] [ ( , )] [ ][ ( , )] [ ( , )]

[ ( , )] [ ][ ( , )] [ ( , )]

[ ( , )] [ ][ ( , )] [ ( , )]

[ ( , )] [ ][ ( , )] [ ( , )]

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5

1

1

1

	 (10.4.3)

where s t 0.57731 15 5 2 , s 0.57732 5 2 , t 0.57732 5 , s 0.57733 5 , t 0.57733 5 2 , and 
s t 0.57734 45 5  as shown in Figure 10–11, and W W W W 1.0001 2 3 45 5 5 5 .

EXAMPLE 10.4

Evaluate the stiffness matrix for the quadrilateral element shown in Figure 10–13 using the 
four-point Gaussian quadrature rule. Let E 5 200 Gpa and ν 0.255 . The global coordinates 
are shown in centimeters. Assume h 5 1 cm.

■■ Figure 10–12  Flowchart to evaluate [ ]( )k e  by four-point Gaussian quadrature

Read in four Gauss points and weight functions
si, ti = ±0.5773 . . . ; Wi, Wj = i = 1., 1.

Zero [k(e)]

DO i = 1, 4

Let s = si, t = ti

Compute |[J (s, t)]|, [B(s, t)], [D]

Compute [k] = [B]T[D][B]|[J]|h

[k(e)] = [k(e)] + [k]WiWj

■■ Figure 10–13  Quadrilateral element for stiffness evaluation

t

s
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SOLUTION:
Using Eq. (10.4.3), we evaluate the [k] matrix. Using the four-point rule, the four points are 
(also see Figure 10–11).

	

s t

s t

s t

s t

5 2 2

5 2

5 2

5

( , ) ( 0.5773, 0.5773)

( , ) ( 0.5773, 0.5773)

( , ) (0.5773, 0.5773)

( , ) (0.5773, 0.5773)

1 1

2 2

3 3

4 4

	 (10.4.4a)

with weights W W W W 1.0001 2 3 45 5 5 5 .
Therefore, by Eq. (10.4.3), we have

	

k B D B

J

B D B

J

B D B

J

B D B

J

T

T

T

T

[ ] [ ( 0.5773, 0.5773)] [ ][ ( 0.5773, 0.5773)]

[ ( 0.5773, 0.5773)] (1)(1.000)(1.000)

[ ( 0.5773, 0.5773)] [ ][ ( 0.5773, 0.5773)]

[ ( 0.5773, 0.5773)] (1)(1.000)(1.000)

[ (0.5773, 0.5773)] [ ][ (0.5773, 0.5773)]

[ (0.5773, 0.5773)] (1)(1.000)(1.000)

[ (0.5773, 0.5773)] [ ][ (0.5773, 0.5773)]

[ (0.5773, 0.5773)] (1)(1.000)(1.000)

5 2 2 2 2

3 2 2

1 2 2

3 2

1 2 2

3 2

1

3

	

(10.4.4b)

To evaluate [k], we first evaluate J[ ]  at each Gauss point by using Eq. (10.2.22). For 
instance, one part of J[ ]  is given by

	






































J[ ( 0.5773, 0.5773)]
1

8
[3 5 5 3]

0 1 ( 0.5773) 0.5773 ( 0.5773) 0.5773 1

0.5773 1 0 0.5773 1 0.5773 ( 0.5773)

0.5773 ( 0.5773) ( 0.5773) 1 0 0.5773 1

1 ( 0.5773) 0.5773 ( 0.5773) 0.5773 1 0

2
2
4
4

1.000

2 2 5

3

2 2 2 2 2 2 2

2 2 2 1 2 2 2

2 2 2 2 2 2 2 1

2 2 2 1 2 2 2

3 5

	

(10.4.4c)

Similarly,

	

J

J

J

[ ( 0.5773, 0.5773)] 1.000

[ (0.5773, 0.5773)] 1.000

[ (0.5773, 0.5773)] 1.000

2 5

2 5

5

	 (10.4.4d)

Even though J[ ] 15  in this example, in general, ±J[ ] 1 and varies in space.
Then, using Eqs. (10.2.18) and (10.2.19), we evaluate [B]. For instance, one part of [B] is

	 B
J

B B B B[ ( 0.5773, 0.5773)]
1

[ ( 0.5773, 0.5773)]
[[ ] [ ] [ ] [ ]]1 2 3 42 2 5

2 2
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where, by Eq. (10.2.19),

	

















B

aN bN

cN dN

cN dN aN bN

s t

t s

t s s t

[ ]

0

01

1, 1,

1, 1,

1, 1, 1, 1,

5

2

2

2 2

	 (10.4.4e)

and by Eqs. (10.2.20) and (10.2.21), a, b, c, d, N s1, , and N t1,  are evaluated. For instance,

	

1

4
[ ( 1) ( 1 ) (1 ) (1 )]

1

4
{2( 0.5773 1) 2[ 1 ( 0.5773)]} 4[1 ( 0.5773)] 4[1 ( 0.5773)]

1.00

1 2 3 45 2 1 2 2 1 1 1 2

5 2 2 1 2 2 2 1 1 2 1 2 2

5

a y s y s y s y s

	

(10.4.4f)

with similar computations used to obtain b, c, and d. Also,

	
5 2 5 2 2 5 2

5 2 5 2 2 5 2

1

4
( 1)

1

4
( 0.5773 1) 0.3943

1

4
( 1)

1

4
( 0.5773 1) 0.3943

1,

1,

N t

N s

s

t

	 (10.4.4g)

Similarly, B[ ]2 , B[ ]3 , and B[ ]4  must be evaluated like B[ ]1 , at ( 0.5773, 0.5773)2 2 . We then 
repeat the calculations to evaluate [B] at the other Gauss points [Eq. (10.4.4a)].

Using a computer program written specifically to evaluate [B] at each Gauss point and 
then [k], we obtain the final form of B[ ( 0.5773, 0.5773)]2 2  as

	

B 2 2 5

2 2 2

2 2 2 2

2



















[ ( 0.5773, 0.5773)]

0.1057 0 0.1057 0 0 0.1057 0 0.3943

0.1057 0.1057 0.3943 0.1057 0.3943 0 0.3943 0

0 0.3943 0 0.1057 0.3943 0.3943 0.1057 0.3943

	

(10.4.4h)

with similar expressions for B[ ( 0.5773, 0.5773)]2 , and so on.
From Eq. (6.1.8), the matrix [D] is

	 5
2

2

5 3[ ]
1

1 0

1 0

0 0
1

2

213.33 53.33 0
53.33 213.33 0

0 0 80
10 Pa

2
9

ν

ν

ν
ν





































D
E

	 (10.4.4i)
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Finally, using Eq. (10.4.4b), the matrix [k] becomes

	 k 5

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2





























[ ] 10

1466 500 866 99 733 500 133 99
500 1466 99 133 500 733 99 866
866 99 1466 500 133 99 733 500
99 133 500 1466 99 866 500 733

733 500 133 99 1466 500 866 99
500 733 99 866 500 1466 99 133
133 99 733 500 866 99 1466 500
99 866 500 733 99 133 500 1466

4 	 (10.4.4j)

Evaluation of Element Stresses
The stresses D B d{ } [ ][ ]{ }s 5  are not constant within the quadrilateral element. Because [B] is 
a function of s and t coordinates, { }s  is also a function of s and t. In practice, the stresses are 
evaluated at the same Gauss points used to evaluate the stiffness matrix [k]. For a quadrilateral 
using 2 23  integration, we get four sets of stress data. To reduce the data, it is often practical 
to evaluate { }s  at s 05 , t 05  instead. Another method mentioned in Section 7.4 is to evaluate 
the stresses in all elements at a shared (common) node and then use an average of these element 
nodal stresses to represent the stress at the node. Most computer programs use this method. 
Stress plots obtained in these programs are based on this average nodal stress method. Example 
10.5 illustrates the use of Gaussian quadrature to evaluate the stress matrix at the s 05 , t 05  
location of the element.

EXAMPLE 10.5

For the rectangular element shown in Figure 10–13 of Example 10.4, assume plane 
stress conditions with 200 GPa5E , ν 0.35 , and displacements u 01 5 , v 01 5 ,  

0.02 mm2 5u , 0.03 mm2 5v , 0.06 mm3 5u , 0.032 mm3 5v , u 04 5 , and v 04 5 . 
Evaluate the stresses, xs , ys , and t xy at s 05 , t 05 .

SOLUTION:
Using Eqs. (10.2.18) through (10.2.20), we evaluate [B] at s 05 , t 05 .

	

5

5

B
J

B B B B

B
J

B B B B

[ ]
1

[ ]
[[ ] [ ] [ ] [ ]]

[ (0, 0)]
1

[ (0, 0)]
[[ (0, 0)] [ (0, 0)] [ (0, 0)] [ (0, 0)]]

1 2 3 4

1 2 3 4

	
(10.2.18)

(repeated)
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By Eq. (10.2.22), J[ ]  is

	

5

2

2

2

2

5 2 2

5

[ (0, 0)]
1

8
[3 5 5 3]

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

2
2
4
4

1

8
[ 2 2 2 2]

2
2
4
4

[ (0, 0)] 1























































J

J

	

(10.4.5a)

Notice that again J[ ] 15  is equal to A/4 where 5 3 52 2 4 cm2A  is the physical surface 
area for the rectangle in Figure 10–13.
By Eq. (10.2.19), we have

	

















B

aN bN

cN dN

cN dN aN bN
i

i s i t

i t i s

i t i s i s i t

[ ]

0

0
, ,

, ,

, , , ,

5

2

2

2 2

	 (10.4.5b)

By Eq. (10.2.20), we obtain

	 a b c d5 5 5 51 0 1 0	

Differentiating the shape functions in Eq. (10.2.5) with respect to s and t and then evaluating 
at s 05 , t 05 , we obtain

	
N N N N

N N N N

s t s t

s t s t

1,
1
4 1,

1
4 2,

1
4 2,

1
4

3,
1
4 3,

1
4 4,

1
4 4,

1
4

5 2 5 2 5 5 2

5 5 5 2 5
	 (10.4.5c)

Therefore, substituting Eqs. (10.4.5c) into Eq. (10.4.5b), we obtain

	 B B B B5

2

2

2 2

5 2

2

5 5

2

2









































































[ ]

0

0 [ ]

0

0 [ ]

0

0 [ ]

0

01

1
4

1
4

1
4

1
4

2

1
4

1
4

1
4

1
4

3

1
4

1
4

1
4

1
4

4

1
4

1
4

1
4

1
4

	

(10.4.5d)

The element stress matrix { }s  is then obtained by substituting Eqs. (10.4.5a) for J[ ] 15  
and (10.4.5d) into Eq. (10.2.18) for [B] and the plane stress [D] matrix from Eq. (6.1.8) 
into the definition for { }s  as

	 s 5 5
2

{ } [ ][ ]{ } (210)

10
1 0.3 0

0.3 1 0
0 0 0.35

1 0.09

9

















D B d 	
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0.25 0 0.25 0 0.25 0 0.25 0

0 0.25 0 0.25 0 0.25 0 0.25

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

0
0

0.02
0.03
0.06
0.032

0
0

10 33

2 2

2 2

2 2 2 2

3 2



















































	

	 { }
4.40
1.429
1.978

MPas 5












	

	10.5 	 Higher-Order Shape Functions (Including Q6, Q8, 
Q9, and Q12 Elements)

In general, higher-order element shape functions can be developed by adding additional nodes 
to the sides of the linear element. These elements result in higher-order strain variations within 
each element, and convergence to the exact solution thus occurs at a faster rate using fewer 
elements. (However, a trade-off exists because a more complicated element takes up so much 
computation time that even with few elements in the model, the computation time can become 
larger than for the simple linear element model.) Another advantage of the use of higher-order 
elements is that curved boundaries of irregularly shaped bodies can be approximated more 
closely than by the use of simple straight-sided linear elements.

Linear Strain Bar
To illustrate the concept of higher-order elements, we will begin with the three-noded linear 
strain quadratic displacement (and quadratic shape functions) shown in Figure 10–14. 
Figure 10–14 shows a quadratic isoparametric bar element (also called a linear strain bar) 
with three coordinates of nodes, x1, x2, and x3, in the global coordinates.

EXAMPLE 10.6

For the three-noded linear strain bar isoparametric element shown in Figure 10–14, 
determine (a) the shape functions, N1, N2, and N3, and (b) the strain-displacement 
matrix [B]. Assume the general axial displacement function to be a quadratic taken as 
u a a s a s1 2 3

25 1 1 .
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SOLUTION:
(a) As we are formulating shape functions for an isoparametric element, we assume the 
following axial coordinate function for x as

	 x a a s a s5 1 11 2 3
2	 (10.5.1)

Evaluating the ai s in terms of the nodal coordinates, we obtain

	
( 1) or

(0) or

(1) or

1 2 3 1 1 1 2 3

1 3 3 1

1 2 3 2 2 1 2 3

x a a a x x a a a

x a x x a

x a a a x x a a a

2 5 2 1 5 5 2 1

5 5 5

5 1 1 5 5 1 1

	 (10.5.2)

Substituting a x1 35  from the second of Eqs. (10.5.2), into the first and third of Eqs. (10.5.2), 
we obtain a2 and a3 as follows:

	
x x a a

x x a a
1 3 2 3

2 3 2 3

5 2 1

5 1 1
	 (10.5.3)

Adding Eqs. (10.5.3) together and solving for a3 gives the following:

	
a x x x

x x a x x x

( 2 ) / 2

(( 2 ) / 2)
3 1 2 3

1 3 2 1 2 3

5 1 2

5 2 1 1 2
	 (10.5.4)

	 a x x x x x x x(( 2 ) / 2) ( ) / 22 3 1 1 2 3 2 15 2 1 1 2 5 2 	 (10.5.5)

Substituting the values for a1, a2, and a3 from Eqs. (10.5.2), (10.5.4), and (10.5.5) into the 
general equation for x given by Eq. (10.5.1), we obtain

	 x a a s a s x
x x

s
x x x

s
2

2

2
1 2 3

2
3

2 1 1 2 3 25 1 1 5 1
2

1
1 2

	 (10.5.6)

Combining like terms in x1, x2, and x3, from Eq. (10.5.6), we obtain the final form of x as:

	 



x

s s
x

s s
x s x

( 1)

2

( 1)

2
(1 )1 2

2
35

2
1

1
1 2 	 (10.5.7)

Recall that the function x can be expressed in terms of the shape function matrix and the 
axial coordinates, we have from Eq. (10.5.7)

	 x N N N

x

x

x

s s s s
s

x

x

x

5 5
2 1

2{ } [ ]
( 1)

2

( 1)

2
(1 )1 2 3

1

2

3

2
1

2

3












































	 (10.5.8)

Therefore the shape functions are

	 N
s s

N
s s

N s
( 1)

2

( 1)

2
(1 )1 2 3

25
2

5
1

5 2 	 (10.5.9)

■■ Figure 10–14  Three-noded linear strain bar element

1 3 2

x1 x3 x2

L
2

L
2

s
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(b) We now determine the strain-displacement matrix [B] as follows:
From our basic definition of axial strain we have

	

















du

dx

du

ds

ds

dx
B

u

u

u
x{ } [ ]

1

2

3

« 5 5 5 	 (10.5.10)

Using an isoparametric formulation means the displacement function is of the same form 
as the axial coordinate function. Therefore, using Eq. (10.5.6), we have

	 u u
u

s
u

s
u

s
u

s
u

s
2 2 2 2

2

2
3

2 1 1 2 2 2 3 25 1 2 1 1 2 	 (10.5.11)

Differentiating u with respect to s, we obtain

	 











du

ds

u u
u s u s u s s u s u s u

2 2
2

1

2

1

2
( 2 )2 1

1 2 3 1 2 35 2 1 1 2 5 2 1 1 1 2 	 (10.5.12)

We have previously proven that dx ds L J/ / 2 |[ ]|5 5  (see Eq. (10.1.9b). This relationship 
holds for the higher-order one-dimensional elements as well as for the two-noded constant 
strain bar element as long as node 3 is at the geometry center of the bar. Using this relation-
ship and Eq. (10.5.12) in Eq. (10.5.10), we obtain

	











































du

dx

du

ds

ds

dx L
s u s u s u

s

L
u

s

L
u

s

L
u

2 1

2

1

2
( 2 )

2 1 2 1 4

1 2 3

1 2 3

5 5 2 1 1 1 2

5
2

1
1

1
2

	 (10.5.13)

In matrix form, Eq. (10.5.13) becomes

	
du

dx

s

L

s

L

s

L

u

u

u

5
2 1 22 1 2 1 4

1

2

3






















	 (10.5.14)

As Eq. (10.5.14) represents the axial strain, we have
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5 	 (10.5.15)

Therefore the gradient matrix [B] is given by

	 





B
s

L

s

L

s

L
[ ]

2 1 2 1 4
5

2 1 2
	 (10.5.16)
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EXAMPLE 10.7

For the three-noded bar element shown previously in Figure 10–14, evaluate the stiffness 
matrix analytically. Use the [B] from Example 10.6.

SOLUTION:
From Example 10.6, Eq. (10.5.16), we have

	 





B
s

L

s

L

s

L
J

L
[ ]

2 1 2 1 4
, [ ]

2
5

2 1 2
5 	 (10.5.17)(see Eq. (10.1.9b))

Substituting the expression for [B] into Eq. (10.1.15) for the stiffness matrix, we obtain
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(10.5.18)

Simplifying the terms in Eq. (10.5.18) for easier integration, we have
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	 (10.5.19)

Upon explicit integration of Eq. (10.5.19), we obtain
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	 (10.5.20)

Evaluating Eq. (10.5.20) at the limits 1 and 21, we have
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(10.5.21)
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■■ Figure 10–15  Three-noded bar with two Gauss points
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Simplifying Eq. (10.5.21), we obtain the final stiffness matrix as
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	 (10.5.22)

EXAMPLE 10.8

We now illustrate how to evaluate the stiffness matrix for the three-noded bar element shown 
in Figure 10–15 by using two-point Gaussian quadrature. We can then compare this result 
to that obtained by the explicit integration performed in Example 10.7.

SOLUTION:
Starting with Eq. (10.5.18), we have for the stiffness matrix
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(10.5.23)

Using two-point Gaussian quadrature, we evaluate the stiffness matrix at the two points 
shown in Figure 10–15 (also based on Table 10–2):

	 s s0.57735, 0.577351 25 2 5 	 (10.5.24)

with weights given by

	 W W1, 11 25 5 	 (10.5.25)

We then evaluate each term in the integrand of Eq. (10.5.23) at each Gauss point and 
multiply each term by its weight (here each weight is 1). We then add those Gauss point 
evaluations together to obtain the final term for each element of the stiffness matrix. For 
two-point evaluation, there will be two terms added together to obtain each element of the 
stiffness matrix. We proceed to evaluate the stiffness matrix term by term as follows:

The one-one element:

	 ∑W s
i

i i(2 1) (1)[2( 0.57735) 1] (1)[2(0.57735) 1] 4.6667
1

2
2 2 22 5 2 2 1 2 5

5
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The one-two element:

	
∑W s s
i

i i i(2 1)(2 1) (1)[(2)( 0.57735) 1][(2)( 0.57735) 1]

(1)[(2)(0.57735) 1][(2)(0.57735) 1] 0.6667
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2

2 1 5 2 2 2 1

1 2 1 5
5 	

The one-three element:
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5 	

The two-two element:

	 ∑W s
i

i i(2 1) (1)[(2)( 0.57735) 1] (1)[(2)(0.57735) 1] 4.6667
1

2
2 2 21 5 2 1 1 1 5

5

	

The two-three element:

	
∑W s s
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i i i[ 4 (2 1)] (1)( 4)( 0.57735)[(2)( 0.57735) 1]

(1)( 4)(0.57735)[(2)(0.57735) 1] 5.3333
1

2

2 1 5 2 2 2 1

1 2 1 5 2
5 	

The three-three element:

	 ∑W s
i

i i(16 ) (1)(16)( 0.57735) (1)(16)(0.57735) 10.6667
1

2
2 2 25 2 1 5

5

	

By symmetry, the two-one element equals the one-two element, etc. Therefore, from the 
evaluations of the terms above, the final stiffness matrix is
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	 (10.5.26)

Equation (10.5.26) is identical to Eq. (10.5.22) obtained analytically by direct explicit inte-
gration of each term in the stiffness matrix.

To further illustrate elements with improved physical behavior, we start with the Q6 ele-
ment, and then to further illustrate the concept of higher-order elements, we will consider the 
quadratic (Q8 and Q9) elements and cubic (Q12) element shape functions, as described in 
References [3] and [8]. We then compare results in Figure 10–20 for a cantilever beam meshed 
with the numerous element types described in this and previous chapters, such as the CST, Q4, 
Q6, Q8, and Q9 elements.
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■■ Figure 10–16  Constant curvature modes included in Q6 element
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Improved Bilinear Quadratic (Q6)
An improved element to remove the shear locking inherent in the Q4 element is to add two 
internal degrees of freedom per displacement function g g( – )1 4  to the Q4 element displacement 
functions. This element is then called a Q6 element.

The Q6 element displacement functions contain six shape functions instead of the four 
used in the Q4 element displacement functions. These displacement functions are shown as 
follows:

	

u N u g s g t

v N v g s g t

i
i i

i
i i

5 1 2 1 2

5 1 2 1 2
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5

(1 ) (1 )
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2
2

1

4

3
2

4
2

∑

∑
	 (10.5.27)

where shape functions Ni  are given by Eq. (10.2.5)
The displacement field is enhanced by modes that describe the state of constant curvature 

(also called bubble modes) that are represented by g1 through g4 in Eq. (10.5.27) These correc-
tions allow the elements to curve between the nodes and can then model bending with either s 
or t axis as the neutral axis. These modes are shown in Figure 10–16. The magnitude of these 
modes is determined by minimizing the internal strain energy in the element. The additional 
degrees of freedom are condensed out before the element stiffness matrix is developed. Hence, 
only the degrees of freedom associated with the four corner nodes appear. The element can 
model pure bending exactly if it is a rectangular shape.

This element appears to be used in computer programs such as Autodesk [11] as you 
have the choice of using compatible modes or incompatible modes in the Autodesk program. 
However, the compatible modes option is really the Q4 element while the incompatible modes 
option is the Q6 element, although not mentioned as such within the computer program. The 
incompatible modes option is recommended in most cases and as such yields much better 
answers for bending problems as shown in Table 10–3. Because the g1–g4 degrees of freedom 
are internal and not nodal degrees of freedom, they are not connected to other elements. There 
is then the possibility that the edges of two adjacent elements may have different curvatures 
and thus the displacement field along this common edge may be incompatible. Hence, modes 
associated with the g degrees of freedom are incompatible, and that is why the element is also 
called incompatible. This incompatibility will occur under certain loading conditions, such as 
shown in Figure 10–17. For more on this Q6 element, see References [9 and 10].
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Quadratic Rectangle (Q8 and Q9)
Figure 10–18 shows a quadratic isoparametric element with four corner nodes and four addi-
tional midside nodes. This eight-noded element is often called a “Q8” element.

The shape functions of the quadratic element are based on the incomplete cubic polyno-
mial such that coordinates x and y are

	
x a a s a t a st a s a t a s t a st

y a a s a t a st a s a t a s t a st

1 2 3 4 5
2

6
2

7
2

8
2

9 10 11 12 13
2

14
2

15
2

16
2

5 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1
	 (10.5.28)

These functions have been chosen so that the number of generalized degrees of freedom (2 per 
node times 8 nodes equals 16) are identical to the total number of ai’s. The literature also refers 
to this eight-noded element as a “serendipity” element as it is based on an incomplete cubic, 
but it yields good results in such cases as beam bending. We are also reminded that because 
we are considering an isoparametric formulation, displacements u and v are of identical form 
as x and y, respectively, in Eq. (10.5.28).

To describe the shape functions, two forms are required—one for corner nodes and one for 
midside nodes, as given in Reference [3]. For the corner nodes i 5( 1, 2, 3, 4),
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	 (10.5.29)

or, in compact index notation, we express Eqs. (10.5.29) as

	 N ss tt ss tti i i i i
1

4
(1 )(1 )( 1)5 1 1 1 2 	 (10.5.30)

where i is the number of the shape function and

	
s i

t i

i

i

5 2 2 5

5 2 2 5

1, 1, 1, 1 ( 1, 2, 3, 4)

1, 1, 1, 1 ( 1, 2, 3, 4)
	 (10.5.31)

■■ Figure 10–17  Modes associated with g degrees of freedom showing potential displacement 
incompatibility in the Q6 element

F

F

2F

F

Q6

Q6

F

2F

F

F

2F

F

Q4

Q4

F

2F

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10.5  Higher-Order Shape Functions (Including Q6, Q8, Q9, and Q12 Elements) 523

For the midside nodes i 5( 5, 6, 7, 8),
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	 (10.5.32)

or, in index notation,
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	 (10.5.33)

We can observe from Eqs. (10.5.29) and (10.5.32) that an edge (and displacement) can vary 
with s2 (along t constant) or with t2 (along s constant). Furthermore, Ni 15  at node i and 
Ni 05  at the other nodes, as it must be according to our usual definition of shape functions.

The displacement functions are given by
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(10.5.34)

■■ Figure 10–18  Quadratic (Q8) isoparametric element
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and the strain matrix is now

	 D N d{ } [ ][ ]{ }« 5 9 	

with	 B D N[ ] [ ][ ]5 9 	

We can develop the matrix [B] using Eq. (10.2.17) with D[ ]9  from Eq. (10.2.16) and with N[ ] 
now the 2 163  matrix given in Eq. (10.5.34), where the N’s are defined in explicit form by 
Eq. (10.5.29) and (10.5.32).

To evaluate the matrix [B] and the matrix [k] for the eight-noded quadratic isoparametric 
element, we now use the nine-point Gauss rule (often described as a 3 33  rule). Results using 
2 23  and 3 33  rules have shown significant differences, and the 3 33  rule is recommended 
by Bathe and Wilson [7]. Table 10–2 indicates the locations of points and the associated 
weights. The 3 33  rule is shown in Figure 10–19.

By adding a ninth node at s 05 , t 05  in Figure 10–18, we can create an element called a 
“Q9”. This is an internal node that is not connected to any other nodes. We then add the a s t17

2 2 
and a s t18

2 2 terms to x and y, respectively in Eq. (10.5.28) and to u and v. The element is then 
called a Lagrange element as the shape functions can be derived using Lagrange interpolation 
formulas. For more on this subject consult [8].

We now present a comparison of results for a cantilever beam meshed with the various 
plane elements as described in this and previous chapters 6 and 8. These results are shown 
in Figure 10–20. In Figure 10–20, the CST, Q4, Q6, Q8, and Q9 element mesh solutions are 
compared to the classical beam element. Note that the Q6 element (or Q4 incompatible) as 
offered in Autodesk and other computer programs removes the shear locking that occurs with 
the Q4 element and yields excellent results for the displacement even with a single row of rect-
angular elements as shown in Figure 10-20(c). However, small angles of trapezoidal distortion 
(say 158 from the vertical) make the elements much too stiff, as shown by the Figure 10-20(d) 
result. Also parallel distortion reduces accuracy of the elements but to a smaller amount than 
the trapezoidal distortion, as shown in Figure 10–20(e). The Q8 and Q9 elements perform 
very well considering only one row and two elements or fewer total degrees of freedom (d.o.f) 
are used compared to the Q6 mesh [see Figures 10–20(f) and (g)]. The Q9 element with the 
additional internal node yields slightly better single row results than the Q8. Again the CST 
[Figure 10–20(a)] and Q4 single row compatible element [Figure 10–20(b)] yield the worst 
results die to shear locking, as described previously in Sections 6.6 and 8.3.

We should also realize that the standard two-noded beam element described in Chapter 4 
yields an exact result for the free end displacement despite having only two nonzero degrees of 

■■ Figure 10–19  3 33  rule in two dimensions
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■■ Figure 10–20  Figure comparing free-end deflections, d , for CST, Q4, Q6, Q8, and Q9 element models 
(end force P 4000 N5 , length 1 m5 , l 1 10 m5 45 3 2 , thickness 0.12 m5 , E 200 GPa5 , 0.30v 5 ) 
The number of degrees of freedom (d.o.f22 per node) are also shown for each model mesh.
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■■ Figure 10–21  Cubic isoparametric element

freedom, a rotation, and a transverse displacement at the free end of the beam [Figure 10-20(h)]. 
This model emphasizes the power of the beam element for modeling beams, such as the can-
tilever, when stress concentrations are not of concern.

Cubic Rectangle (Q12)
Finally, the cubic (Q12) element in Figure 10–21 has four corner nodes and additional nodes 
taken to be at one-third and two-thirds of the length along each side. The shape functions of 
the cubic element (as derived in Reference [3]) are based on the incomplete quartic polynomial 
such that

	
x a a s a t a s a st a t a s t a st

a s a t a s t a st

1 2 3 4
2

5 6
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1 1 1 1
	 (10.5.35)
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with a similar polynomial for y. For the corner nodes i 5( 1, 2, 3, 4),

	 N ss tt s ti i i
1

32
(1 )(1 )[9( ) 10]2 25 1 1 1 2 	 (10.5.36)

with si and ti given by Eqs. (10.5.31). For the nodes on sides s i5 6 51 ( 7, 8, 11, 12),

	 N ss tt ti i i
9

32
(1 )(1 9 )(1 )25 1 1 2 	 (10.5.37)

with si 15 6  and ti 1
35 6 . For the nodes on sides t i5 6 51 ( 5, 6, 9, 10),

	 N tt ss si i i
9

32
(1 )(1 9 )(1 )25 1 1 2 	 (10.5.38)

with ti 15 6  and si
1
35 6 .

Having the shape functions for the quadratic element given by Eqs. (10.5.29) and 
(10.5.32) or for the cubic element given by Eqs. (10.5.36) through (10.5.38), we can again use 
Eq. (10.2.17) to obtain [B] and then Eq. (10.2.27) to set up [k] for numerical integration for the 
plane element. The cubic element requires a 3 33  rule (nine points) to evaluate the matrix [k] 
exactly. We then conclude that what is really desired is a library of shape functions that can be 
used in the general equations developed for stiffness matrices, distributed load, and body force 
and can be applied not only to stress analysis but to nonstructural problems as well.

Since in this discussion the element shape functions Ni  relating x and y to nodal coordi-
nates xi and yi are of the same form as the shape functions relating u and v to nodal displace-
ments ui and vi, this is said to be an isoparametric formulation. For instance, for the linear 

element ∑x N xi ii 1

4
5

5
 and the displacement function ∑u N ui ii 1

4
5

5
, use the same shape 

functions Ni  given by Eq. (10.2.5). If instead the shape functions for the coordinates are of 
lower order (say, linear for x) than the shape functions used for displacements (say, quadratic 
for u), this is called a subparametric formulation.

Finally, referring to Figure 10–21, note that an element can have a linear shape along, 
say, one edge (1–2), a quadratic along, say, two edges (2–3 and 1–4), and a cubic along the 
other edge (3–4). Hence, the simple linear element can be mixed with different higher-order 
elements in regions of a model where rapid stress variation is expected. The advantage of the 
use of higher-order elements is further illustrated in Reference [3].

SUMMARY EQUATIONS

Natural coordinates related to global for a two-noded bar element:

	 x a a s1 25 1 	 (10.1.2)

Shape functions in natural coordinate s for two-noded bar:

	 N
s

N
s1

2

1

2
1 25

2
5

1
	 (10.1.5)

Displacement function for two-noded bar:

	











u N N

u

u
{ } [ ]1 2

1

2
5 	 (10.1.6)
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527Summary Equations

Gradient matrix for two-noded bar:

	 





B
L L

[ ]
1 1

5 2 	 (10.1.11)

Determinant of Jacobian matrix for bar:

	 J
dx

ds

L
[ ]

2
5 5 	 (10.1.14)

Stiffness matrix for two-noded bar:

	 k
L

B E B A dsT5
2

[ ]
2

[ ] [ ]
1

1

∫ 	 (10.1.15)

	








k

AE

L
[ ] 1 1

1 1
5

2

2
	 (10.1.16)

Body force matrix for two-noded bar:

	








f
ALX

b
b{ }

2
1
1

5 	 (10.1.20)

Surface force matrix for two-noded bar:

	








f T
L

s x{ } { }
2

1
1

5 	 (10.1.24)

Relation between global and natural coordinates for quadrilateral element:

	
x a a s a t a st

y a a s a t a st
1 2 3 4

5 6 7 8

5 1 1 1

5 1 1 1
	 (10.2.2)

and

	

x s t x s t x

s t x s t x

y s t y s t y

s t y s t y

1

4
[(1 )(1 ) (1 )(1 )

(1 )(1 ) (1 )(1 ) ]

1

4
[(1 )(1 ) (1 )(1 )

(1 )(1 ) (1 )(1 ) ]

1 2

3 4

1 2

3 4

5 2 2 1 1 2

1 1 1 1 2 1

5 2 2 1 1 2

1 1 1 1 2 1

	 (10.2.3)

Shape functions for four-noded quadrilateral element expressed in natural coordinates:

	
N

s t
N

s t

N
s t

N
s t

(1 )(1 )

4

(1 )(1 )

4
(1 )(1 )

4

(1 )(1 )

4

1 2

3 4

5
2 2

5
1 2

5
1 1

5
2 1

	 (10.2.5)

Strain-displacement equations in natural coordinates:

	 D N d{ } [ ][ ]{ }« 5 9 	 (10.2.15)
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Determinant of Jacobian matrix for four-noded quadrilateral element:

	



















J X

t t s s
t s s t
s t s t

s s t t

Y

X x x x x

c
T

c

c
T

[ ]
1

8
{ }

0 1 1
1 0 1

1 0 1
1 1 0

{ }

{ } [ ]1 2 3 4

5

2 2 2

2 1 2 2

2 2 2 1

2 1 2 2

5

	 (10.2.22)

where

	 Y

y

y

y

y

c 5{ }

1

2

3

4





















	 (10.2.24)

Stiffness matrix for four-noded quadrilateral expressed in natural coordinates:

	 k B D B h J ds dtT5
22

[ ] [ ] [ ][ ] | [ ] |
1

1

1

1

∫∫ 	 (10.2.27)

Body force matrix for four-noded quadrilateral expressed in natural coordinates:

	 ∫∫f N X h J ds dtb
T{ }

(8 1)
[ ]

(8 2)
{ }

(2 1)
[ ]

1

1

1

1

3
5

3 3
22

	 (10.2.28)

Surface force matrix along an edge t 5 1:

	 f N T h
L

dss s
T

3
5

3 3
2

{ }
(4 1)

[ ]
(4 2)

{ }
(2 1) 21

1

∫ 	 (10.2.29)

For the case of uniform (constant) ps and pt along edge t 5 1, the total surface-force matrix is

	 f h
L

p p p ps s t s t
T{ }

2
[0 0 0 0 ]5 	 (10.2.31)

Newton-Cotes formula for numerical integration:

	 ∫ ∑I y dx h C y h C y C y C y C y C y
i

n

i i n n[ . . . ]
1

1

0
0 0 1 1 2 2 3 35 5 5 1 1 1 1 1

2
5

	 (10.3.1)

See Table 10–1 for Newton-Cotes intervals and points for integration.
Gaussian Quadrature formula for numerical integration:

	 I y dx W y
i

n

i i5 5
2

5
1

1

1
∫ ∑ 	 (10.3.6)

See Table 10–2 for Gauss points for integration from minus 1 to 1.
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Four-point Gaussian quadrature formula to evaluate stiffness matrix of four-noded quadrilateral 
element:

	

[ ] [ ( , )] [ ][ ( , )] [ ( , )]

[ ( , )] [ ][ ( , )] [ ( , )]

[ ( , )] [ ][ ( , )] [ ( , )]

[ ( , )] [ ][ ( , )] [ ( , )]

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

k B s t D B s t J s t h W W

B s t D B s t J s t h W W

B s t D B s t J s t h W W

B s t D B s t J s t h W W

T

T

T

T

5

1

1

1

	 (10.4.3)

Axial coordinate function for three-noded bar element:

	 x a a s a s1 2 3
25 1 1 	 (10.5.1)

Shape functions for three-noded bar:

	 N
s s

N
s s

N s
( 1)

2

( 1)

2
(1 )1 2 3

25
2

5
1

5 2 	 (10.5.9)

Gradient matrix for three-noded bar:

	 B
s

L

s

L

s

L
5

2 1 2
[ ]

2 1 2 1 4




	 (10.5.16)

Q6 element displacement functions:

	

∑

∑

u N u g s g t

v N v g s g t

i
i i

i
i i

(1 ) (1 )

(1 ) (1 )

1

4

1
2

2
2

1

4

3
2

4
2

5 1 2 1 2

5 1 2 1 2

5

5

	 (10.5.27)

with Ni  given by Eq. (10.2.5)
x and y coordinate functions for eight-noded (Q8) quadrilateral element:

	
x a a s a t a st a s a t a s t a st

y a a s a t a st a s a t a s t a st

1 2 3 4 5
2

6
2

7
2

8
2

9 10 11 12 13
2

14
2

15
2

16
2

5 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1
	 (10.5.28)

Equations (10.5.29) and (10.5.32) give the shape functions for the eight-noded (Q8) quadri-
lateral element.
x coordinate function for the 12-noded (Q12) quadrilateral element:

	
x a a s a t a s a st a t a s t a st

a s a t a s t a st

1 2 3 4
2

5 6
2

7
2

8
2

9
3

10
3

11
3

12
3

5 1 1 1 1 1 1 1

1 1 1 1
	 (10.5.35)

Equations (10.5.36), (10.5.37), and (10.5.38) give the shape functions for the 12-noded (Q12) 
quadrilateral element.
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PROBLEMS

	 10.1		  For the three-noded linear strain bar with three coordinates of nodes x1, x2, and x3,  
shown in Figure P10–1 in the global-coordinate system show that the Jacobian 
determinate is J L| [ ] | / 25

■■ Figure P10–1

1 3 2

x1 x3 x2

L
2

L
2

	 10.2		  For the two-noded one-dimensional isoparametric element shown in Figure P10–2 
(a) and (b), with shape functions given by Eq. (10.1.5), determine (a) intrinsic coor-
dinate s at point A and (b) shape functions N1 and N2 at point A. If the displace-
ments at nodes one and two are respectively, 0.15 mm1 5u  and 0.15 mm2 5 2u ,  
determine (c) the value of the displacement at point A and (d) the strain in the 
element.

■■ Figure P10–2

A

x1 = 25 cm x2 = 50 cmxA = 35 cm

(a)

x1 = 12.5 cm x2 = 25 cmxA = 17.5 cm

(b)

A
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	 10.3		  Answer the same questions as posed in problem 10.2 with the data listed under the 
Figure P10–3.

■■ Figure P10–4

■■ Figure P10–3

x1 = 20 mm
u1 = 0.1 mm

x2 = 60 mm
u2 = 0.2 mm

xA = 50 mm 

(a)

A

x1 = 10 mm
u1 = 0.05 mm

x2 = 30 mm
u2 = 0.1 mm

xA = 20 mm 

(b)

A

	 10.4		  For the four-noded bar element in Figure P10–4, show that the Jacobian determi-
nate is J L[ ] / 25 . Also determine the shape functions N N1 42  and the strain/
displacement matrix B[ ]. Assume u a a s a s a s1 2 3

2
4

35 1 1 1 .

	 10.5		  Using the three-noded bar element shown in Figure P10–5 (a) and (b), with shape 
functions given by Eq. (10.5.9), determine (a) the intrinsic coordinate s at point A 
and (b) the shape functions, N1, N2, and N3 at A. For the displacements of the nodes 
shown in Figure P10–5, determine (c) the displacement at A and (d) the axial strain 
expression in the element.

■■ Figure P10–5

A (xA = 325 mm)

x1 = 250 mm
u1 = 0.15 mm

x3 = 375 mm
u3 = 0

x2 = 500 mm
u2 = −0.15 mm

(a)

A (xA = 175 mm)

x1 = 0
u1 = 0

x3 = 125 mm
u3 = 0.025 mm

x2 = 250 mm
u2 = 0.075 mm

(b)

	 10.6		  Using the three-noded bar element shown in Figure P10–6 (a) and (b), with shape 
functions given by Eq. (10.5.9), determine (a) the intrinsic coordinate s at point A 
and (b) the shape functions, N1, N2, and N3 at point A. For the displacements of the 
nodes shown in Figure P10–6, determine (c) the displacement at A and (d) the axial 
strain expression in the element.

■■ Figure P10–6

A (xA = 1.5 mm)

x1 = 0
u1 = 0

x3 = 1 mm
u3 = 0.001 mm

x2 = 2 mm
u2 = 0.002 mm

(a)

A (xA = 2.5 mm)

x1 = 2 mm
u1 = −0.001 mm

x3 = 3 mm
u3 = 0

x2 = 4 mm
u2 = 0.001 mm

(b)
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	 10.7		  For the bar subjected to the linearly varying axial line load shown in Figure P10–7, 
use the linear strain (three-noded element) with two elements in the model, to deter-
mine the nodal displacements and nodal stresses. Compare your answer with that in 
Figure 3–31 and Eqs. (3.11.6) and (3.11.7). Let 12.5 10 m4 25 3 2A  and 210 GPa5E .  
Hint: Use Eq. (10.5.22) for the element stiffness matrix.

■■ Figure P10–7

x
1.5 m

2000 N/m

	 10.8		  Use the three-noded bar element and find the axial displacement at the end of the 
rod shown in Figure P10–8. Determine the stress at x 05 , x L / 25  and x L5 . Let 
A 5 3 22 10 m4 2, E 5 205 GPa, and L 5 4 m . Hint: Use Eq. (10.5.22) for the 
element stiffness matrix.

■■ Figure P10–8

L = 4 m

2 kN/m (uniform)

	 10.9		  Derive J[ ]  given by Eq. (10.2.22) for a four-noded isoparametric quadrilateral 
element.

	10.10		  Show that for the quadrilateral element described in Section 10.2, J[ ] can be 
expressed as

	
































J
N N N N

N N N N

x y

x y

x y

x y

s s s s

t t t t
[ ]

1, 2, 3, 4,

1, 2, 3, 4,

1 1

2 2

3 3

4 4

5 	

	10.11		  Determine the Jacobian matrix J[ ] and its determinant for the elements shown in 
Figure P10–11. Show that the determinant of J[ ] for rectangular and parallelogram 
shaped elements is equal to A 4/ , where A is the physical area of the element and 
4 actually represents the area of the rectangle of sides 2 × 2 when 1cm5b  and 
h 15  cm.

	10.12		  Derive Eq. (10.2.18) with Bi[ ] given by Eq. (10.2.19) by substituting Eq. (10.2.16) 
for D[ ]9  and Eqs. (10.2.5) for the shape functions into Eq. (10.2.17).

	10.13		  Use Eq. (10.2.30) with ps 05  and p pt 5  (a constant) alongside 3–4 of the element 
shown in Figure 10–6 on page 500 to obtain the nodal forces.
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■■ Figure P10–14

y

4 3

(5, 4)
(0, 4)

(8, 0)

(8, 4)

2

1
x

Ty = 15 MPa uniform

Ty = 4 MPa

(a)

y
4 3

(3, 4)

(8, 0)

2

1
x

(b)

Linear

	10.14		  For the element shown in Figure P10–14, replace the distributed load with the 
energy equivalent nodal forces by evaluating a force matrix similar to Eq. (10.2.29). 
Let 2.5 mm5h  thick. The global coordinates (in centimeters) are shown in 
Figure P10–14.

■■ Figure P10–11

(–2, 1)

(–2, –1)

(2, 1)

(2, –1)
1 2

4 3

(a)

x

y

(–2, 1)

(–2, –1)

(2, 1)

(2, –1)
4 1

3 2

(b)

x

y (2, 3) (4, 3)

(2, 0)(0, 0)

1 2

4 3

(c)

x

y

	10.15		  Use Gaussian quadature with two and three Gauss points and Table 10–2 to evaluate 
the following integrals:

	

s
ds s ds s ds

s

s
ds s ds s s ds s dss

2
2

2 2 2

2 2 2 2

(a) cos
2

(b) (c)

(d)
cos

1
(e) (f) cos (g) (4 2 )

1

1
2

1

1
4

1

1

21

1
3

1

1

1

1

1

1

∫ ∫ ∫

∫ ∫ ∫ ∫
	

			   Then use the Newton-Cotes quadrature with two and three sampling points and
		  	 Table 10–1 to evaluate the same integrals. Compare your results.
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	10.16		  For the quadrilateral elements shown in Figure P10–16, write a computer program 
to evaluate the stiffness matrices using four-point Gaussian quadrature as outlined 
in Section 10.4. Let 210 GPa5E  and ν 0.255 . The global coordinates (in centi-
meters) are shown in the figures.

■■ Figure P10–16

	10.17		  For the quadrilateral elements shown in Figure P10–17, evaluate the stiffness matri-
ces using four-point Gaussian quadrature as outlined in Section 10.4. Let E 2105  
GPa and ν 0.255 . The global coordinates (in millimeters) are shown in the figures.

■■ Figure P10–17

	10.18		  Evaluate the matrix B[ ] for the quadratic quadrilateral element shown in Figure 10–18 
on page 523 (Section 10.5).

	10.19		  Evaluate the stiffness matrix for the four-noded bar of Problem 10.4 using three-
point Gaussian quadrature.

	10.20		  For the rectangular element of Figure P10–20 with the nodal displacements given by

	

0 0 0.005 cm

0.0025 cm 0.0025 cm 0.0025 cm

0 0

1 1 2

2 3 3

4 4

5 5 5

5 5 5 2

5 5

u v u

v u v

u v

	

		  	 determine the { }s  matrix at s 05 , t 05  using the isoparametric formulation 
described in Section 10.4. (Also see Example 10.5.) Let 84 GPa5E  and ν 0.35 .
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■■ Figure P10–20

(Coordinates in cm units)

	10.21		  For the three-noded bar (Figure P10–1), what Gaussian quadrature rule (how many 
Gauss points) would you recommend to evaluate the stiffness matrix? Why?

	10.22		  Compare the Q4 and Q6 elements. What properly makes the Q6 better in modeling 
beam bending? What is a weakness of the Q6 element that is not inherent in the Q4 
element?

	10.23		  Compare the Q4 and Q8 elements. What makes the Q8 a better element to model 
beam bending?
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Three-Dimensional Stress 
Analysis

Chapter Objectives

At the conclusion of this chapter, you will be able to:

■	 Introduce concepts of three-dimensional stress and strain.

■	 Develop the tetrahedral solid-element stiffness matrix.

■	 Describe how body and surface tractions are treated.

■	 Illustrate a numerical example of the tetrahedral element stiffness matrix.

■	 Describe the isoparametric formulation of the stiffness matrix for threedimensional 
hexahedral (brick) elements, including the linear (eight-noded) brick, and the qua-
dratic (20 noded) brick.

■	 Present some commercial computer program examples of three-dimensional solid 
models and results for real-world applications.

■	 Present a comparison of the four-noded tetrahedral, the ten-noded tetrahedral, the 
eight-noded brick, and the twenty-noded brick.

Introduction
In this chapter, we consider the three-dimensional, or solid, element. This element is useful 
for the stress analysis of general three-dimensional bodies that require more precise analysis 
than is possible through two-dimensional and/or axisymmetric analysis. Examples of three-
dimensional problems are arch dams, thick-walled pressure vessels, and solid forging parts as 
used, for instance, in the heavy equipment and automotive industries. Figure 11–1 shows finite 
element models of some typical automobile parts and a subsoiler used in agricultural equip-
ment. Also see Figure 1–7 for a model of a swing casting for a backhoe frame, Figure 1–9 for 
a model of a pelvis bone with an implant, and Figures 11–7 through 11–10 of a forging part, 
a foot pedal, a trailer hitch, and an alternator bracket, respectively.

The tetrahedron is the basic three-dimensional element, and it is used in the development 
of the shape functions, stiffness matrix, and force matrices in terms of a global coordinate 
system. We follow this development with the isoparametric formulation of the stiffness matrix 
for the hexahedron, or brick element. Finally, we will provide some typical three-dimensional 
applications.

C h a p t e r

11
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11.1  Three-Dimensional Stress and Strain 537

In the last section of this chapter, we show some three-dimensional problems solved using 
a computer program.

	11.1 	 Three-Dimensional Stress and Strain
We begin by considering the three-dimensional infinitesimal element in Cartesian coordinates 
with dimensions dx, dy, and dz and normal and shear stresses as shown in Figure 11–2. This 
element conveniently represents the state of stress on three mutually perpendicular planes of 
a body in a state of three-dimensional stress. As usual, normal stresses are perpendicular to 
the faces of the element and are represented by xs , ys , and zs . Shear stresses act in the faces 
(planes) of the element and are represented by τxy, τyz, τzx, and so on.

From moment equilibrium of the element, we show in Appendix C that

	 5 5 5τ τ τ τ τ τxy yx yz zy zx xz 	

■■ Figure 11–1  (a) Wheel rim (By Mark Blair); (b) engine block (By Mark Guard); and (c) Subsoiler—12-row 
subsoiler used in agricultural equipment (By Autodesk, Inc.) (See the full-color insert for a color version of 
this figure.)

(c)
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Hence, there are only three independent shear stresses, along with the three normal stresses.
The element strain–displacement relationships are obtained in Appendix C. They are 

repeated here, for convenience, as

	
u

x

v

y

w

z
x y z

�

�

�

�

�

�
« « «5 5 5 	 (11.1.1)

where u, v, and w are the displacements associated with the x, y, and z directions. The shear 
strains γ  are now given by
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	 (11.1.2)

where, as for shear stresses, only three independent shear strains exist.
We again represent the stresses and strains by column matrices as
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	 (11.1.3)

The stress/strain relationships for an isotropic material are again given by

	 Ds «5{ } [ ]{ }	 (11.1.4)

■■ Figure 11–2  Three-dimensional stresses on an element
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■■ Figure 11–3  Tetrahedral solid element

where s{ } and «{ } are defined by Eqs. (11.1.3), and the constitutive matrix [D] (see also Appen-
dix C) is now given by

	 D
E

ν ν

ν ν ν
ν ν

ν
ν

ν

ν



































[ ]
(1 )(1 2 )

1 0 0 0
1 0 0 0

1 0 0 0
1 2

2
0 0

1 2

2
0

Symmetry
1 2

2

5
1 2

2

2

2

2

2

2

	 (11.1.5)

	11.2 	 Tetrahedral Element
We now develop the tetrahedral stress element stiffness matrix by again using the steps out-
lined in Chapter 1. The development is seen to be an extension of the plane element previously 
described in Chapter 6. This extension was suggested in References [1] and [2].

Step 1 Select Element Type
Consider the tetrahedral element shown in Figure 11–3 with corner nodes 1–4. This element is 
a four-noded solid. The nodes of the element must be numbered such that when viewed from 
the last node (say, node 4), the first three nodes are numbered in a counterclockwise manner, 
such as 1, 2, 3, 4 or 2, 3, 1, 4. This ordering of nodes avoids the calculation of negative volumes 
and is consistent with the counterclockwise node numbering associated with the CST element 
in Chapter 6. (Using an isoparametric formulation to evaluate the [k] matrix for the tetrahe-
dral element enables us to use the element node numbering in any order. The isoparametric 
formulation of [k] is left
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to Section 11.3.) The unknown nodal displacements are now given by

	 �

































d

u

v

w

u

v

w

5{ }

1

1

1

4

4

4

	 (11.2.1)

Hence, there are 3 degrees of freedom per node, or 12 total degrees of freedom per 
element.

Step 2 Select Displacement Functions
For a compatible displacement field, the element displacement functions u, v, and w must be 
linear along each edge because only two points (the corner nodes) exist along each edge, and 
the functions must be linear in each plane side of the tetrahedron. We then select the linear 
displacement functions as

	

5 1 1 1

5 1 1 1

5 1 1 1

( , , )

( , , )

( , , )

1 2 3 4

5 6 7 8

9 10 11 12

u x y z a a x a y a z

v x y z a a x a y a z

w x y z a a x a y a z

	 (11.2.2)

In the same manner as in Chapter 6, we can express the ai’s in terms of the known nodal coor-
dinates ( , , , , )1 1 1 4…x y z z  and the unknown nodal displacements ( , , , , )1 1 1 4…u v w w  of the element. 
Skipping the straightforward but tedious details, we obtain
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	 (11.2.3)

where 6V is obtained by evaluating the determinant

	 56
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	 (11.2.4)
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and V represents the volume of the tetrahedron. The coefficients ia , ib , ig , and iid 5( 1, 2, 3, 4) 
in Eq. (11.2.3) are given by
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and	
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and	
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and	
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	 (11.2.8)

Expressions for v and w are obtained by simply substituting vi s for all ui s and then wi s for all 
ui s in Eq. (11.2.3).

The displacement expression for u given by Eq. (11.2.3), with similar expressions for v and 
w, can be written equivalently in expanded form in terms of the shape functions and unknown 
nodal displacements as
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where the shape functions are given by
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and the rectangular matrix on the right side of Eq. (11.2.9) is the shape function matrix [N].

Step 3 Define the Strain–Displacement and Stress/Strain Relationships
The element strains for the three-dimensional stress state are given by

	













































































u

x
v

y

w

z
u

y

v

x

v

z

w

y

w

x

u

z

x

y

z

xy

yz

zx

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

«

«

«

«

g

g

g

5 5

1

1

1

{ } 	 (11.2.11)

Using Eq. (11.2.9) in Eq. (11.2.11), we obtain

	 B d« 5{ } [ ]{ }	 (11.2.12)

where	 5[ ] [[ ][ ][ ][ ]]1 2 3 4B B B B B 	 (11.2.13)
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The submatrix B[ ]1  in Eq. (11.2.13) is defined by
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where, again, the comma after the subscript indicates differentation with respect to the variable 
that follows. Submatrices B[ ]2 , B[ ]3 , and B[ ]4  are defined by simply indexing the subscript in 
Eq. (11.2.14) from 1 to 2, 3, and then 4, respectively. Substituting the shape functions from 
Eqs. (11.2.10) into Eq. (11.2.14), B[ ]1  is expressed as
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with similar expressions for B[ ]2 , B[ ]3 , and B[ ]4 .
The element stresses are related to the element strains by

	 Ds «5{ } [ ]{ }	 (11.2.16)

where the constitutive matrix for an elastic material is now given by Eq. (11.1.5).

Step 4 Derive the Element Stiffness Matrix and Equations
The element stiffness matrix is given by

	 ∫∫∫k B D B dVT

V

5[ ] [ ] [ ][ ] 	 (11.2.17)

Because both matrices [B] and [D] are constant for the simple tetrahedral element, Eq. (11.2.17) 
can be simplified to

	 k B D B VT5[ ] [ ] [ ][ ] 	 (11.2.18)

where, again, V is the volume of the element. The element stiffness matrix is now of order 
312 12.

Body Forces
The element body force matrix is given by

	 ∫∫∫f N X dVb
T

V

5{ } [ ] { } 	 (11.2.19)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11  |  Three-Dimensional Stress Analysis544

where [N] is given by the 33 12 matrix in Eq. (11.2.9), and
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For constant body forces, the nodal components of the total resultant body forces can be shown 
to be distributed to the nodes in four equal parts. That is,

	 5{ }
4

[ ]f
V

X Y Z X Y Z X Y Z X Y Zb b b b b b b b b b b b b
T 	 (11.2.20b)

The element body force is then a 312 1 matrix.

Surface Forces
Again, the surface forces are given by

	 ∫∫f N T dSs s
T

S

5{ } [ ] { } 	 (11.2.21)

where Ns[ ] is the shape function matrix evaluated on the surface where the surface traction occurs.
For example, consider the case of uniform pressure p acting on the face with nodes 1–3 of 

the element shown in Figure 11–3 or 11–4. The resulting nodal forces become 
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where px, py, and pz are the x, y, and z components, respectively, of p. Simplifying and inte-
grating Eq. (11.2.22), we can show that
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where S123 is the area of the surface associated with nodes 1–3. The use of volume coordinates, 
as explained in Reference [8], facilitates the integration of Eq. (11.2.22).
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Example 11.1

Evaluate the matrices necessary to determine the stiffness matrix for the tetrahedral element 
shown in Figure 11–4. Let 200 GPa5E  and ν 5 0.30. The coordinates are shown in the 
figure in units of centimeters.

■■ Figure 11–4  Tetrahedral element

(2, 2, 4)

(0, 4, 0)

(4, 2, 0)

(0, 0, 0)

SOLUTION:
To evaluate the element stiffness matrix, we first determine the element volume V and all a’s,  
b ’s, g’s, and d’s from Eqs. (11.2.4) through (11.2.8). From Eq. (11.2.4), we have

	 V 5 56

1 2 2 4
1 0 0 0
1 0 4 0
1 4 2 0

64 cm3	 (11.2.24)

From Eqs. (11.2.5), we obtain

	 a b5 5 5 2 5

0 0 0
0 4 0
4 2 0

0
1 0 0
1 4 0
1 2 0

01 1 	 (11.2.25)

and similarly,

	 g d5 50 161 1 	

From Eqs. (11.2.6) through (11.2.8), we obtain
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	 (11.2.26)
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Note that a’s typically have units of cubic centimeters or cubic meters, where b ’s, g’s, and 
d’s have units of square centimeters or square meters.

Next, the shape functions are determined using Eqs. (11.2.10) and the results from  
Eqs. (11.2.25) and (11.2.26) as

	
N

z
N

x y z

N
x y z

N
x z

5 5
2 2 2

5
2 1 2

5
2

4

8

8 2 4

8
2 4

8

4 2

8

1 2

3 4

	 (11.2.27)

Note that N N N N1 1 1 5 11 2 3 4  is again satisfied.
The 36 3 submatrices of the matrix [B], Eq. (11.2.13), are now evaluated using  

Eqs. (11.2.14) and (11.2.27) as
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Next, the matrix [D] is evaluated using Eq. (11.1.5) as

	 D 5
3

1 2





















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[ ]
200 10 N m

(1 0.3)(1 0.6)

0.7 0.3 0.3 0 0 0
0.7 0.3 0 0 0

0.7 0 0 0
0.2 0 0

0.2 0
Symmetry 0.2

9 2

	 (11.2.29)
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Finally, substituting the results from Eqs. (11.2.24) for V, (11.2.28) for [B], and (11.2.29) 
for [D] into Eq. (11.2.18), we obtain the element stiffness matrix. The resulting 312 12 
matrix is shown as

5

5 3

2 2 2 2 2

2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2
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2 2 2 2 2

[ ] [ ] [ ][ ]
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	11.3 	I soparametric Formulation and Hexahedral Element
We now describe the isoparametric formulation of the stiffness matrix for some three–
dimensional hexahedral (brick) elements.

Linear Hexahedral Element
The basic (linear) hexahedral element [Figure 11–5(a)] now has eight corner nodes with iso-
parametric natural coordinates given by s, t, and z9  as shown in Figure 11–5(b). The element 
faces are now defined by s, t, z9 5 61. (We use s, t, and z9  for the coordinate axes because they 
are probably simpler to use than Greek letters j, h , and z ).

The formulation of the stiffness matrix follows steps analogous to the isoparametric for-
mulation of the stiffness matrix for the plane element in Chapter 10.

The function used to describe the element geometry for x in terms of the generalized 
degrees of freedom ai s is

	 5 1 1 1 9 1 1 9 1 9 1 91 2 3 4 5 6 7 8x a a s a t a z a st a tz a z s a stz 	 (11.3.1)

The same form as Eq. (11.3.1) is used for y and z as well. Just start with a9 through a16 for 
y and a17 through a24 for z.

First, we expand Eq. (10.2.4) to include the z coordinate as follows:
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where the shape functions are now given by

	
9 9

5
1 1 1(1 )(1 )(1 )

8
N

ss tt z z
i

i i i 	 (11.3.3)

with si, ti, 9 5 61zi  and i 5 1, 2, , 8… . For instance,

	
9 9

5
1 1 1(1 )(1 )(1 )

8
1

1 1N
ss tt z zi 	 (11.3.4)

and when, from Figure 11–5, s 5 211 , t 5 211 , and 9 5 11zi  are used in Eq. (11.3.4), we obtain

	 5
2 2 1 9(1 )(1 )(1 )

8
1N

s t z
	 (11.3.5a)

Explicit forms of the other shape functions follow similarly. The shape functions in Eq. (11.3.3) 
map the natural coordinates (s, t, z9 ) of any point in the element to any point in the global 
coordinates (x, y, z) when used in Eq. (11.3.2). For instance, when we let i 5 8 and substitute 
s 5 18 , t 5 18 , z 59 18  into Eq. (11.3.3) for N8, we obtain

	 N
s t z

5
1 1 1 9(1 )(1 )(1 )

8
8 	 (11.3.5b)

Similar expressions are obtained for the other shape functions. Then evaluating all shape func-
tions at node 8, we obtain N 5 18 , and all other shape functions equal zero at node 8. [From 
Eq. (11.3.5a), we see that N 5 01  when s 5 1 or when t 5 1.] Therefore, using Eq. (11.3.2), 
we obtain

	 x x y y z z5 5 58 8 8	

We see that indeed Eq. (11.3.2) maps any point in the natural-coordinate system to one in the 
global-coordinate system.

■■ Figure 11–5  Linear hexahedral element (a) in a global-coordinate system and 
(b) element mapped into a cube of two unit sides placed symmetrically with natural or 
intrinsic coordinates s, t, and z9
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The displacement functions in terms of the generalized degrees of freedom are of the same 
form as used to describe the element geometry given by Eq. (11.3.1).

That is,

	 9 9 9 95 1 1 1 1 1 1 11 2 3 4 5 6 7 8u a a s a t a z a st a tz a z s a stz 	 (11.3.6a)

with similar expressions used for displacements v and w. There are now a total of 24 degrees of 
freedom in the linear hexahedral element. Therefore, we use the same shape functions as used 
to describe the geometry [Eq. (11.3.3)]. The displacement functions now include w such that
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with the same shape functions as defined by Eq. (11.3.3) and the size of the shape function 
matrix now 33 24.

The Jacobian matrix [Eq. (10.2.10)] is now expanded to
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Because the strain–displacement relationships, given by Eq. (11.2.11) in terms of global 
coordinates, include differentiation with respect to z, we expand Eq. (10.2.9) as follows:

	

′ ′ ′
| |

′ ′ ′
| |

′ ′ ′
| |

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

f

x

f

s

y

s

z

s
f

t

y

t

z

t
f

z

y

z

z

z

J

f

y

x

s

f

s

z

s
x

t

f

t

z

t
x

z

f

z

z

z

J

f

z

x

s

y

s

f

s
x

t

y

t

f

t
x

z

y

z

f

z

J

[ ] [ ]

[ ]

5 5

5

	 (11.3.8)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11  |  Three-Dimensional Stress Analysis550

Using Eqs. (11.3.8) by substituting u, v, and then w for f and using the definitions of the strains, 
we can express the strains in terms of natural coordinates (s, t, z9 ) to obtain an equation similar 
to Eq. (10.2.14). In compact form, we can again express the strains in terms of the shape func-
tions and global nodal coordinates similar to Eq. (10.2.15). The matrix [B], given by a form 
similar to Eq. (10.2.17), is now a function of s, t, and z9  and is of order 36 24.

The 324 24 stiffness matrix is now given by

	 95
222

[ ] [ ] [ ][ ] [ ]
1

1

1

1

1

1

∫∫∫ | |k B D B J ds dt dzT 	 (11.3.9a)

Again, it is best to evaluate [k] by numerical integration (also see Section 10.3); that is, we 
evaluate (integrate) the eight-node hexahedral element stiffness matrix using a 3 32 2 2 rule 
(or two-point rule). Actually, eight points defined in Table 11–1 are used to evaluate [k] as

	 9 9 95
5

[ ] [ ( , , )] [ ][ ( , , )] [ ( , , )]
1

8

∑ | |k B s t z D B s t z J s t z W W W
i

i i i
T

i i i i i i i j k	 (11.3.9b)

where W W Wi j k5 5  for the two-point rule.
As is true with the bilinear quadrilateral element described in Section 10.2, the eight-noded 
linear hexahedral element cannot model beam-bending action well because the element sides 
remain straight during the element deformation. During the bending process, the elements will 
be stretched and can shear lock. This concept of shear locking was introduced in Section 6.6 
and again described in Section 10.5 with ways to remedy it. More details regarding shear 
locking along with ways to remedy it are provided in [12]. However, the quadratic hexahedral 
element described subsequently remedies the shear locking problem.

Quadratic Hexahedral Element
For the quadratic hexahedral element shown in Figure 11–6, we have a total of 20 nodes with 
the inclusion of a total of 12 midside nodes.

 Table 11–1  Table of Gauss points for linear hexahedral element with associated weightsa

Points, i si ti 9zi Weight, Wi

1 21 3 21 3 1 3 1

2 1 3 21 3 1 3 1

3 1 3 1 3 1 3 1

4 21 3 1 3 1 3 1

5 21 3 21 3 21 3 1

6 1 3 21 3 21 3 1

7 1 3 1 3 21 3 1

8 21 3 1 3 21 3 1

51 / 3 0.57735.a
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The function describing the element geometry for x in terms of the 20 ai s is
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(11.3.10)

Similar expressions describe the y and z coordinates.
The x-displacement function u is described by the same polynomial used for the x element 

geometry in Eq. (11.3.10). Similar expressions are used for displacement functions v and w. In 
order to satisfy interelement compatibility, the three cubic terms s3, t3, and z9 3 are not included. 
Instead the three quartic terms s tz92 , st z92 , and stz9 2 are used.

The development of the stiffness matrix follows the same steps we outlined before for the 
linear hexahedral element, where the shape functions now take on new forms. Again, letting 

9 5 6, , 1s t zi i i , we have for the corner nodes i 5( 1, 2, , 8)… ,

	
9 9

9 95
1 1 1

1 1 2
(1 )(1 )(1 )

8
( 2)N

ss tt z z
ss tt z zi

i i i
i i i 	 (11.3.11)

For the midside nodes at si 5 0, ti 5 61, 9 5 61zi  i 5( 17, 18, 19, 20), we have
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For the midside nodes at si 5 61, ti 5 0, 9 5 61zi  i 5( 10, 12, 14, 16), we have

	
9 9

5
1 2 1

N
ss t z z

i
i i(1 )(1 )(1 )

4

2

	 (11.3.13)

Finally, for the midside nodes at si 5 61, ti 5 61, 9 5 0zi  i 5( 9, 11, 13, 15), we have

	 N
ss tt z

i
i i 9

5
1 1 2(1 )(1 )(1 )

4

2

	 (11.3.14)

The [B] matrix is now a 60 60 matrix3 . Therefore, using Eq. (11.3.9a), the stiffness 
matrix of the quadratic hexahedral element is of order 360 60. This is consistent with the fact 
that the element has 20 nodes and 3 degrees of freedom (ui, vi, and wi) per node.

■■ Figure 11–6  Quadratic hexahedral isoparametric element
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The stiffness matrix for this 20-node quadratic solid element can be evaluated using a 
3 33 3 3 rule (27 points). However, a special 14-point rule may be a better choice [9, 10].

As with the eight-noded plane element of Section 10.5 (Figure 10–18), the 20-node solid 
element is also called a serendipity element.

Figures 1–7 and 11–7 show applications of the use of linear and quadratic (curved sides) 
solid elements to model three-dimensional solids.

Finally, commercial computer programs, such as [11] (also see references [46–56] of 
Chapter 1), are available to solve three-dimensional problems. Figures 11–8, 11–9, and 11–10 
show a steel foot pedal, a trailer hitch, and an alternator bracket solved using a computer pro-
gram [11]. We emphasize that these problems have been solved using the three-dimensional 

■■ Figure 11–7  Finite element model of a forging using linear and quadratic solid elements

■■ Figure 11–8  Meshed model of steel foot pedal (fixed along left back face and total 
downward acting surface force of 100 N applied uniformly over front pedal surface)  
(By Justin Hronek)
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element as opposed to using a two-dimensional element, such as described in Chapters 6 and 8, 
as these problems have a three-dimensional stress state occurring in them. That is, the three 
normal and three shear stresses are of similar order of magnitude in some parts of the foot 
pedal, the trailer hitch, and the alternator bracket. The most accurate results will then occur 
when modeling these problems using the three-dimensional brick or tetrahedral elements (or 
a combination of both).

For the foot pedal, modeled with brick elements, the largest von Mises stress was 71.1 MPa 
located at the interior corner of the elbow. The maximum displacement was 0.439 mm down at 
the front free end corner. (See Problem 11.14 for detailed dimensions and material properties 
used.)

■■ Figure 11–9  Meshed model of a trailer hitch (By David Anderson) (See the full-color insert 
for a color version of this figure.)

■■ Figure 11–10  Meshed model of an alternator bracket (Courtesy of Seagrave Fire Apparatus 
and Design Engineer Andrew Heckman)
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For the steel trailer hitch shown in Figure 11–9, subjected to both a lateral and downward 
load of 12.59 kN each on the ball, the largest von Mises stress away from the unrealistic high 
stress located at the point load that was applied at the base of the ball is 406.75 MPa located 
at the inside re-entrant curve of the hitch. The largest displacement magnitude was 1.52 mm 
located at the top of the ball. This displacement magnitude also matches the value obtained 
through experimental testing of the hitch under the same load conditions used in the finite 
element analysis.

For the alternator bracket made of ASTM-A36 hot-rolled steel, the model consisted of 
13,298 solid brick elements and 10,425 nodes. A total load of 4.45 kN was applied downward 
to the flat front face piece. The bracket back side was constrained against displacement. The 
largest von Mises stress was 79.54 MPa located at the top surface near the center (narrowest) 
section of the bracket. The largest vertical deflection was 0.412 mm at the front tip of the outer 
edge of the alternator bracket.

It has been shown [3] that use of the simple eight-noded hexahedral element yields bet-
ter results than use of the constant-strain tetrahedral discussed in Section 11.1. Table 11.2 
also illustrates the comparison between the corner-noded (constant-strain) tetrahedral, the 
linear-strain tetrahedral (10 nodes with mid-edge nodes added), the 8-noded brick, and the 
20-noded brick models for a three-dimensional cantilever beam of length 2.54 m, base 15.24 
cm, and height 30.48 cm. The beam has an end load of 44.48 kN acting upward and is made 
of steel ( 210 GPa)5E . A typical 8-noded brick model with the principal stress plot is shown 
in Figure 11–11. The classical beam theory solution for the vertical displacement and bending 
stress is also included for comparison. We can observe that the constant-strain tetrahedral gives 

 Table 11–2  Table comparing results for cantilever beam modeled using 4-noded-tetrahedral, 10-noded 
tetrahedral, 8-noded brick, and 20-noded brick element

Solid  
Element Used

Number of 
Nodes

Number of Degrees 
of Freedom

Number of 
Elements

Free End 
Displ., mm

Principal 
Stress, MPa

4-noded tet 30 90 61 0.1346 3.87

4-noded tet 415 1245 1549 0.7163 16.25

4-noded tet 896 2688 3729 1.067 22.64

4-noded tet 1658 4974 7268 1.392 27.97

10-noded tet 144 432 61 2.997 45.51

10-noded tet 2584 7752 1549 3.244 54.95

8-noded brick 64 192 27 3.145 40.94

8-noded brick 343 1029 216 3.183 44.87

8-noded brick 1331 3993 1000 3.243 47.86

20-noded brick 208 624 27 3.175 54.46

20-noded brick 1225 3675 216 3.264 57.57

20-noded brick 4961 14,883 1000 3.294 57.39

Classical solution 3.266 47.85

(Mr. William Gobeli for creating the results for Table 11–2)
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555Summary Equations

very poor results, whereas the linear tetrahedral gives much better results. This is because the 
linear-strain model predicts the beam-bending behavior much better. The 8-noded and 20-noded 
brick models yield similar but accurate results compared to the classical beam theory results.

In summary, the use of the three-dimensional elements results in a large number of equa-
tions to be solved simultaneously. For instance, a model using a simple cube with, say, 20 by 
20 by 20 nodes 5( 8000 total nodes) for a region requires 8000 times 3 degrees of freedom per 
node 5( 24,000) simultaneous equations.

References [4–7] report on early three-dimensional programs and analysis procedures 
using solid elements such as a family of subparametric curvilinear elements, linear tetrahedral 
elements, and 8-noded linear and 20-noded quadratic isoparametric elements.

Summary Equations

Strain–displacement equations:
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Stress and strain matrices:
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■■ Figure 11–11  Eight-noded brick model (27 Bricks) showing principal stress plot
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Constitutive matrix:
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	 (11.1.5)

Displacement functions:
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	 (11.2.2)

Shape functions for tetrahedral element:
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	 (11.2.10)

and

	 56
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	 (11.2.4)

Gradient matrix:
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	 (11.2.15)

Stiffness matrix for tetrahedral element:

	 5[ ] [ ] [ ][ ]k B D B VT 	 (11.2.18)
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Body-force matrix for tetrahedral element:

	 5{ }
4

[ ]f
V

X Y Z X Y Z X Y Z X Y Zb b b b b b b b b b b b b
T 	 (11.2.20b)

Surface-force matrix along face with nodes 1 through 3 for tetrahedral element:
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	 (11.2.23)

Function to define the geometry for eight-noded linear hexahedral element:

	 x a a s a t a z a st a tz a z s a stz1 2 3 4 5 6 7 89 9 9 95 1 1 1 1 1 1 1 	 (11.3.1)

Shape functions for isoparametric 8-noded brick element:

	
9 9

5
1 1 1(1 )(1 )(1 )

8
N

ss tt z z
i

i i i 	 (11.3.3)

x direction displacement function for eight-noded brick element:

	 u a a s a t a z a st a tz a z s a stz1 2 3 4 5 6 7 89 9 9 95 1 1 1 1 1 1 1 	 (11.3.6a)

Stiffness matrix for eight-noded brick element:

	 ∫∫∫ | |k B D B J ds dt dzT[ ] [ ] [ ][ ] [ ]
1

1

1

1

1

1
95

222
	 (11.3.9a)

3 32 2 2 rule (8 point rule) for evaluating stiffness matrix of eight-noded brick element:

	 9 9 95
5

[ ] [ ( , , )] [ ][ ( , , )] [ ( , , )]
1

8

∑ | |k B s t z D B s t z J s t z W W W
i

i i i
T

i i i i i i i j k	 (11.3.9b)

Table 11–1 lists the Gauss points for a linear brick element.
Function describing the element geometry for 20-noded quadratic brick element:

	

9 9 9

9 9 9 9

9 9 9 9 9

5 1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 2 3 4 5 6 7 8
2

9
2

10
2

11
2

12
2

13
2

14
2

15
2

16
2

17 18
2

19
2

20
2
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	 (11.3.10)

Similar expressions describe the y and z coordinates.
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Shape functions for 20-noded brick element:
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Problems

	 11.1		  Evaluate the matrix [B] for the tetrahedral solid element shown in Figure P11–1.
	 11.2		  Evaluate the stiffness matrix for the elements shown in Figure P11–1. 

Let  210 GPa5E  and ν 0.35 .
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559Problems

	 11.3		  For the elements shown in Figure P11–1, assume the nodal displacements have been 
determined to be

	

0.0125 mm 0.0 0.0

0.0025 mm 0.0 0.0025 mm

0.0125 mm 0.0 0.0

0.0025 mm 0.0 0.0125 mm

1 1 1

2 2 2

3 2 3

4 4 4

5 5 5

5 5 5

5 5 5

5 2 5 5

u v w

u v w

u v w

u v w

			   Determine the strains and then the stresses in the elements. Let 200 10 Pa95 3E  
and ν 0.35 .

	 11.4		  What is special about the strains and stresses in the tetrahedral element?
	 11.5		  Show that for constant body force Zb acting on an element X Yb b( 0 and 0)5 5 ,

	 f
V

Z
bi

b

5{ }
4

0
0













			   where fbi{ } represents the body forces at node i of the element with volume V.
	 11.6		  Evaluate the [B] matrix for the tetrahedral solid element shown in Figure P11–6. 

The coordinates are in units of millimeters.
	 11.7		  Evaluate the stiffness matrix for the elements shown in Figure P11–6. 

Let E 100 GPa5  and ν 0.35 .
	 11.8		  For the elements shown in Figure P11–6, assume the nodal displacements have been 

determined to be

	

u v w

u v w

u v w

u v w

0.0 0.0 0.0

0.01mm 0.02 mm 0.01mm

0.02 mm 0.01mm 0.005 mm

0.0 0.01mm 0.01mm

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

5 5 5

5 5 5

5 5 5

			   Determine the strains and then the stresses in the elements. Let E 100 GPa5  and 
ν 0.35 .

(0, 0, 2)
2

3

4

1

(b)(a)

(1, 0, 0) (3, 0, 0)
x

(0, 2, 0)

y

z

■■ Figure P11–1
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	 11.9		  For the linear strain tetrahedral element shown in Figure P11–9, (a) express the 
displacement fields u, v, and w in the x, y and z directions, respectively. Hint: There 
are 10 nodes each with three translational degrees of freedom, ui, vi, and wi. Also 
look at the linear strain triangle given by Eq. (8.1.2) or the expansion of Eq. (11.2.2).

■■ Figure P11–6

y

z

(4, 2, 0)

(b)(a)

(12, 2, 0)

(10, 2, 5)

1

3

4

2

x

(10, 7, 0)

■■ Figure P11–9

	11.10		  Figure P11–10 shows how solid and plane elements may be connected. What restriction 
must be placed on the externally applied loads for this connection to be acceptable?

	11.11		  Express the explicit shape functions N2 through N8, similar to N1 given by  
Eq. (11.3.4), for the linear hexahedral element shown in Figure 11–5 on page 548.

	11.12		  Express the explicit shape functions for the corner nodes of the quadratic hexahedral 
element shown in Figure 11–6 on page 551.

	11.13		  Write a computer program to evaluate [k] of Eq. (11.3.9a) using a 3 32 2 2 Gauss-
ian quadrature rule.

■■ Figure P11–10

z

x Solid elements

Plane elements
y
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Solve the following problems using a computer program.
	11.14		  Determine the deflections at the four corners of the free end of the structural steel 

cantilever beam shown in Figure P11–14. Also determine the maximum principal 
stress. Compare your answer for deflections to the classical beam theory equation 

PL EI( /(3 )3d 5 ).

■■ Figure P11–14

60 mm

200 GPa

2000 mm
200 mm

4.0 kN

	11.15		  A portion of a structural steel brake pedal in a vehicle is modeled as shown in 
Figure P11–15. Determine the maximum deflection at the pedal under a uniform 
pressure acting over the pedal totaling 100 N.

■■ Figure P11–15 

	11.16		  For the crane hook shown in Figure P11–16, determine the largest displacement and the 
maximum von Mises stress and where this value is located on the hook. Use AISI 4130 
steel with yield strength of 460 MPa, modulus of elasticity of 210 GPa, and Poisson’s 
ratio of 0.3. The total load of 112.5 kN is applied over 15 nodes located on the bottom 
inside face to simulate a lifting force. The underside of the top of the circular portion 
of the hook is fixed from vertical translation. All dimensions are in centimeters.

	11.17		  An S-shaped block used in force measurement as shown in Figure P11–17 is to be 
designed for a pressure of 7 MPa applied uniformly to the top surface. Determine 
the uniform thickness of the block needed such that the sensor is compressed no 
more than 1 mm. Also make sure that the maximum stress from the maximum 
distortion energy failure theory is less than the yield strength of the material. Use a 
factor of safety of 1.5 on the stress only. The overall size of the block must fit in a 
30-mm-high, 20-mm-wide, 20 mm-deep volume. The block should be made of steel.

Problems
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f 23.77

36
.1

7

Width is 5.99 cm

14.02

R15.01

f 11.79

■■ Figure P11–16  Crane hook (By John Stec)

	11.18		  A device is to be hydraulically loaded to resist an upward pressure 27 kN5P  as 
shown in Figure P11–18. Determine the thickness of the device such that the max-
imum deflection is 2 mm vertically and the maximum stress is less than the yield 
strength using a factor of safety of 2 (only on the stress). The device must fit in a 
space 140 mm high, 60 mm wide, and 46 mm deep. The top flange is bent vertically 
as shown, and the device is clamped to the floor. Use steel for the material.

	11.19		  An “Allen” wrench is used to loosen a bolt that has a hex-head cross section. As 
shown in Figure P11–19. This wrench is a 5 mm size and is made of quenched and 
tempered carbon steel with modulus of elasticity of 200 GPa, Poisson’s ratio of 0.29, 
and yield strength of 615 MPa. The wrench is used to loosen a rusty bolt. To simulate 
the fixity a surface 2.5 mm in depth from the bottom is held fixed. A total force of 
125 N is applied uniformly over 25 mm at the end of the horizontal section of the 
wrench. Determine the maximum von Mises stress in the wrench. Also determine 
the maximum displacement. Comment on the safety of the wrench based on whether 
it will yield or not. (This problem is by Justin Hronek.)

	11.20		  A blacksmith desires to forge a work piece using the anvil shown in Figure P11–20. 
The anvil is bolted to a workbench with 114 mm diameter bolts. The anvil is made 
of gray cast iron with 100 GPa5E  and v 0.215 . The tensile and compressive 
strengths are 214 MPa and 751 MPa, respectively. A surface pressure of 6.9 MPa is 
applied to the horn of the anvil during the forging process. Determine the maximum 
principal stress and its location on the anvil. (This problem is by Dan Baxter.)

20  mm

7 MPa

20 mm

30 mm

■■ Figure P11–17  S-shaped block
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36 mm

125 mm

16 mm

46 mm

60 mm

16 mm

16 mm

Figure P11–18  Hydraulically loaded device

30

R1075

Fixed endForces applied

Original model with forces Dimensions, mm

f 5

■■ Figure P11–19  “Allen” wrench showing dimensions, loads, and typical finite 
element model (By Justin Hronek)
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■■ Figure P11–20  Anvil used for forging operation (showing dimensions in mm units) and 
typical finite element model (Compliments of Dan Baxter) (See the full-color insert for a color 
version of this figure.)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



565

	11.21		  A fork from a forklift is constrained by two bars (not shown) that fit into each L-shaped 
appendage on the vertical part of the fork as shown in Figure P11–21. The fork is made 
of AISI 4130 steel with E 206.84 GPa5 , v 0.305 , and a yield strength of 360 MPa.  
The fork is loaded with 46,189 N/m2 of surface traction on the top surface.

			   How much will the fork deflect, and what is the maximum von Mises stress? 
What is the factor of safety against yielding of the material? (This problem is by 
Jay Emmerich.)

Side view

Top view

50
40
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R20 R10

25
75 50

59
0

63
0
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50 550 381.31

1090

R
7275

30

R50Mirrored copy of
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R5

15

f20

100

20
50+

■■ Figure P11–21  Fork from forklift showing dimensions (all dimensions in mm) and 
typical finite element model (By Jay Emmerich)
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	11.22		  A radio-control car front steering unit is shown in Figure P11–22. The arm is made 
of molded ABS plastic with a modulus of elasticity of 2.5 GPa and a tensile strength 
of 41 MPa. The base of the steering unit is attached to the frame of the car by bolts, 
so the three holes that the bolts pass through are assumed fixed around their cylin-
drical surface (as shown in the finite element model). A force of 13 N is applied 
circumferentially around the upper finger (as shown in the finite element model). 
This force represents the typical weight of a remote-control car. Determine the max-
imum von Mises stress and largest displacement of the control arm. (This problem 
is by Phillip Grommes.)

R0.25

16.25

15.25

13.5 5.
75

14
.7

5
3.

25

10.75
8.25

1.75
1.75

f3.25

f5.033

5.
0

9.5

16

R
2.5

18.75

3.0

44.75

11
.5

10

2.
5

21

■■ Figure P11–22  Radio-control front steering unit (all dimensions in mm) and 
finite element model (Compliments of Phillip Grommes) (See the full-color insert 
for a color version of this figure.)
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	11.23		  The hitch shown in Figure P11–23 is used on an International 496 disk. The hitch is 
made of cold drawn 1018 steel with 200 GPa5E  and v 0.305 . The yield strength 
of the material is 370 MPa. The disk requires 150 kW to pull at 10 km/h. The total 

+

+

+

12.5
12.5

1625

10
0

30
0

17
5

10
0

18
50

20
0 12.5

175

90º

75

f 37.5

f 28

■■ Figure P11–23  Hitch from a 7.3-m-wide International 496 disk (dimensions in mm) 
and typical finite element model (Compliments of Byron Manternach)

Problems
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force of 55.6 kN in the hitch is then determined from force equal to power divided 
by velocity. Determine the maximum von Mises stress and the deflection of the hitch 
under the load. In the model, use two 27.8 kN applied to each side of the hitch and 
fix the nodes at the ends of the attachment to the disk frame (as shown in the finite 
element model). (This problem is by Byron Manternach.)

	11.24		  A swivel C bracket shown in Figure P11–24 is mounted to a ceiling of a building and 
has a speaker (not shown) of 90 N hanging from each mounting hole. The mounting 
bracket is made of A 36 steel with a modulus of elasticity of 200 GPa, Poisson’s ratio 
of 0.29, and yield strength of 250 MPa. Determine the maximum von Mises stress 
and deflection in the bracket. (This problem is by Tyler Austin and Kyle Jones.)

R5 TYP. R2.5

6.25 TYP.

62.5

25

12.5

f12.5

250

50

f25

f37.5

50

■■ Figure P11–24  Swivel C bracket (dimension in mm) and typical finite element model 
(Compliments of Tyler Austin and Kyle Jones)
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	11.25		  The lower arms of a front-end loader are shown in Figure P11–25. The loader mate-
rial is AISI 1010 cold drawn steel with a modulus of elasticity of 205 GPa and 
Poisson’s ratio of 0.29. The yield strength of the material is 305 MPa. In the finite 
element model, the back faces of the top horizontal members are fixed. Determine 
the maximum force that can be applied to the bottom of the left arm to cause yield-
ing of the arm. You may want to try loads that are vertical (y-directed) and lateral 
(z-directed). (This problem is by Quentin Moller.)

6.25
75

800

The depth of the 800-mm cross member 125 mm into the paper

62.5

37
5

11
5

200

462.5

860

780
62.5

437

11
11

27
5

12
33

f25

f25

■■ Figure P11–25  Lower arms of front end loader (dimensions in mm) and a typical 
finite element model (Compliments of Quentin Moller)

	11.26		  A bicycle stem is shown in Figure P11–26. The stem attaches the handlebars to the 
steerer tube of the fork. The stem is made of 7075-T6 aluminum alloy with yield 
strength of 504 MPa. The load of 1200 N is spread over the mounting surface to 
the handlebar in the x – y plane and acts at a 845  angle from the axis of the stem. 
The inner surface of the stem that attaches to the steerer tube is fixed in translation 
in the y-direction and in rotation about the y-axis. Determine the largest von Mises 
stress and its location on the stem. (This problem is courtesy of Stephen Wilson.)

Problems
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11  |  Three-Dimensional Stress Analysis570

■■ Figure P11–26  Bicycle stem (dimensions in mm) and typical finite element model 
(By Stephen Wilson)

	11.27		  For the flanged pipe section shown in Figure P11–27, determine the maximum von 
Mises stress and largest displacement. The pipe is subjected to an internal pressure 
of 2.4 MPa in addition to a 500 N force acting in compression on each end of the 
two flanges and a 250 N force on the smaller, top flange. The edge of the inner 
diameter of the pipe is fixed as the bolts would be assumed to resist rotation and 
translation. The material is grey cast iron with modulus of elasticity of 90 10 Pa93  
and Poisson’s ration of 0.24.

f  22.50

R0.63

8.75

f  2.50

15.33

f 12.50

2.50 2.50
2.50

2.50

22.50

50.00

20.00 R10.00

8.758.75

■■ Figure P11–27  Pipe section showing dimensions in centimeter units (Compliments 
of Trevor King)
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	11.28		  A solid part shown in Figure P11–28 is made to locate parts into proper position. 
The material is AISI 1005 steel with E 200 GPa5  and v 5 0.29. The front faces are 
fixed, and a pressure P of 100 MPa is applied to the semi-circular face of the inside 
slot, as shown in the figure. Determine the largest von Mises stress and its location 
on the locator device.

10 rad.

30 mm

15 mm

30 dia.

40 mm

75 mm
50 mm

Fixed

Fixed
P

■■ Figure 11P–28  Locator part (dimensions in mm) with typical finite element 
model (See the full-color insert for a color version of this figure.)

Problems
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CHAPTER OBJECTIVES

At the conclusion of this chapter, you will be able to:

■	 Introduce basic concepts of plate bending.

■	 Derive a common plate bending element stiffness matrix.

■	 Present some plate element numerical comparisons.

■	 Demonstrate some computer solutions for plate bending problems.

Introduction
In this chapter, we will begin by describing elementary concepts of plate bending behavior and 
theory. The plate element is one of the more important structural elements and is used to model 
and analyze such structures as pressure vessels, chimney stacks (Figure 1–5), and automobile 
parts. Figure 12–1 shows finite element models of a computer case and a water tank modeled 
using the plate bending element described in this chapter. This description of plate bending is 
followed by a discussion of some commonly used plate finite elements. A large number of plate 
bending element formulations exist that would require a lengthy chapter to cover. Our purpose 
in this chapter is to present the derivation of the stiffness matrix for one of the most common 
plate bending finite elements and then to compare solutions to some classical problems from 
a variety of bending elements in the literature.

We finish the chapter with a solution to a plate bending problem using a computer program.

	12.1 	 Basic Concepts of Plate Bending
A plate can be considered the two-dimensional extension of a beam in simple bending. Both 
beams and plates support loads transverse or perpendicular to their plane and through bending 
action. A plate is flat (if it were curved, it would become a shell). A beam has a single bending 
moment resistance, while a plate resists bending about two axes and has a twisting moment.

We will consider the classical thin-plate theory or Kirchhoff plate theory [1]. Many of the 
assumptions of this theory are analogous to the classical beam theory or Euler–Bernoulli beam 
theory described in Chapter 4 and in Reference [2].

Plate Bending Element
C H A P T E R

12
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12.1  Basic Concepts of Plate Bending 573

Basic Behavior of Geometry and Deformation
We begin the derivation of the basic thin-plate equations by considering the thin plate in the 
x – y plane and of thickness t measured in the z direction shown in Figure 12–2. The plate sur-
faces are at z t ⁄ 25 6 , and its midsurface is at z 05 . The assumed basic geometry of the plate 
is as follows: (1) The plate thickness is much smaller than its in-plane dimensions b and c (that 
is, t b,,  or c). (If t is more than about one-tenth the span of the plate, then transverse shear 
deformation must be accounted for and the plate is then said to be thick.) (2) The deflection  w  
is much less than the thickness t (that is, w t/ 1,, ).

Kirchhoff Assumptions
Consider a differential slice cut from the plate by planes perpendicular to the x axis as 
shown in Figure 12–3(a). Loading q causes the plate to deform laterally or upward in 

■■ Figure 12–1  (a) Computer case and (b) water tank (See the full-color insert for a color 
version of this figure.)

(b)

(a)
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12  |  Plate Bending Element574

the z direction, and the deflection w of point P is assumed to be a function of x and y 
only; that is, w w x y( , )5  and the plate does not stretch in the z direction. A line a-b 
drawn perpendicular to the plate surfaces before loading remains perpendicular to the 
surfaces after loading [Figure 12–3(b)]. This is consistent with the Kirchhoff assumptions 
as follows:

1.	 Normals remain normal. This implies that transverse shear strains yz 0g 5  and similarly 
xz 0g 5 . However, xyg  does not equal 0; right angles in the plane of the plate may not 

remain right angles after loading. The plate may twist in the plane.
2.	 Thickness changes can be neglected and normals undergo no extension. This means nor-

mal strain, z 0« 5 .
3.	 Normal stress zs  has no effect on in-plane strains x«  and y«  in the stress/strain equations 

and is considered negligible.
4.	 Membrane or in-plane forces are neglected here, and the plane stress resistance can be 

superimposed later (that is, the constant-strain triangle behavior of Chapter 6 can be 

■■ Figure 12–2  Basic thin plate showing transverse loading and dimensions

■■ Figure 12–3  Differential slice of plate of thickness t (a) before loading and (b) displacements 
of point P after loading, based on Kirchhoff theory. Transverse shear deformation is neglected, 
and so right angles in the cross section remain right angles. Displacements in the y-z plane 
are similar
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12.1  Basic Concepts of Plate Bending 575

superimposed with the basic plate bending element resistance). That is, the in-plane defor-
mations in the x and y directions at the midsurface are assumed to be zero; u x y( , ,0) 05  
and v x y( , ,0) 05 .

Based on the Kirchhoff assumptions, any point P in Figure 12–3 has displacement in the 
x direction due to a small rotation a of

	
�

�
u z z

w

x




a5 2 5 2 	 (12.1.1)

and similarly the same point has displacement in the y direction of

	
�

�
v z

w

y







5 2 	 (12.1.2)

The curvatures of the plate are then given as the rate of change of the angular displacements 
of the normals and are defined as
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The first of Eqs. (12.1.3) is used in beam theory [Eq. (4.1.1e)].
Using the definitions for the in-plane strains from Eq. (6.1.4), along with Eq. (12.1.3), the 

in-plane strain–displacement equations become
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or using Eq. (12.1.3) in Eq. (12.1.4a), we have

	 z z zx x y y xy xyκ κ κg« 5 2 « 5 2 5 2 	 (12.1.4b)

The first of Eqs. (12.1.4a) is used in beam theory [see Eq. (4.1.10a)]. The others are new to 
plate theory.

Stress/Strain Relations
Based on the third assumption above, the plane stress equations can be used to relate the 
in-plane stresses to the in-plane strains for an isotropic material as
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2
	 (12.1.5)
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The in-plane normal stresses and shear stress are shown acting on the edges of the plate in 
Figure 12–4(a). Similar to the stress variation in a beam, these stresses vary linearly in the 
z direction from the midsurface of the plate. The transverse shear stresses τ yz and τ xz are also 
present, even though transverse shear deformation is neglected. As in beam theory, these trans-
verse stresses vary quadratically through the plate thickness. The stresses of Eq. (12.1.5) can 
be related to the bending moments Mx and My and to the twisting moment Mxy acting along 
the edges of the plate as shown in Figure 12–4(b).

The moments are actually functions of x and y and are computed per unit length in the 
plane of the plate so have units of N-m/m. Therefore, the moments are

	 M z dz M z dz M z dzx x
t

t
y y

t

t
xy xy

t

t

∫ ∫ ∫ τ
/2

/2

/2

/2

/2

/2
s s5 5 5

2 2 2
	 (12.1.6)

The moments can be related to the curvatures by substituting Eqs. (12.1.4b) into Eqs. (12.1.5) 
and then using those stresses in Eq. (12.1.6) to obtain

	 ν ν ν
k k k k k5 1 5 1 5

2
M D M D M

D
x x y y y x xy xy( ) ( )

(1 )

2
	 (12.1.7)

where ν⁄5 2D Et [12(1 )]3 2  is called the bending rigidity of the plate (in units of N-m).
The maximum magnitudes of the normal stresses on each edge of the plate are located at 

the top or bottom at z t / 25 . For instance, it can be shown that

	
M

t
x

x6
2

s 5 	 (12.1.8)

This formula is similar to the flexure formula M c Ix x /s 5  when applied to a unit width of 
plate and when c t / 25 .

The governing equilibrium differential equation of plate bending is important in selecting 
the element displacement fields. The basis for this relationship is the equilibrium differen-
tial equations derived by the equilibrium of forces with respect to the z direction and by the 

■■ Figure 12–4  Differential element of a plate with (a) stresses shown on the edges of the 
plate and (b) differential moments and forces

(a) (b)
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equilibrium of moments about the x and y axes, respectively. These equilibrium equations result 
in the following differential equations:
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	 (12.1.9)

where q is the transverse distributed loading (in units of Pa) and Qx and Qy are the transverse 
shear line loads (in units of N/m) shown in Figure 12–4(b).

Now substituting the moment/curvature relations from Eq. (12.1.7) into the second and 
third of Eqs. (12.1.9), then solving those equations for Qx and Qy, and finally substituting the 
resulting expressions into the first of Eqs. (12.1.9), we obtain the governing partial differential 
equation for an isotropic, thin-plate bending behavior as
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1 1 5 	 (12.1.10)

From Eq. (12.1.10), we observe that the solution of thin-plate bending using a displacement 
point of view depends on selection of the single-displacement component w, the transverse 
displacement.

If we neglect the differentiation with respect to the y coordinate, Eq. (12.1.10) simplifies 
to Eq. (4.1.1g) for a beam (where the flexural rigidity D of the plate reduces to EI of the beam 
when the Poisson effect is set to zero and the plate width becomes unity).

Potential Energy of a Plate
The total potential energy of a plate is given by

	
1

2
( )∫ τU dVx x y y xy xys s g5 « 1 « 1 	 (12.1.11)

The potential energy can be expressed in terms of the moments and curvatures by substituting 
Eqs. (12.1.4b) and (12.1.6) in Eq. (12.1.11) as

	 U M M M dAx x y y xy xy∫ κ κ κ1

2
( )5 1 1 	 (12.1.12)

	12.2 	 Derivation of a Plate Bending Element Stiffness 
Matrix and Equations

Numerous finite elements for plate bending have been developed over the years, and Reference [3] 
cites 88 different elements. In this section we will introduce only one element formulation, the basic 
12-degrees-of-freedom rectangular element shown in Figure 12–5. For more details of this for-
mulation and of various other formulations including triangular elements, see References [4–18].
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The formulation will be developed consistently with the stiffness matrix and equations 
for the bar, beam, plane stress/strain, axisymmetric, and solid elements of previous chapters.

Step 1 Select Element Type
We will consider the 12-degrees-of-freedom flat-plate bending element shown in Figure 12–5. 
Each node has 3 degrees of freedom—a transverse displacement w in the z direction, a rotation 

xu  about the x axis, and a rotation yu  about the y axis.
The nodal displacement matrix at node i is given by

	 d
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where the rotations are related to the transverse displacement by
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The negative sign on yu  is due to the fact that a negative displacement w is required to produce 
a positive rotation about the y axis.

The total element displacement matrix is now given by

	 d d d d di j m n
T{ } {[ ] [ ] [ ] [ ]}5 	 (12.2.3)

Step 2 Select the Displacement Function
Because there are 12 total degrees of freedom for the element, we select a 12-term polynomial 
in x and y as follows:
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(12.2.4)

Equation (12.2.4) is an incomplete quartic in the context of the Pascal triangle (Figure 8–2). 
The function is complete up to the third order (ten terms), and a choice of two more terms from 
the remaining five terms of a complete quartic must be made. The best choice is the x y3  and 

■■ Figure 12–5  Basic rectangular plate element with nodal degrees of freedom
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xy3 terms as they ensure that we will have continuity in displacement among the interelement 
boundaries. (The x4 and y4 terms would yield discontinuities of displacement along interele-
ment boundaries and so must be rejected. The x y2 2 term is alone and cannot be paired with any 
other terms and so is also rejected.) The function [Eq. (12.2.4)] also satisfies the basic differ-
ential equation [Eq. (12.1.10)] over the unloaded part of the plate, although not a requirement 
in a minimum potential energy approximation.

Furthermore, the function allows for rigid-body motion and constant strain, as terms are 
present to account for these phenomena in a structure. However, interelement slope disconti-
nuities along common boundaries of elements are not ensured.

To observe this discontinuity in slope, we evaluate the polynomial and its slopes along a 
side or edge (say, along side i-j, the x axis of Figure 12–5). We then obtain
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	 (12.2.5)

The displacement w is a cubic as used for the beam element, while the slope � �w x⁄  is the same 
as in beam bending. Based on the beam element, we recall that the four constants a1, a2, a4, 
and a7 can be defined by invoking the endpoint conditions of w wi j yi yj( , , , )u u . Therefore, w 
and � �w x⁄  are completely defined along this edge. The normal slope � �w y⁄  is a cubic in x. 
However, only two degrees of freedom remain for definition of this slope, while four constants 
(a3, a5, a8, and a12) exist. This slope is then not uniquely defined, and a slope discontinuity 
occurs. Thus, the function for w is said to be nonconforming. The solution obtained from the 
finite element analysis using this element will not be a minimum potential energy solution. 
However, this element has proven to give acceptable results, and proofs of its convergence 
have been shown [8].

The constants a1 through a12 can be determined by expressing the 12 simultaneous equa-
tions linking the values of w and its slopes at the nodes when the coordinates take up their 
appropriate values. First, we write
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or in simple matrix form the degrees of freedom matrix is

	 P a{ } [ ]{ }c 5 	 (12.2.7)

where [P] is the 3 123  first matrix on the right side of Eq. (12.2.6).
Next, we evaluate Eq. (12.2.6) at each node point as follows
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In compact matrix form, we express Eq. (12.2.8) as

	 d C a{ } [ ]{ }5 	 (12.2.9)

where [C ] is the 12 123  matrix on the right side of Eq. (12.2.8).
Therefore, the constants (a s) can be solved for by

	 a C d{ } [ ] { }15 2 	 (12.2.10)

Equation (12.2.7) can now be expressed as

	 P C d{ } [ ][ ] { }1c 5 2 	 (12.2.11)

or	 N d{ } [ ]{ }c 5       	   (12.2.12)

where N P C[ ] [ ][ ] 15 2  is the 3 123  shape function matrix. A specific form of the shape 
functions Ni , N j, Nm, and Nn, is given in Reference [9].

Step 3 �Define the Strain (Curvature)-Displacement  
and Stress (Moment)-Curvature Relationships

The curvature matrix, based on the curvatures of Eq. (12.1.3), is
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or expressing Eq. (12.2.13) in matrix form, we have

	 Q a{ } [ ]{ }k 5 	 (12.2.14)

where [Q] is the 3 123  coefficient matrix multiplied by the a s in Eq. (12.2.13). Using  
Eq. (12.2.10) for {a}, we express the curvature matrix as

	 B d{ } [ ]{ }k 5      	  (12.2.15)

where	 B Q C[ ] [ ][ ] 15 2 	 (12.2.16)

is the 3 123  gradient matrix.
The moment-curvature matrix for a plate is given by
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where the [D] matrix is the constitutive matrix given for isotropic materials by
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and Eq. (12.2.15) has been used in the final expression for Eq. (12.2.17).

Step 4 Derive the Element Stiffness Matrix and Equations
The stiffness matrix is given by the usual form of the stiffness matrix as

	 [ ] [ ] [ ][ ]∫∫k B D B dx dyT5 	 (12.2.19)

where [B] is defined by Eq. (12.2.16) and [D] is defined by Eq. (12.2.18). The stiffness matrix 
for the four-noded rectangular element is of order 12 123 . A specific expression for [k] is 
given in References [4] and [5].

The surface force matrix due to distributed loading q acting per unit area in the z direction 
is obtained using the standard equation

	 { } [ ]∫∫F N q dx dys s
T5 	 (12.2.20)
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For a uniform load q acting over the surface of an element of dimensions b c2 23 , Eq. (12.2.20) 
yields the forces and moments at node i as
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with similar expressions at nodes j, m, and n. We should note that a uniform load yields applied 
couples at the nodes as part of the work-equivalent load replacement, just as was the case for 
the beam element (Section 4.4).

The element equations are given by
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The rest of the steps, including assembling the global equations, applying boundary condi-
tions (now boundary conditions on w, xu , yu ), and solving the equations for the nodal displace-
ments and slopes (note three degrees of freedom per node), follow the standard procedures 
introduced in previous chapters.

	12.3 	 Some Plate Element Numerical Comparisons
We now present some numerical comparisons of quadrilateral plate element formulations. 
Remember there are numerous plate element formulations in the literature. Figure 12–6 
shows a number of plate element formulation results for a square plate simply supported 
all around and subjected to a concentrated vertical load applied at the center of the plate. 
The results are shown to illustrate the upper and lower bound solution behavior and demon-
strate the convergence of solution for various plate element formulations. Included in these 
results is the 12-term polynomial described in Section 12.2. We note that the 12-term 
polynomial converges to the exact solution from above. It yields an upper bound solution. 
Because the interelement continuity of slopes is not ensured by the 12-term polynomial, 
the lower bound classical characteristic of a minimum potential energy formulation is 
not obtained. However, as more elements are used, the solution converges to the exact 
solution [1].
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12.3  Some Plate Element Numerical Comparisons 583

■■ Figure 12–6  Numerical comparisons: quadrilateral plate element formulations 
(Gallagher, Richard H., Finite Element Analysis: Fundamentals, 1st, © 1975. Printed and 
electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, 
New Jersey.)

Figure 12–7 shows comparisons of triangular plate formulations for the same cen-
trally loaded simply supported plate used to compare quadrilateral element formulations in 
Figure 12–6. We can observe from Figures 12–6 and 12–7 a number of different formulations 
with results that converge from above and below. Some of these elements produce better results 
than others.

The Autodesk program [19] uses, among others, the Veubeke (after Baudoin Fraeijs de 
Veubeke) 16-degrees-of-freedom “subdomain” formulation [7], which converges from below, 
as it is based on a compatible displacement formulation. For more information on some of 
these formulations, consult the references at the end of the chapter.

Finally, Figure 12–8 shows results for some selected Mindlin plate theory elements. 
Mindlin plate elements account for bending deformation and for transverse shear deformation. 
For more on Mindlin plate theory, see Reference [6]. The “heterosis” element [10] is the best 
performing element in Figure 12–8.
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	12.4 	 Computer Solutions for Plate Bending Problems
A computer program solution for plant bending problems [19] is now illustrated in Example 12.1. 
The plate element is a three- or four-noded element formulated in three-dimensional space. 
The element degrees of freedom allowed are all three translations (u, v, and w) and in-plane 
rotations ( xu  and yu ). The rotational degrees of freedom normal to the plate are undefined and 
must be constrained. The element formulated in the computer program is the 16-term polyno-
mial described in References [5] and [7]. This element is known as the Veubeke plate in the 
program. The 16-node formulation converges from below for the displacement analysis, as it 
is based on a compatible displacement formulation. This is also shown in Figure 12–6 for the 
clamped plate subjected to a concentrated center load.

■■ Figure 12–7  Numerical comparisons for a simply supported square plate subjected to 
center load triangular element formulations (Gallagher, Richard H., Finite Element Analysis: 
Fundamentals, 1st, © 1975. Printed and electronically reproduced by permission of Pearson 
Education, Inc., Upper Saddle River, New Jersey.)

Mesh size (Fig. 12–6)
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■■ Figure 12–8  Center deflection of a uniformly loaded clamped square plate of side length 
LT  and thickness t. An 8 83  mesh is used in all cases. Thin plates correspond to large L tT / . 
Transverse shear deformation becomes significant for small L tT / . Integration rules are reduced 
(R), selective (S), and full (F) [18], based on Mindlin plate element formulations (Cook, R., 
Malkus, D., and Plesha, M. Concepts and Applications of Finite Element Analysis, 3rd ed., 
1989, p. 326. Reprinted by permission of John Wiley & Sons, Inc., New York)

■■ Figure 12–9  A 2 23  mesh model of the clamped plate of Example 12.1

445 N

2.5 mm

508 mm

508 mm

EXAMPLE 12.1

The problem of a square steel plate fixed along all four edges and subjected to a concen-
trated load at its center is shown in Figure 12–9. Determine the maximum vertical deflection 
of the plate.
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■■ Figure 12–10  Displacement plot of the clamped plate of Example 12.1 (See the full-color 
insert for a color version of this figure.)

SOLUTION:
A 2 23  mesh was created to model the plate. The resulting vertical displacement plot is 
shown in Figure 12–10. The maximum displacement located at the center of the plate is 
22.09 mm.

The classical plate bending solution for the maximum displacement (which occurs 
under the concentrated center load) is given in Reference [1] as

	 5 5 2 5 2 3 20.0056 / 0.0056( 445 N)(508) / (286.17 N-m) 2.247 10 m2 2 3w PL D 	

where

	 5 2 5 3 2 5/(12(1 ) (200 10 N/m )(0.0025) / [12(1 0.3 )] 286.17 N-m3 2 9 2 3 2D Et v 	

A mesh refinement to a 4 43  mesh would show convergence toward the classical solution.

EXAMPLE 12.2

The clamped plate of Example 12.1 is now reinforced with 35 cm wide 30 cm deep 
rectangular cross-section beams spanning the centers in both directions as indicated by the 
lines dividing the plate into four parts in Figure 12–11(a). (Figure 1–5 also illustrates how 
a chimney stack was modeled using both beam and plate elements.)
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■■ Figure 12–11  (a) Model of beam and plate elements combined at centerline of elements 
and (b) vertical deflection plot for model in part (a)

(a)

445 N

Fixed Plate with Beam
Reinforcement
Concentrated Load
of 445 N at center
2.5 mm thick plate
5 3 30 cm beams

(b)

SOLUTION:

The resulting displacement plot is shown in Figure 12–11(b). The maximum displacement 
is now decreased to 2 3 24.86 10 m.7

EXAMPLE 12.3

A finite element model of a computer case is shown in Figure 12–12(a). The model consists 
of plate bending elements.

SOLUTION:
Figure 12–12(b) shows the 700 Pa uniform pressure applied to the top surface, the fixed 
boundary conditions applied to the bottom of the case, and the resulting von Mises stress 
plot. For more details of the dimensions used, see Problem 12.13.
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■■ Figure 12–12  (a) Finite element model of a computer case composed of plate bending 
elements and (See the full-color insert for a color version of this figure.) (b) the pressure load, 
boundary conditions, and resulting von Mises stress (By Nicholas Dachniwskyj)

(a)

(b)

Stress
von Mises

MPa

367.665 599.2011033.537mm000.0

21.096
18.986
16.877
14.767
12.657

8.438
10.548

6.329
4.219
2.110
0

SUMMARY EQUATIONS

Plate curvatures expressions:
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Strain–displacement equations:
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Stress/strain relations:
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Moment-curvature relations:
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where ν⁄5 2D Et [12(1 )]3 2 .
Normal stress on plate due to bending:

	
M

t
x

x6
2

s 5 	 (12.1.8)

Potential energy in plate:
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Transverse displacement function for four-noded rectangular plate:
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Gradient matrix:

	 B Q C[ ] [ ][ ] 15 2 	 (12.2.16)

Moment-curvature matrix for four-noded rectangular plate:
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Constitutive matrix for plate bending:

	
ν

ν
ν

ν



















5
2

2

D
Et

[ ]
12(1 )

1 0
1 0

0 0
1

2

3

2
	 (12.2.18)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



12  |  Plate Bending Element590

Stiffness matrix:

	 [ ] [ ] [ ][ ]∫∫k B D B dx dyT5 	 (12.2.19)

Surface-force matrix at node i for plate under uniform pressure:
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591Problems

PROBLEMS

Solve these problems using the plate element from a computer program.

	 12.1		  A square steel plate (Figure P12–1) of dimensions 340 cm 40 cm with thickness of 
2 mm is clamped all around. The plate is subjected to a uniformly distributed load-
ing of 7 kPa. Using a 2 2 mesh3  and then a 4 4 mesh3 , determine the maximum 
deflection and maximum stress in the plate. Compare the finite element solution to 
the classical one in [1].

■■ Figure P12–2

250 mm

650 mm

150 N

200 mm

400 m
m

■■ Figure P12–1

	 12.2		  An L-shaped plate (Figure P12–2) with thickness 2 mm is made of ASTM A-36 
steel. Determine the deflection under the load and the maximum principal stress 
and its location using the plate element. Then model the plate as a grid with two 
beam elements with each beam having the stiffness of each L-portion of the plate 
and compare your answer.

	 12.3		  A square (Figure P12–3) simply supported 30.5 m 0.5 m steel plate with thickness 
3 mm has a round hole of 100 mm diameter drilled through its center. The plate 
is uniformly loaded with a load of 15 kN/m2. Determine the maximum principal 
stress in the plate.

■■ Figure P12–3
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■■ Figure P12–4

300 mm
75 mm

500 N

	 12.4		  A C-channel section (Figure P12–4) structural steel beam of 50 mm wide flanges, 
75 mm depth and thickness of both flanges and web of 6 mm is loaded as shown with 
500 N acting in the y direction on the free end. Determine the free end deflection 
and angle of twist. Now move the load in the z direction until the rotation (angle of 
twist) becomes zero.

			   This distance is called the shear center (the location where the force can be placed so 
that the cross section will bend but not twist). You will need to add a beam or plate 
element to the center of the web extended into the negative z direction and place the 
load at the end of this proper length beam. (See Table 5–1 for the equation for the 
shear center location.)

	 12.5		  For the simply supported structural steel W 14 613  wide flange beam shown in 
Figure P12–5, compare the plate element model results with the classical beam 
bending results for deflection and bending stress. The beam is subjected to a central 
vertical load of 110 kN. The cross-sectional area is 115 cm2, depth is 352 mm, flange 
width is 253 mm, flange thickness is 16 mm, web thickness is 9.5 mm, and moment 
of inertia about the strong axis is 3 22.65 10 m4 4

110 kN

6 m

■■ Figure P12–5

	 12.6		  For the structural steel plate structure shown in Figure P12–6, determine the maxi-
mum principal stress and its location. If the stresses are unacceptably high, recom-
mend any design changes. The initial thickness of each plate is 6 mm. The left and 
right edges are simply supported. The load is a uniformly applied pressure of 75 kPa 
over the top plate.

	 12.7		  Design a steel box structure (Figure P12–7) 31.2 m wide 2.4 m long made of plates 
to be used to protect construction workers while working in a trench. That is, deter-
mine a recommended thickness of each plate. The depth of the structure must be 2.4 
m. Assume the loading is from a side load acting along the long sides due to a wet 
soil (density of 1000 kg/m3) and varies linearly with the depth. The allowable deflec-
tion of the plate type structure is 25 mm and the allowable stress is 140 MPa.
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■■ Figure P12–6

200

200

250

250

150

■■ Figure P12–7

	 12.8		  Determine the maximum deflection and maximum principal stress of the circular 
plate shown in Figure P12–8. The plate is subjected to a uniform pressure 50 kPap 5  
and fixed along its outer edge. Let 200 GPaE 5 , ν 5 0.3, radius 500 mmr 5 , and 
thickness 20 mmt 5 .

■■ Figure P12–8

x

y

o
r

p

z

x

	 12.9		  Determine the maximum deflection and maximum principal stress for the plate 
shown in Figure P12–9. The plate is fixed along all three sides. A uniform pressure 
of 100 MPa is applied to the surface. The plate is made of steel with 200 GPaE 5 , 
ν 5 0.3, and thickness 10 mmt 5 , 0.75 ma 5  and 1mb 5 .

Problems
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■■ Figure P12–9

a

x
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a/2
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y

■■ Figure P12–10
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■■ Figure P12–11

3 m

2 m

2 m

	12.10		  An aircraft cabin window of circular cross section and simple supports all 
around as shown in Figure P12–10 is made of polycarbonate with 5 2.5 GPaE ,  
ν 5 0.36, 5radius 0.5 m, and thickness 5 18 mmt . The safety of the material is 
tested at a uniform pressure of 70 kPa. Determine the maximum deflection and max-
imum principal stress in the material. The yield strength of the material is 63 MPa. 
Comment on the potential use of this material in regard to strength and deflection.

	12.11		  A square steel plate 2 m 2 m3  and 10 mm thick at the bottom of a tank must support 
salt water at a height of 3 m, as shown in Figure P12–11. Assume the plate to be built in 
(fixed all around). The plate allowable stress is 100 MPa. Let 200 GPaE 5 , ν 5 0.3 
for the steel properties. The weight density of salt water is 10.054 kN/m3. Determine 
the maximum principal stress in the plate and compare to the yield strength.
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	12.12		  A stockroom floor carries a uniform load of 5 4 kN/m2p  over half the floor as 
shown in Figure P12–12. The floor has opposite edges clamped and remaining edges 
and midspan simply supported. The dimensions are 3 m by 6 m. The floor thickness 
is 15 cm. The floor is made of reinforced concrete with 5 21 GPaE  and ν 5 0.25. 
Determine the maximum deflection and maximum principal stress in the floor.

■■ Figure P12–12

3 m 3 m

p

z

y

x

x
3 m

	12.13		  A computer case shown in Figure P12–13 is made of AISI 4130 steel. The top 
surface is subjected to a uniform pressure load of 700 Pa. The thickness of the 
case is uniformly 3.2 mm. The bottom surface is fully constrained. Model the case 
using plate bending elements. Determine the maximum von Mises stress and largest 
deflection of the top face of the case.

	12.14		  The hopper shown in Figure P12–14 is to be made of plate steel with 6-mm thick 
walls. Apply a surface traction or pressure load to the walls to simulate a grain load-
ing. Use plate bending elements to model the hopper. Determine through research 
typical values to be used for the loading. Determine the von Mises stress throughout 
the vessel.

	12.15		  A manure spreader tank is shown in Figure P12–15. The tank is 2.25 m long. The 
bottom axle is 30 cm long measured along the tank axis direction and located in 
the middle. The single front end coupling is 15 cm in length measured along the 
axis of the tank. The pressure is a variable surface pressure extending from the 
top edge to bottom and given by the function shown with a maximum pressure of 
80 kPa at the center of the tank. (The density of manure is taken as 980 kg/m3).  
Other dimensions are shown in the figures. Assume the tank is made of plate steel 
with modulus of elasticity of 200 GPa and Poisson’s ratio of 0.29. Determine the 
von Mises stress throughout the tank and the maximum displacement. (This problem 
by Justin Hronyk.)

Problems
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12  |  Plate Bending Element596

■■ Figure P12–13  Computer case
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■■ Figure P12–14  Hopper
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	12.16		  A tractor bucket with dimensions is shown in Figure P12–16. The load on the bucket 
is 3 kN spread uniformly over the inside surface. Three split surfaces are fully con-
strained. The bucket material is A36 structural steel. Determine the von Mises stress 
throughout the bucket. (This problem was done in Cosmos Works and created by 
John Mirth and Brian Niggemann.)

Draw the typical bucket using your own dimensions or use the scaled drawing 
with dimensions shown in Figure P12–16.

■■ Figure P12–15  Manure spreader tank showing dimensions (mm) and pressure load 
variation (Compliments of Justin Hronek)
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■■ Figure P12–16  Tractor bucket with dimensions shown in mm.
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Heat Transfer and Mass 
Transport

Chapter Objectives

At the conclusion of this chapter, you will be able to:

■	 Derive the basic differential equation for one-dimensional heat conduction.

■	 Include heat transfer by convection in the one-dimensional heat transfer model.

■	 Introduce typical units used for heat transfer.

■	 List typical thermal conductivities of materials and heat transfer coefficients based 
on common modes of free air convection through condensation of water vapor.

■	 Derive the one-dimensional finite element formulation for heat transfer by 
conduction and convection.

■	 Introduce the steps for solving a heat transfer problem by the finite element 
method.

■	 Illustrate by examples how to solve one-dimensional heat transfer problems.

■	 Develop the two-dimensional heat transfer finite element formulation and illustrate 
an example of a two-dimensional solution.

■	 Describe how to deal with point or line sources of heat generation.

■	 Demonstrate when three-dimensional finite element models must be used.

■	 Introduce the one-dimensional heat transfer with mass transport of the fluid.

■	 Derive the finite element formulation of heat transfer with mass transport by using 
Galerkin’s method.

■	 Present a flowchart of two- and three-dimensional heat transfer process.

■	 Show examples of two- and three-dimensional problems that have been solved 
using a computer program.

Introduction
In this chapter, we present the first use in this text of the finite element method for solution 
of nonstructural problems. We first consider the heat-transfer problem, although many similar 
problems, such as seepage through porous media, torsion of shafts, and magnetostatics [3], 
can also be treated by the same form of equations (but with different physical characteristics) 
as that for heat transfer.

C h a p t e r 

13

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



13  |  Heat Transfer and Mass Transport600

Familiarity with the heat-transfer problem makes possible determination of the tempera-
ture distribution within a body. We can then determine the amount of heat moving into or out of 
the body and the thermal stresses. Figure 13–1 is an illustration of a three-dimensional model of 
a cylinder head with the temperature distribution shown throughout the head. The cylinder head 
is made of stainless steel AISI 410 and is part of a diesel engine that would provide reduced 
heat rejection and increased power density. The resulting temperature distribution reveals the 
high temperature of 8815 C in red color at the interface between the two exhaust ports. These 
temperatures were then fed into the linear stress analyzer to obtain the thermal stresses ranging 
from 585 MPa to 1380 MPa. The linear stress analysis confirmed the behavior that the engi-
neers saw in the initial prototype tests. The highest thermal stresses coincided with the part of 
the cylinder head that had been leaking in the preliminary prototypes.

We begin with a derivation of the basic differential equation for heat conduction in one 
dimension and then extend this derivation to the two-dimensional case. We will then review 
the units used for the physical quantities involved in heat transfer.

In preceding chapters dealing with stress analysis, we used the principle of minimum 
potential energy to derive the element equations, where an assumed displacement function 
within each element was used as a starting point in the derivation. We will now use a similar 
procedure for the nonstructural heat-transfer problem. We define an assumed temperature func-
tion within each element. Instead of minimizing a potential energy functional, we minimize 
a similar functional to obtain the element equations. Matrices analogous to the stiffness and 
force matrices of the structural problem result.

We will consider one-, two-, and three-dimensional finite element formulations of the 
heat-transfer problem and provide illustrative examples of the determination of the tempera-
ture distribution along the length of a rod and within a two-dimensional body and show some 
three-dimensional heat transfer examples as well.

■■ Figure 13–1  Finite element results of cylinder head showing temperature distribution (brick 
elements were used in the model) (Courtesy of Autodesk, Inc.) (See the full-color insert for a 
color version of this figure.)
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13.1  Derivation of the Basic Differential Equation 601

Next, we will consider the contribution of fluid mass transport. The one-dimensional 
mass-transport phenomenon is included in the basic heat-transfer differential equation. Because 
it is not readily apparent that a variational formulation is possible for this problem, we will 
apply Galerkin’s residual method directly to the differential equation to obtain the finite ele-
ment equations. (You should note that the mass transport stiffness matrix is asymmetric.) We 
will compare an analytical solution to the finite element solution for a heat exchanger design/
analysis problem to show the excellent agreement.

Finally, we will present some computer program results for both two- and three-dimensional 
heat transfer.

	13.1 	 Derivation of the Basic Differential Equation

One-Dimensional Heat Conduction (without Convection)
We now consider the derivation of the basic differential equation for the one-dimensional 
problem of heat conduction without convection. The purpose of this derivation is to present a 
physical insight into the heat-transfer phenomena, which must be understood so that the finite 
element formulation of the problem can be fully understood. (For additional information on 
heat transfer, consult texts such as References [1] and [2].) We begin with the control volume 
shown in Figure 13–2. By conservation of energy, we have

	 E E U E1 5 D 1in generated out	 (13.1.1)

or	 q A dt QA dx dt U q A dtx x dx1 5 D 1 1 	 (13.1.2)

where

inE  is the energy entering the control volume, in units of joules (J) or kW h⋅ .

DU  is the change in stored energy, in units of kW h (kWh)⋅ .

qx  is the heat conducted (heat flux) into the control volume at surface edge x, in units of kW/m2.

1qx dx is the heat conducted out of the control volume at the surface edge 1x dx.

t is time, in h or s.

■■ Figure 13–2  Control volume for one-dimensional heat conduction
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13  |  Heat Transfer and Mass Transport602

Q is the internal heat source (heat generated per unit time per unit volume is positive), in 
kW/m3 (a heat sink, heat drawn out of the volume, is negative).

A is the cross-sectional area perpendicular to heat flow q, in m2.

By Fourier’s law of heat conduction,

	 q K
dT

dx
x xx5 2 	 (13.1.3)

where

Kxx is the thermal conductivity in the x direction, in 8kW/(m C)⋅ .

T is the temperature, in 8C.

dT dx⁄  is the temperature gradient, in 8C/m.

Equation (13.1.3) states that the heat flux in the x direction is proportional to the gradient of 
temperature in the x direction. The minus sign in Eq. (13.1.3) implies that, by convention, 
heat flow is positive in the direction opposite the direction of temperature increase. Equation 
(13.1.3) is analogous to the one-dimensional stress/strain law for the stress analysis problem—
that is, to ( )E du dxxs 5 ⁄ . Similarly,

	 q K
dT

dx
x dx xx

x dx

5 21
1

	 (13.1.4)

where the gradient in Eq. (13.1.4) is evaluated at x 1 dx. By Taylor series expansion, for any 
general function f(x), we have

	 �f f
df

dx
dx

d f

dx

dx
x dx x5 1 1 11

2

2

2

2

	

Therefore, using a two-term Taylor series, Eq. (13.1.4) becomes

	 q K
dT

dx

d

dx
K

dT

dx
dxx dx xx xx5 2 11












	 (13.1.5)

The change in stored energy can be expressed by

	
specific heat mass change in temperature

( )

U

c A dx dTr

D 5 3 3

5
	 (13.1.6)

where c is the specific heat in 8kW h/(kg C)⋅ ⋅ , and r is the mass density in kg/m3. On substitut-
ing Eqs. (13.1.3), (13.1.5), and (13.1.6) into Eq. (13.1.2), dividing Eq. (13.1.2) by A dx dt, and 
simplifying, we have the one-dimensional heat conduction equation as

	
�

�

�

�

�

�x
K

T

x
Q c

T

t
xx r1 5



 	 (13.1.7)
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13.1  Derivation of the Basic Differential Equation 603

For steady state, any differentiation with respect to time is equal to zero, so Eq. (13.1.7) becomes

	
d

dx
K

dT

dx
Qxx 1 5 0



 	 (13.1.8)

For constant thermal conductivity and steady state, Eq. (13.1.7) becomes

	 K
d T

dx
Qxx 1 5 0

2

2
	 (13.1.9)

The boundary conditions are of the form

	 on 1T T SB5 	 (13.1.10)

where TB represents a known boundary temperature and 1S  is a surface where the temperature 
is known, and

	 constant on 2q K
dT

dx
Sx xx5 2 5p 	 (13.1.11)

where 2S  is a surface where the prescribed heat flux qx
p or temperature gradient is known. On 

an insulated boundary, 5 0*qx . These different boundary conditions are shown in Figure 13–3, 
where by sign convention, positive qx

p occurs when heat is flowing into the body, and negative 
qx

p when heat is flowing out of the body.

Two-Dimensional Heat Conduction (Without Convection)
Consider the two-dimensional heat conduction problem in Figure 13–4. In a manner similar to 
the one-dimensional case, for steady-state conditions, we can show that for material properties 
coinciding with the global x and y directions,

	
�

�

�

�

�

�

�

�x
K

T

x y
K

T

y
Qxx yy1 1 5 0











	 (13.1.12)

■■ Figure 13–3  Examples of boundary conditions in one-dimensional heat conduction

■■ Figure 13–4  Control volume for two-dimensional heat conduction
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with boundary conditions

	 on 1T T SB5 	 (13.1.13)

	 constant on 2q q K
T

x
C K

T

y
C Sn n xx x yy y5 5 1 5

�

�

�

�
p 	 (13.1.14)

where Cx and Cy are the direction cosines of the unit vector n normal to the surface 2S  shown 
in Figure 13–5. Again, qn

p is by sign convention, positive if heat is flowing into the edge of 
the body.

	13.2 	 Heat Transfer with Convection
For a conducting solid in contact with a fluid, there will be a heat transfer taking place between 
the fluid and solid surface when a temperature difference occurs.

The fluid will be in motion either through external pumping action (forced convection) 
or through the buoyancy forces created within the fluid by the temperature differences within 
it (natural or free convection).

We will now consider the derivation of the basic differential equation for one-dimensional 
heat conduction with convection. Again we assume the temperature change is much greater in 
the x direction than in the y and z directions. Figure 13–6 shows the control volume used in the 
derivation. Again, by Eq. (13.1.1) for conservation of energy, we have

	 ( )q A dt QA dx dt c A dx dT q A dt q P dx dtx x dx hr1 5 1 11 	 (13.2.1)

In Eq. (13.2.1), all terms have the same meaning as in Section 13.1, except the heat flow by 
convective heat transfer is given by Newton’s law of cooling

	 q h T Th 5 2 `( )	 (13.2.2)

■■ Figure 13–5  Unit vector normal to surface 2S

■■ Figure 13–6  Control volume for one-dimensional heat conduction with convection
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where

h is the heat-transfer or convection coefficient, in 8kW/(m C)2 ⋅ .

T is the temperature of the solid surface at the solid/fluid interface.

`T  is the temperature of the fluid (here the free-stream fluid temperature).

P in Eq. (13.2.1) denotes the perimeter around the constant cross-sectional area A.

Again, using Eqs. (13.1.3) through (13.1.6) and (13.2.2) in Eq. (13.2.1), dividing by A dx dt, 
and simplifying, we obtain the differential equation for one-dimensional heat conduction with 
convection as

	
�

�

�

�

�

�x
K

T

x
Q c

T

t

hP

A
T Txx r1 5 1 2 `( )



 	 (13.2.3)

with possible boundary conditions on (1) temperature, given by Eq. (13.1.10), and/or (2) tem-
perature gradient, given by Eq. (13.1.11), and/or (3) loss of heat by convection from the ends 
of the one-dimensional body, as shown in Figure 13–7. Equating the heat flow in the solid wall 
to the heat flow in the fluid at the solid/fluid interface, we have

	 ( ) on 3K
dT

dx
h T T Sxx2 5 2 ` 	 (13.2.4)

as a boundary condition for the problem of heat conduction with convection.

	13.3 	 Typical Units; Thermal Conductivities, K;  
and Heat Transfer Coefficients, h

Table 13–1 lists some typical units used for the heat-transfer problem.
Table 13–2 lists some typical thermal conductivities of various solids and liquids. The 

thermal conductivity K, in ? 8W/(m C), measures the amount of heat energy (Btu or ?W h)  
that will flow through a unit length (m) of a given substance in a unit time (h) to raise the 
temperature one degree 8( C).

Table 13–3 lists approximate ranges of values of convection coefficients for various con-
ditions of convection. The heat transfer coefficient h, in ? 8W/(m C)2 , measures the amount of 
heat energy ( ?W h) that will flow across a unit area (m )2  of a given substance in a unit time (h) 
to raise the temperature one degree 8C.

■■ Figure 13–7  Model illustrating convective heat transfer (arrows on surface 3S  indicate heat 
transfer by convection)
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 Table 13–1  Typical units for heat transfer

Variable SI

Thermal conductivity, K kW/ m C? 8( )
Temperature, T 8C or K
Internal heat source, Q kW/m3

Heat flux, q kW/m2

Heat flow, q kW
Convection coefficient, h kW/(m C)2 ? 8

Energy, E kW h⋅
Specific heat, c ( )( )? ? 8kW h / kg C
Mass density, p kg/m3

 Table 13–2  Typical thermal conductivities of some solids and fluids

Material K [W (m C)]?? 88

Solids

  Aluminum, 8 80 C (32 F) 202

  Steel (1% carbon), 80 C 35

  Fiberglass, 8 820 C (68 F) 0.035

  Concrete, 80 C 0.81–1.40

  Earth, coarse gravelly, 820 C 0.520

  Wood, oak, radial direction, 820 C 0.17

Fluids

  Engine oil, 820 C 0.145

  Dry air, atmospheric pressure, 820 C 0.0243

 Table 13–3  Approximate values of convection heat-transfer 
coefficients (from Reference [1])

Mode h [W (m C)]2 ?? 88

Free convection, air 5–25

Forced convection, air 10–500

Forced convection, water 100–15,000

Boiling water 2,500–25,000

Condensation of water vapor 5,000–100,000

Heat Transfer by Holman. Copyright 2002 by McGraw-Hill Companies, Inc.—Books. 
Reproduced with permission of McGraw-Hill Companies, Inc.—Books in the format Textbook 
via Copyright Clearance Center.

Natural or free convection occurs when, for instance, a heated plate is exposed to ambi-
ent room air without an external source of motion. This movement of the air, experienced as 
a result of the density gradients near the plate, is called natural or free convection. Forced 
convection is experienced, for instance, in the case of a fan blowing air over a plate.
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	13.4 	 One-Dimensional Finite Element Formulation  
Using a Variational Method

The temperature distribution influences the amount of heat moving into or out of a body and 
also influences the stresses in a body. Thermal stresses occur in all bodies that experience a 
temperature gradient from some equilibrium state but are not free to expand in all directions. To 
evaluate thermal stresses, we need to know the temperature distribution in the body. The finite 
element method is a realistic method for predicting quantities such as temperature distribution 
and thermal stresses in a body. In this section, we formulate the one-dimensional heat-transfer 
equations using a variational method. Examples are included to illustrate the solution of this 
type of problem.

Step 1 Select Element Type
The basic element with nodes 1 and 2 is shown in Figure 13–8(a).

Step 2 Choose a Temperature Function
We choose the temperature function T [Figure 13–8(b)] within each element similar to the 
displacement function of Chapter 3, as

	 T x N t N t5 1( ) 1 1 2 2	 (13.4.1)

where 1t  and 2t  are the nodal temperatures to be determined, and

	 N
x

L
N

x

L
5 2 511 2 	 (13.4.2)

are again the same shape functions as used for the bar element. The [N ] matrix is then given by

	 [ ] 1N
x

L

x

L






5 2 	 (13.4.3)

and the nodal temperature matrix is

	 t
t

t
5{ } 1

2












	 (13.4.4)

■■ Figure 13–8  (a) Basic one-dimensional temperature element and (b) temperature variation 
along length of element
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In matrix form, we express Eq. (13.4.1) as

	 T N t5{ } [ ]{ }	 (13.4.5)

Step 3 �Define the Temperature Gradient / Temperature  
and Heat Flux / Temperature Gradient Relationships

The temperature gradient matrix { }g , analogous to the strain matrix «{ }, is given by

	 g
dT

dx
B t5 5{ } [ ]{ }{ } 	 (13.4.6)

where [B] is obtained by substituting Eq. (13.4.1) for ( )T x  into Eq. (13.4.6) and differentiating 
with respect to x, that is,

	 [ ] 1 2B
dN

dx

dN

dx






5 	

Using Eqs. (13.4.2) in the definition for [B], we have

	 [ ]
1 1

B
L L







5 2 	 (13.4.7)

The heat flux/temperature gradient relationship is given by

	 q D gx 5 2[ ]{ }	 (13.4.8)

where the material property matrix is now given by

	 D Kxx5[ ] [ ]	 (13.4.9)

Step 4 Derive the Element Conduction Matrix and Equations
Equations (13.1.9) through (13.1.11) and (13.2.3) can be shown to be derivable (as shown, for 
instance, in References [4–6]) by the minimization of the following functional (analogous to 
the potential energy functional pπ ):

	 Uh Q q h5 1 1 1π Ω Ω Ω 	 (13.4.10)

where	
1

2

1

2
( )

2

2

2 3

U K
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
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




Ω Ω

	

(13.4.11)

and where 2S  and 3S  are separate surface areas over which heat flow (flux) qp (qp is positive 
into the surface) and convection loss 2 `( )h T T  are specified. We cannot specify qp and h on 
the same surface because they cannot occur simultaneously on the same surface, as indicated 
by Eqs. (13.4.11).
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Using Eqs. (13.4.5), (13.4.6), and (13.4.9) in Eq. (13.4.11) and then using Eq. (13.4.10), 
we can write hπ  in matrix form as

	

1

2
[{ } [ ]{ }] { } [ ]

{ } [ ]
1

2
[({ } [ ] ) ]2

2 3

g D g dV t N Q dV

t N q dS h t N T dS

h
T

v

T T

V

T T

S

T T

S

5 2

2 1 2 `
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	 (13.4.12)

On substituting Eq. (13.4.6) into Eq. (13.4.12) and using the fact that the nodal temperatures 
{ }t  are independent of the general coordinates x and y and can therefore be taken outside the 
integrals, we have
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	 (13.4.13)

In Eq. (13.4.13), the minimization is most easily accomplished by explicitly writing the surface 
integral 3S  with { }t  left inside the integral as shown. On minimizing Eq. (13.4.13) with respect 
to { }t , we obtain
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π

	 (13.4.14)

where the last term `
2hT  in Eq. (13.4.13) is a constant that drops out while minimizing hπ . 

Simplifying Eq. (13.4.14), we obtain

	 [ ] [ ][ ] [ ] [ ] { } { } { } { }
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

1 5 1 1 	 (13.4.15)

where the force matrices have been defined by
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5 5
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	 (13.4.16)
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13  |  Heat Transfer and Mass Transport610

In Eq. (13.4.16), the first term { }fQ  (heat source positive, sink negative) is of the same form as 
the body-force term, and the second term { }fq  (heat flux, positive into the surface) and third 
term { }fh  (heat transfer or convection) are similar to surface tractions (distributed loading) 
in the stress analysis problem. You can observe this fact by comparing Eq. (13.4.16) with 
Eq. (6.2.46). Because we are formulating element equations of the form 5{ } [ ]{ }f k t , we have 
the element conduction matrix1 for the heat transfer problem given in Eq. (13.4.15) by

	 k B D B dV h N N dST

V

T

S

5 1[ ] [ ] [ ][ ] [ ] [ ]
3

∫∫∫ ∫∫ 	 (13.4.17)

where the first and second integrals in Eq. (13.4.17) are the contributions of conduction and 
convection, respectively. Using Eq. (13.4.17) in Eq. (13.4.15), for each element, we have

	 f k t5{ } [ ]{ }	 (13.4.18)

Using the first term of Eq. (13.4.17), along with Eqs. (13.4.7) and (13.4.9), the conduction part 
of the [k] matrix for the one-dimensional element becomes
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or, finally,

	 k
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	 (13.4.20)

The convection part of the [k] matrix becomes
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or, on integrating,

	 [ ]
6

2 1
1 2

k
hPL

h 5








 	 (13.4.21)

1The element conduction matrix is often called the stiffness matrix because stiffness matrix is becoming a generally accepted 
term used to describe the matrix of known coefficients multiplied by the unknown degrees of freedom, such as temperatures, 
displacements, and so on.
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13.4  One-Dimensional Finite Element Formulation Using a Variational Method 611

where	 dS P dx5 	

and P is the perimeter of the element (assumed to be constant). Therefore, adding Eqs. (13.4.20) 
and (13.4.21), we find that the [k] matrix is

	 k
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hPLxx
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2

2
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1 1 6
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1 2
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
	 (13.4.22)

When h is zero on the boundary of an element, the second term on the right side of Eq. (13.4.22) 
(convection portion of [k]) is zero. This corresponds, for instance, to an insulated boundary.

The force matrix terms, on simplifying Eq. (13.4.16) and assuming Q, qp, and product 
`hT  to be constant are
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	 (13.4.23)
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and	 f hT N dS
hT PL

h

S

T5 5`
`{ } [ ]
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	 (13.4.25)

Therefore, adding Eqs. (13.4.23) through (13.4.25), we obtain

	 f
QAL q PL hT PL
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1
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
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


	 (13.4.26)

Equation (13.4.26) indicates that one-half of the assumed uniform heat source Q goes to each 
node, one-half of the prescribed uniform heat flux qp (positive qp enters the body) goes to 
each node, and one-half of the convection from the perimeter surface `hT  goes to each node 
of an element.

Finally, we must consider the convection from the free end of an element. For simplicity’s 
sake, we will assume convection occurs only from the right end of the element, as shown in 
Figure 13–9. The additional convection term contribution to the stiffness matrix is given by

	 k h N N dSh
T

S

5[ ] [ ] [ ]end

end

∫∫ 	 (13.4.27)

Now 5 01N  and 5 12N  at the right end of the element. Substituting the N’s into Eq. (13.4.27), 
we obtain
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13  |  Heat Transfer and Mass Transport612

The convection force from the free end of the element is obtained from the application of 
Eq. (13.4.25) with the shape functions now evaluated at the right end (where convection occurs) 
and with 3S  (the surface over which convection occurs) now equal to the cross-sectional area 
A of the rod. Hence,

	 f hT A
N x L

N x L
hT Ah 5

5

5
5` `{ }
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end
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
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

	 (13.4.29)

represents the convective force from the right end of an element where 1N x L( )5  represents 
1N  evaluated at 5x L, and so on and based on Eq. (13.4.2) 5 5( ) 01N x L  and 5 5( ) 12N x L .

Step 5 �Assemble the Element Equations to Obtain the Global  
Equations and Introduce Boundary Conditions

We obtain the global or total structure conduction matrix using the same procedure as for the 
structural problem (called the direct stiffness method as described in Section 2.4); that is,

	 K k
e

N
e5

5

[ ] [ ]
1

( )∑ 	 (13.4.30)

typically in units of 8kW/ C. The global force matrix is the sum of all element heat sources 
and is given by

	 F f
e

N
e5

5

{ } { }
1

( )∑ 	 (13.4.31)

typically in units of kW or Btu/h. The global equations are then

	 F K t5{ } [ ]{ }	 (13.4.32)

with the prescribed nodal temperature boundary conditions given by Eq. (13.1.13). Note 
that the boundary conditions on heat flux, Eq. (13.1.11), and convection, Eq. (13.2.4), are 
actually accounted for in the same manner as distributed loading was accounted for in the 
stress analysis problem; that is, they are included in the column of force matrices through 
a consistent approach (using the same shape functions used to derive [k]), as given by  
Eqs. (13.4.2).

The heat-transfer problem is now amenable to solution by the finite element method. 
The procedure used for solution is similar to that for the stress analysis problem. In Section 
13.5, we will derive the specific equations used to solve the two-dimensional heat-transfer 
problem.

■■ Figure 13–9  Convection force from the end of an element
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Step 6 Solve for the Nodal Temperatures
We now solve for the global nodal temperature, { }t , where the appropriate nodal temperature 
boundary conditions, Eq. (13.1.13), are specified.

Step 7 Solve for the Element Temperature Gradients and Heat Fluxes
Finally, we calculate the element temperature gradients from Eq. (13.4.6), and the heat fluxes, 
typically from Eq. (13.4.8).

To illustrate the use of the equations developed in this section, we will now solve some 
one-dimensional heat-transfer problems.

Example 13.1

Determine the temperature distribution along the length of the rod shown in Figure 13–10 
with an insulated perimeter. The temperature at the left end is a constant 840 C, and the free-
stream temperature is 2 810 C. Let h 5 855 W/(m - C)2  and 5 835 W/(m- C)Kxx . The value 
of h is typical for forced air convection and the value of Kxx is a typical conductivity for 
carbon steel (Tables 13–2 and 13–3).

■■ Figure 13–10  One-dimensional rod subjected to temperature variation

25 mm radius

1 m

40˚C

■■ Figure 13–11  Finite element discretized rod

40˚C

0.25 m 0.25 m 0.25 m 0.25 m

SOLUTION:
The finite element discretization is shown in Figure 13–11. For simplicity’s sake, we will 
use four elements, each 0.25 m long. There will be convective heat loss only over the 
right end of the rod because we consider the left end to have a known temperature and the 
perimeter to be insulated. We calculate the stiffness matrices for each element as follows:

	
AK

L
xx

5
8

5 8

π (0.025 m) [35 W/(m- C)]

(0.25 m)

0.275 W/ C

2

	 (13.4.33)
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In general, from Eqs. (13.4.22) and (13.4.27), we have
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Substituting Eqs. (13.4.33) into Eq. (13.4.34) for element 1, we have

	 k 5
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2
8
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1 1
W/ C(1) 	 (13.4.35)

where the second and third terms on the right side of Eq. (13.4.34) are zero because there 
are no convection terms associated with element 1. Similarly, for elements 2 and 3, we have

	 k k k5 5[ ] [ ] [ ](2) (3) (1) 	 (13.4.36)

However, element 4 has an additional (convection) term owing to heat loss from the flat 
surface at its right end. Hence, using Eq. (13.4.28), we have
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In general, we would use Eqs. (13.4.23) through (13.4.25), and (13.4.29) to obtain the 
element force matrices. However, in this example, 5 0Q  (no heat source), 5 0qp  (no heat 
flux), and there is no convection except from the right end. Therefore,

	 { } { } { } 0(1) (2) (3)f f f5 5 5 	 (13.4.38)
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(13.4.39)
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The assembly of the element stiffness matrices [Eqs. (13.4.35) through (13.4.37)] and 
the element force matrices [Eqs. (13.4.38) and (13.4.39)], using the direct stiffness method, 
produces the following system of equations:
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	 (13.4.40)

where 1F  corresponds to an unknown rate of heat flow at node 1 (analogous to an unknown 
support force in the stress analysis problem). We have a known nodal temperature bound-
ary condition of 5 840 C1t . This nonhomogeneous boundary condition must be treated 
in the same manner as was described for the stress analysis problem (see Section 2.5 and 
Appendix B.4). We modify the stiffness (conduction) matrix and force matrix as follows:
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	 (13.4.41)

where the terms in the first row and column of the stiffness matrix corresponding to the 
known temperature condition, 5 840 C1t , have been set equal to 0 except for the main diag-
onal, which has been set equal to 1, and the first row of the force matrix has been set equal 
to the known nodal temperature at node 1. Also, the term 2 3 8 5 2( 0.275) (40 C) 11 on the 
left side of the second equation of Eq. (13.4.40) has been transposed to the right side in the 
second row (as 111) of Eq. (13.4.41). The second through fifth equations of Eq. (13.4.41) 
corresponding to the rows of unknown nodal temperatures can now be solved (typically by 
Gaussian elimination). The resulting solution is given by

	 5 8 5 8 5 8 5 832.36 C 24.72 C 17.09 C 9.45 C2 3 4 5t t t t 	 (13.4.42)

For this elementary problem, the closed-form solution of the differential equation for 
conduction, Eq. (13.1.9), with the left-end boundary condition given by Eq. (13.1.10) and 
the right-end boundary condition given by Eq. (13.2.4) yields a linear temperature distri-
bution through the length of the rod. The evaluation of this linear temperature function at 
0.25 m intervals (corresponding to the nodal points used in the finite element model) yields 
the same temperatures as obtained in this example by the finite element method. Because 
the temperature function was assumed to be linear in each finite element, this comparison 
is as expected. Note that 1F  could be determined by the first of Eqs. (13.4.40).
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Example 13.2

To illustrate more fully the use of the equations developed in Section 13.4, we will now solve 
the heat-transfer problem shown in Figure 13–12. For the one-dimensional rod, determine 
the temperatures at 75 mm increments along the length of the rod and the rate of heat flow 
through element 1. Let ⋅5 860 W/(m C)Kxx , ⋅5 8h 800 W/(m C)2 , and 5 8` 10 CT . The 
temperature at the left end of the rod is constant at 8100 C.

■■ Figure 13–12  One-dimensional rod subjected to temperature variation

50 mm radius

100°C

225 mm

SOLUTION:
The finite element discretization is shown in Figure 13–13. Three elements are sufficient to 
enable us to determine temperatures at the four points along the rod, although more elements 
would yield answers more closely approximating the analytical solution obtained by solving 
the differential equation such as Eq. (13.2.3) with the partial derivative with respect to time 
equal to zero. There will be convective heat loss over the perimeter and the right end of the 
rod. The left end will not have convective heat loss. Using Eqs. (13.4.22) and (13.4.28), we 
calculate the stiffness matrices for the elements as follows:

■■ Figure 13–13  Finite element discretized rod of Figure 13–12

100°C

75 mm 75 mm 75 mm
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Substituting the results of Eqs. (13.4.43) into Eq. (13.4.22), we obtain the stiffness matrix 
for element 1 as 
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	 (13.4.44)
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Because there is no convection across the ends of element 1 (its left end has a known tem-
perature and its right end is inside the whole rod and thus not exposed to fluid motion), the 
contribution to the stiffness matrix owing to convection from an end of the element, such 
as given by Eq. (13.4.28), is zero. Similarly,
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However, element 3 has an additional (convection) term owing to heat loss from the exposed 
surface at its right end. Therefore, Eq. (13.4.28) yields a contribution to the element 3 stiff-
ness matrix, which is then given by
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(13.4.46)

In general, we calculate the force matrices by using Eqs. (13.4.26) and (13.4.29). Because 
5 0Q  and 5 0qp , we only have force terms from `hT  as given by Eq. (13.4.25). Therefore,
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	(13.4.47a)

Element 3 has convection from both the perimeter and the right end. Therefore,

5 1 5 1 8 8
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(13.4.47b)

The assembly of the element stiffness matrices, Eqs. (13.4.44) through (13.4.46), and 
the force matrices, Eqs. (13.4.47a) and (13.4.47b), using the direct stiffness method, pro-
duces the following system of equations (where the p2  term has been divided out of both 
sides of Eq. (13.4.48)):
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	 (13.4.48)

Where π9 5 21 1F F .
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Expressing the second through fourth of Eqs. (13.4.48) in explicit form, we have

	

2 1 5 1

2 1 2 5

2 1 5

4 0.5 0 50 30

0.5 4 0.5 30

0 0.5 3 25

2 3 4

2 3 4

2 3 4

t t t

t t t

t t t

	 (13.4.49)

Solving for the nodal temperatures 22 4t t  we obtain

	 5 8 5 8 5 821.43 C 11.46 C 10.24 C2 3 4t t t 	 (13.4.50)

Next, we determine the heat flux for element 1 by using Eqs. (13.4.6) and (13.4.9) in 
Eq. (13.4.8) as

	 q K B txx5 2 [ ]{ }(1) 	 (13.4.51)

Using Eq. (13.4.7) in Eq. (13.4.51), we have

	 
















q K

L L

t

txx5 2 2
1 1(1) 1

2
	 (13.4.52)

Substituting the numerical values for 1t  and 2t  into Eq. (13.4.52), we obtain

	 













5 2 260
1

0.075

1

0.075
100

21.43
(1)q 	

or	 5q 62856 W/m(1) 2	 (13.4.53)

We then determine the rate of heat flow q  by multiplying Eq. (13.4.53) by the cross-sectional 
area over which q acts. Therefore,

	 π5 3 562856( 0.05 ) 493.7 W(1) 2q 	

Here positive heat flow indicates heat flow from node 1 to node 2 (to the right).

Example 13.3

The plane wall shown in Figure 13–14 is 1 m thick. The left surface of the wall 5( 0)x  is 
maintained at a constant temperature of 8200 C, and the right surface 5 5( 1 m)x L  is insu-
lated. The thermal conductivity is 5 ? 825 W/(m C)Kxx  and there is a uniform generation 
of heat inside the wall of 5 400 W/m3Q . Determine the temperature distribution through 
the wall thickness.
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SOLUTION:
This problem is assumed to be approximated as a one-dimensional heat-transfer problem. 
The discretized model of the wall is shown in Figure 13–15. For simplicity, we use four 
equal-length elements all with unit cross-sectional area 5( 1 m )2A . The unit area represents 
a typical cross section of the wall. The perimeter of the wall model is then insulated to obtain 
the correct conditions.

Using Eqs. (13.4.22) and (13.4.28), we calculate the element stiffness matrices as 
follows:

	
(1 m )[25 W/(m C)]

0.25 m
100 W/ C

2AK

L
xx

5
? 8

5 8 	

For each identical element, we have

	

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


k 5

2

2
8[ ] 100 1 1

1 1
W/ C	 (13.4.54)

Because no convection occurs, h is equal to zero; therefore, there is no convection contri-
bution to [ ]k .

The element force matrices are given by Eq. (13.4.26). With 5 400 W/m3Q , 5 0q , 
and 5 0h , Eq. (13.4.26) becomes
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1

	 (13.4.55)

Evaluating Eq. (13.4.55) for a typical element, such as element 1, we obtain
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

	 (13.4.56)

■■ Figure 13–14  Conduction in a plane wall subjected to uniform heat generation

■■ Figure 13–15  Discretized model of Figure 13–14
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The force matrices for all other elements are equal to Eq. (13.4.56).
The assemblage of the element matrices, Eqs. (13.4.54) and (13.4.56) and the other 

force matrices similar to Eq. (13.4.56), yields
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	 (13.4.57)

Substituting the known temperature 5 8200 C1t  into Eq. (13.4.57), dividing both sides 
of Eq. (13.4.57) by 100, and transposing known terms to the right side, we have
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	 (13.4.58)

The second through fifth equations of Eq. (13.4.58) can now be solved simultaneously 
to yield

	 203.5 C 206 C 207.5 C 208 C2 3 4 5t t t t5 8 5 8 5 8 5 8 	 (13.4.59)

Using the first of Eqs. (13.4.57) yields the rate of heat flow out the left end:

	

100( ) 50

100(200 203.5) 50

400 W

1 1 2

1

1

F t t

F

F

5 2 2

5 2 2

5 2

	 (10.1.2)

The closed-form solution of the differential equation for conduction, Eq. (13.1.9), with 
the left-end boundary condition given by Eq. (13.1.10) and the right-end boundary condi-
tion given by Eq. (13.1.11), and with 5 0qx

p , is shown in Reference [2] to yield a parabolic 
temperature distribution through the wall. Evaluating the expression for the temperature 
function given in Reference [2] for values of x corresponding to the node points of the finite 
element model, we obtain

	 203.5 C 206 C 207.5 C 208 C2 3 4 5t t t t5 8 5 8 5 8 5 8 	 (13.4.60)

Figure 13–16 is a plot of the closed-form solution and the finite element solution for the 
temperature variation through the wall. The finite element nodal values and the closed-
form values are equal, because the consistent equivalent force matrix has been used. (This 
was also discussed in Sections 3.10 and 3.11 for the axial bar subjected to distributed 
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loading, and in Section 4.5 for the beam subjected to distributed loading.) However, 
recall that the finite element model predicts a linear temperature distribution within each 
element as indicated by the straight lines connecting the nodal temperature values in 
Figure 13–16.

■■ Figure 13–16  Comparison of the finite element and closed-form solutions for 
Example 13–3

Example 13.4

The fin shown in Figure 13–17 is insulated on the perimeter. The left end has a constant 
temperature of 8100 C. A positive heat flux of 5 5000 W/m2q  acts on the right end. Let 

�5 86 W/(m C)Kxx  and cross-sectional area 5 0.1m2A . Determine the temperatures at 
L/4, L/2, 3L/4, and L; where 5 0.4L  m.

■■ Figure 13–17  Insulated fin subjected to end heat flux

T = 100°C

A = 0.1 m2

SOLUTION:
Using Eq. (13.4.22) with the second term set to zero as there is no heat transfer by convec-
tion from any surfaces due to the insulated perimeter and constant temperature on the left 
end and constant heat flux on the right end, we obtain
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(13.4.61)
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5[ ] [ ](4) (1)k k  also
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Assembling the global stiffness matrix from Eq. (13.4.61), and the global force matrix from 
Eq. (13.4.62), we obtain the global equations as
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	 (13.4.63)

Now applying the boundary condition on temperature, we have

	 t 5 8100 C1 	 (13.4.64)

Substituting Eq. (13.4.64) for 1t  into Eq. (13.4.63), we then solve the second through fourth 
equations (associated with the unknown temperatures 22 5t t ) simultaneously to obtain

	 t t t t5 8 5 8 5 8 5 8183.33 C, 266.67 C, 350 C, 433.33 C2 3 4 5 	 (13.4.65)

Substituting the nodal temperatures from Eq. (13.4.65) into the first of Eqs. (13.4.63), we 
obtain the nodal heat source at node 1 as

	 F x 5 8 2 8 5 26(100 C 183.33 C) 500 W1 	 (13.4.66)

The nodal heat source given by Eq. (13.4.66) has a negative value, which means the heat 
is leaving the left end. This source is the same as the source coming into the fin at the right 
end given by 5 5(5000)(0.1) 500qA  W.

To further demonstrate explicit concepts of Fourier’s law of heat conduction and 
Newton’s law of cooling, along with heat balance, we solve the following problem.

Example 13.5

A composite furnace wall shown in Figure 13–18 is composed of two homogeneous 
slabs in contact. Let thermal conductivities be �5 81 W/(m C)1k  for firebrick slab 1 and 

�5 80.3 W/(m C)2k  for insulating slab 2. The left side is exposed to an ambient temperature 
of 5 8` 1000 CT L  inside the furnace with a heat transfer coefficient of �5 810 W/(m C)2hL .  
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The right-side ambient temperature is 825 C outside of the furnace with a heat transfer 
coefficient of �5 83 W / (m C)2hR . The thermal resistance of the interface between the 
firebrick and insulating brick can be neglected. The thicknesses of the slabs are 5 0.201L  
m and 5 0.102L  m. Determine the temperatures at the left edge, interface, and right edge 
of the composite wall and the heat transferred through the wall.

■■ Figure 13–18  Composite furnace wall

0.20 m

Fire brick

Insulating
brick

x
hL hR

0.1 m

21T∞L = 1000°C T∞R = 25°C

SOLUTION:
We assume the furnace wall is tall enough, such that the heat flux along the vertical direction 
can be neglected, and therefore, that the heat flow is one-dimensional in the direction of 
the furnace wall thickness. We can then assume the cross-sectional area to be a unit slice 

5( 1m )2A  in the finite element model. The model will be made of two one-dimensional 
finite elements as shown in Figure 13–19.

We will develop the equations in two ways. First, using the heat flow balance at each of 
the three nodes of the model shown in Figure 13–19 and then by using the direct stiffness 
method.

■■ Figure 13–19  Finite element model of the furnace wall

1

Insulated (no heat �ow)

2 3

hL hR

xT∞L = 1000°C T∞R = 25°C

Method 1: Heat Balance Equations at Nodes
By Newton’s law of cooling, Eq. (13.2.2), we have the heat flow entering node 1 by con-
vection as

	 q Ah T tL L5 2`( )1 1 	 (13.4.67)

By Fourier’s law of heat conduction, Eq. (13.1.30), we have heat flow through elements 
1 and 2 as

	 q
Ak

L
t t5 2( )2

1

1
1 2 	 (13.4.68)
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and	 q
Ak

L
t t5 2( )3

2

2
2 3 	 (13.4.69)

By Newton’s Law of cooling, we have the heat flow exiting node 3 as

	 q Ah t TR R5 2 `( )4 3 	 (13.4.70)

Now realizing the heat flow through the wall is constant 5 5 5( )1 2 3 4q q q q  and applying 
the heat balance equations at nodes 1, 2, and 3, we obtain

	 q q51 2	

or	 Ah T t
Ak

L
t tL L 2 5 2`( ) ( ) at node11

1

1
1 2 	 (13.4.71)
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L
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1 2

2

2
2 3 	 (13.4.72)

	 q q53 4	

or	
Ak

L
t t Ah t TR R2 5 2 `( ) ( ) at node 32

2
2 3 3 	 (13.4.73)

In matrix form with rearrangement so that the equations are in the form 5[ ]{ } { }K t F , we have

	

0

0

0

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

1

2

3

Ak

L
Ah

Ak

L

Ak

L

Ak

L

Ak

L

Ak

L

Ak

L

Ak

L
Ah

t

t

t

Ah T

Ah T

L

R

L L

R R

1
2

2
1

2

2
1

5

`

`
























































	 (13.4.74)

Method 2: Direct Stiffness Method
By the direct stiffness method, the typical element stiffness matrix given by Eq. (13.4.20) is

	 [ ] 1 1
1 1

k
Ak

L
5

2

2









 	 (13.4.75)

and from the right end due to convection by Eq. (13.4.28), we have

	








k hAh 5[ ]

0 0
0 1rt end 	 (13.4.76)

Similarly, from the left end due to convection, we have

	








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1 0
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The right end force terms are given by Eq. (13.4.29) as
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rt end 	 (13.4.78)

Similarly, at the left end, we have
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
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f h T Ah L L5 `{ }
1
0lt end 	 (13.4.79)

By the direct stiffness method of assembly, we obtain the identical equations, Eq. (13.4.74), 
as obtained using heat balance at each node.

Substituting the numerical values into Eq. (13.4.74), we obtain
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	 (13.4.80)

Solving Eq. (13.4.80) simultaneously, we obtain the resulting nodal temperatures as

	 899.14 C, 697.41 C, 361.21 C1 2 3t t t5 8 5 8 5 8 	 (13.4.81)

The heat flow through the wall is determined by using the heat flow equation from Fourier’s 
law as

    ( )
( 1W/m- C)(1m ) (697.41 899.14) C

0.20 m
1009 W1

1
2 1

2

q
k A

L
t t5

2
2 5

2 8 2 8
5 	 (13.4.82)

The heat loss through the wall is obtained from the convection boundary equation as

	 ( ) ( 1m ) (3 W/m - C) (361.21 25) C 1009 W4 3
2 2q Ah t TR R5 2 5 1 8 2 8 5` 	 (13.4.83)

The exact solution to this problem is obtained by solving the basic differential equation, 
Eq. (13.1.8), with 5 0Q  (as there is no internal heat source). The solution requires integrat-
ing the differential equation once to obtain the expression for heat flux and a second time to 
obtain the expression for temperature function, ( )T x . You must also realize that we have two 
expressions for ( )T x , one for the # #0 1x L  [label it ( )1T x ] and one for # #1 2L x L  [label 
it ( )2T x ]. There will be four constants of integration from the two temperature functions. 
The boundary conditions involve setting the convection heat transfer to the conduction heat 
transfer at nodes 1 and 3. Setting 5(0)1 1T t  and 5( )2 3T L t . Finally, you must introduce 
temperature and heat flow conditions at the interface between the two wall surfaces (at 

5 1x L ). These conditions are 5 5 5( ) ( )1 1 2 1T x L T x L  and 5 51 1 1 2 2q k dT dx k dT dx  at 
5 1x L . The resulting system of equations has six total equations for six unknowns, constants 
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21 4c c , and nodal temperatures 1t  and 3t . After solving for the constants and 1t  and 3t , the 
resulting temperature functions are

	 T x x x L5 2 1 # # 5( ) 1008.62 899.138 0 0.20 m1 1 	

and

	 T x x L x L5 2 1 5 # # 5( ) 3362.07 1369.83 0.2 m 0.30 m2 1 	

The finite element solution is identical to the analytical solution upon evaluating the tem-
perature functions ( ( )1T x  at 5 0x  and 5 0.2x  m, and ( )2T x  at 5 0.2x  m and 5 0.3x  m).

Finally, remember that the most important advantage of the finite element method is that 
it enables us to approximate, with high confidence, more complicated problems, such as those 
with more then one thermal conductivity, for which closed-form solutions are difficult (if not 
impossible) to obtain. The automation of the finite element method through general computer 
programs makes the method extremely powerful.

	13.5 	 Two-Dimensional Finite Element Formulation
Because many bodies can be modeled as two-dimensional heat-transfer problems, we now 
develop the equations for an element appropriate for these problems. Examples using this 
element then follow.

Step 1 Select Element Type
The three-noded triangular element with nodal temperatures shown in Figure 13–20 is the basic 
element for solution of the two-dimensional heat-transfer problem.

Step 2 Select a Temperature Function
The temperature function is given by

	

















5T N N N

t

t

t

i j m

i

j

m

{ } [ ] 	 (13.5.1)

■■ Figure 13–20  Basic triangular element with nodal temperatures

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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where ti, t j, and tm are the nodal temperatures, and the shape functions are again given by  
Eqs. (6.2.18); that is,

	 N
A

x yi i i ia b g5 1 1
1

2
( )	 (13.5.2)

with similar expressions for N j and Nm. Here the a’s, b ’s, and g’s are defined by Eqs. (6.2.10).
Unlike the CST element of Chapter 6 where there are 2 degrees of freedom per node (an x 

and a y displacement), in the heat transfer three-noded triangular element only a single scalar 
value (nodal temperature) is the primary unknown at each node, as shown by Eq. (13.5.1). 
This holds true for the three-dimensional elements as well, as shown in Section 13.7. Hence, 
the heat-transfer problem is sometimes known as a scalar-valued boundary value problem.

Step 3 �Define the Temperature Gradient / Temperature  
and Heat Flux / Temperature Gradient Relationships

We define the gradient matrix analogous to the strain matrix used in the stress analysis 
problem as

	 { }g

T

x
T

y

5

�

�

�

�



















	 (13.5.3)

Using Eq. (13.5.1) in Eq. (13.5.3), we have

	 { }g

N

x

N

x

N

x
N

y

N

y

N

y

t

t

t

i j m

i j m

i

j

m

5

�

�

�

�

�

�

�

�

�

�

�

�


































	 (13.5.4)

The gradient matrix { }g , written in compact matrix form analogously to the strain matrix «{ } 
of the stress analysis problem, is given by

	 g B t5{ } [ ]{ }	 (13.5.5)

where the [ ]B  matrix is obtained by substituting the three equations suggested by Eq. (13.5.2) 
in the rectangular matrix on the right side of Eq. (13.5.4) as

	












B
A

i j m

i j m

b b b

g g g
5[ ]

1

2
	 (13.5.6)

The heat flux/temperature gradient relationship is now

	 [ ]{ }
q

q
D g

x

y
5 2












	 (13.5.7)
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where the material property matrix is

	












D
K

K
xx

yy
5[ ]

0

0
	 (13.5.8)

Step 4  Derive the Element Conduction Matrix and Equations
The element stiffness matrix from Eq. (13.4.17) is

	 ∫∫∫ ∫∫k B D B dV h N N dST

V

T

S

5 1[ ] [ ] [ ][ ] [ ] [ ]
3

	 (13.5.9)

	
∫∫∫

∫∫∫








































b g

b g

b g

b b b

g g g

5

5

k B D B dV

A

K

K
dV

c
T

V

V

i i

j j

m m

xx

yy

i j m

i j m

[ ] [ ] [ ][ ] where

1

4

0

02

	

(13.5.10)

Assuming constant thickness in the element and noting that all terms of the integrand of 
Eq. (13.5.10) are constant, we have

	 ∫∫∫k B D B dV tA B D Bc
T

V

T5 5[ ] [ ] [ ][ ] [ ] [ ][ ]	 (13.5.11)

Equation (13.5.11) is the true conduction portion of the total stiffness matrix Eq. (13.5.9). The 
second integral of Eq. (13.5.9) (the convection portion of the total stiffness matrix) is defined by

	 ∫∫k h N N dSh
T

S

5[ ] [ ] [ ]
3

	 (13.5.12)

We can explicitly multiply the matrices in Eq. (13.5.12) to obtain

	 [ ]
3

k h

N N N N N N

N N N N N N

N N N N N N

dSh

i i i j i m

j i j j j m

m i m j m m
S

5 ∫∫
















	 (13.5.13)

To illustrate the use of Eq. (13.5.13), consider the side between nodes i and j of the triangular 
element to be subjected to convection (Figure 13–21). Then 5 0Nm  along side i-j, and we obtain

	

















k
hL t

h
i j

5[ ]
6

2 1 0
1 2 0
0 0 0

- 	 (13.5.14)

where 2Li j is the length of side i-j.
The evaluation of the force matrix integrals in Eq. (13.4.16) is as follows:

	 ∫∫∫ ∫∫∫f Q N dV Q N dVQ
T

V

T

V

5 5{ } [ ] [ ] 	 (13.5.15)
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for constant heat source Q. Thus it can be shown (left to your discretion) that this integral is 
equal to

	












f

QV
Q 5{ }

3

1
1
1

	 (13.5.16)

where 5V At  is the volume of the element. Equation (13.5.16) indicates that heat is generated 
by the body in three equal parts to the nodes (like body forces in the elasticity problem). The 
second force matrix in Eq. (13.4.16) is

	 { } [ ]
2 2

f q N dS q

N

N

N

dSq
T

S S

i

j

m

5 5p p∫∫ ∫∫
















	 (13.5.17)

This reduces to

	













q L t
i ji j

p

2

1
1
0

on side -- 	 (13.5.18)

	













q L t
j mj m

p

2

0
1
1

on side -- 	 (13.5.19)

	













q L t
m im i

p

2

1
0
1

on side -- 	 (13.5.20)

where Li j2 , Lj m2 , and Lm i2  are the lengths of the sides of the element, and the heat flux qp 

is assumed constant over each edge. The integral [ ]
3

hT N dST
S∫∫ `  can be found in a manner 

similar to Eq. (13.5.17) by simply replacing qp with `hT  in Eqs (13.5.18) through (13.5.20).

Step 5 through 7
Steps 5 through 7 are identical to those described in Section 13.4.

To illustrate the use of the equations presented in Section 13.5, we will now solve some 
two-dimensional heat-transfer problems.

■■ Figure 13–21  Heat loss by convection from side i-j
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Example 13.6

For the two-dimensional body shown in Figure 13–22, determine the temperature distribu-
tion. The temperature at the left side of the body is maintained at 840 C. The edges on the 
top and bottom of the body are insulated. There is heat convection from the right side with 
convection coefficient 5 ? 8100 W/(m C)2h . The free-stream temperature is 5 8` 10 CT . 
The coefficients of thermal conductivity are 5 5 ? 840 W / (m C)K Kxx yy . The dimensions 
are shown in the figure. Assume the thickness to be 1 m.

■■ Figure 13–22  Two-dimensional body subjected to temperature variation and convection

40°C

1 m

1 m

10°C

100 W/m2 · °C

■■ Figure 13–23  Discretized two-dimensional body of Figure 13–22

1 m

1 m

SOLUTION:
The finite element discretization is shown in Figure 13–23. We will use four triangular 
elements of equal size for simplicity of the longhand solution. There will be convective 
heat loss only over the right side of the body because the other faces are insulated. We now 
calculate the element stiffness matrices using Eq. (13.5.11) applied for all elements and 
using Eq. (13.5.14) applied for element 4 only, because convection is occurring only across 
one edge of element 4.

Element 1
The coordinates of the element 1 nodes are 5 01x , 5 01y , 5x 12 , 5 02y , 5 0.55x , and 

5 0.55y . Using these coordinates and Eqs. (6.2.10), we obtain

	
b b b

g g g

5 2 5 2 5 2 5 5 2 5

5 2 5 2 5 2 5 2 5 2 5

0 0.5 0.5 0.5 0 0.5 0 0 0

0.5 1 0.5 0 0.5 0.5 1 0 1
1 2 5

1 2 5
	 (13.5.21)
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Using Eqs. (13.5.21) in Eq. (13.5.11) with 5 1t  m and 5A 1
2  (1 m )(0.5 m) 5 0.25 m2, 

we have

























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







5 5

3 3

2 2

2
2

2 2
[ ] [ ] [ ][ ]

(1)(0.25)

(2 0.25)(2 0.25)

0.5 0.5
0.5 0.5

0 1

40 0
0 40

0.5 0.5 0
0.5 0.5 1

(1)k tA B D Bc
T

	 (13.5.22)

where [B] is given by Eq. (13.5.6) and [D] is given by Eq. (13.5.8).

Simplifying Eq. (13.5.22), we obtain

	

















5

2

2

2 2

? 8

1 2 5

[ ]
20 0 20

0 20 20
20 20 40

W/(m C)(1)kc 	 (13.5.23)

where the numbers above the columns indicate the node numbers associated with the matrix.

Element 2
The coordinates of the element 2 nodes are 5 01x , 5 01y , 5 0.55x , 5 0.55y , 5 04x , and 

5 14y . Using these coordinates, we obtain

	
b b b

g g g

5 2 5 2 5 2 5 5 2 5 2

5 2 5 2 5 2 5 5 2 5

0.5 1 0.5 1 0 1 0 0.5 0.5

0 0.5 0.5 0 0 0 0.5 0 0.5

1 5 4

1 5 4
	 (13.5.24)

Using Eqs. (13.5.24) in Eq. (13.5.11), we have
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(2)kc 	 (13.5.25)

Simplifying Eq. (13.5.25), we obtain
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




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
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5

2

2 2
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8

1 5 4

[ ]
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W C(2)kc

	 (13.5.26)

Element 3
The coordinates of the element 3 nodes are 5 04x , 5y 14 , 5x 0.55 , 5y 0.55 , 5x 13 , and 

5y 13 . Using these coordinates, we obtain

	
b b b

g g g

5 2 5 2 5 2 5 5 2 5

5 2 5 5 2 5 2 5 2 5

0.5 1 0.5 1 1 0 1 0.5 0.5

1 0.5 0.5 0 1 1 0.5 0 0.5

4 5 3

4 5 3
	 (13.5.27)
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Using Eqs. (13.5.27) in Eq. (13.5.11), we obtain

	



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







5

2

2 2

2

8

4 5 3
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20 40 20

0 20 20
W C(3)kc

	 (13.5.28)

Element 4
The coordinates of the element 4 nodes are 5 12x , 5 02y , 5 13x , 5 13y , 5 0.55x , and 

5 0.55y . Using these coordinates, we obtain

	
b b b

g g g

5 2 5 5 2 5 5 2 5 2

5 2 5 2 5 2 5 5 2 5

1 0.5 0.5 0.5 0 0.5 0 1 1

0.5 1 0.5 1 0.5 0.5 1 1 0

2 3 5

2 3 5
	 (13.5.29)

Using Eqs. (13.5.29) in Eq. (13.5.11), we obtain
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	 (13.5.30)

For element 4, we have a convection contribution to the total stiffness matrix because 
side 2–3 is exposed to the free-stream temperature. Using Eq. (13.5.14) with 5 2i  and 5 3j ,  
we obtain

	


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











5[ ]
(100)(1)(1)

6

2 1 0
1 2 0
0 0 0

(4)kh 	 (13.5.31)

Simplifying Eq. (13.5.31) yields
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5 8

2 3 5

[ ]

33.3 16.67 0

16.67 33.3 0
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W C(4)kh

	 (13.5.32)

Adding Eqs. (13.5.30) and (13.5.32), we obtain the element 4 total stiffness matrix as
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
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	 (13.5.33)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



13.5  Two-Dimensional Finite Element Formulation 633

Superimposing the stiffness matrices given by Eqs. (13.5.23), (13.5.26), (13.5.28), and 
(13.5.33), we obtain the total stiffness matrix for the body as
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W CK 	 (13.5.34)

Next, we determine the element force matrices by using Eqs. (13.5.18) through 
(13.5.20) with qp replaced by `hT . Because 5 0Q , 5 0qp , and we have convective heat 
transfer only from side 2–3, element 4 is the only one that contributes nodal forces. Hence,
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1
1
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	 (13.5.35)

Substituting the appropriate numerical values into Eq. (13.5.35) yields
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W(4)f 	 (13.5.36)

Using Eqs. (13.5.34) and (13.5.36), we find that the total assembled system of equations is
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	 (13.5.37)

We have known nodal temperature boundary conditions of 5 840 C1t  and 5 840 C4t . We 
again modify the stiffness and force matrices as follows:

	







































































2

2

2 2

5

1 0 0 0 0
0 53.3 16.67 0 40
0 16.67 53.3 0 40
0 0 0 1 0
0 40 40 0 160

40
500
500
40

3200

1

2

3

4

5

t

t

t

t

t

	 (13.5.38)

The terms in the first and fourth rows and columns corresponding to the known tem-
perature conditions 5 840 C1t  and 5 840 C4t  have been set equal to zero except for 
the main diagonal, which has been set equal to one, and the first and fourth rows of 
the force matrix have been set equal to the known nodal temperatures. Also, the  term 
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2 8 1 2 3 8 5 2( 40)(40 C) ( 40) (40 C) 3200 on the left side of the fifth equation of 
Eq.  (13.5.37) has been transposed to the right side in the fifth row (as 13200) of 
Eq. (13.5.38). The second, third and fifth equations of Eq. (13.5.38), corresponding to the 
rows of unknown nodal temperatures, can now be solved in the usual manner. The resulting 
solution is given by

	 5 8 5 8 5 826.02 C 26.02 C 33.0 C2 3 5t t t 	 (13.5.39)

Example 13.7

For the two-dimensional body shown in Figure 13–24, determine the temperature 
distribution. The temperature of the top side of the body is maintained at 8100 C. The 
body is insulated on the other edges. A uniform heat source of 5 1000 W/m3Q  acts 
over the whole plate, as shown in the figure. Assume a constant thickness of 1 m. Let 

5 5 ? 825 W/(m C)K Kxx yy .

■■ Figure 13–24  Two-dimensional body subjected to a heat source

■■ Figure 13–25  Discretized body of Figure 13–24

SOLUTION:
We need consider only the left half of the body, because we have a vertical plane of sym-
metry passing through the body 2 m from both the left and right edges. This vertical plane 
can be considered to be an insulated boundary. The finite element model is shown in 
Figure 13–25.

We will now calculate the element stiffness matrices. Because the magnitudes of the 
coordinates and conductivities are the same as in Example 13.6, the element stiffness 
matrices are the same as Eqs. (13.5.23), (13.5.26), (13.5.28), and (13.5.30). Remember 
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that there is no convection from any side of an element, so the convection contribution [ ]kh  
to the stiffness matrix is zero. Using the direct stiffness method and the element stiffness 
matrices, we obtain the total stiffness matrix as

	 [ ]
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	 (13.5.40)

Because the heat source Q is acting uniformly over each element, we use Eq. (13.5.16) to 
evaluate the nodal forces for each element as
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	 (13.5.41)

We then use Eqs. (13.5.40) while Eq. (13.5.41) is applied to each element, to assemble the 
total system of equations as
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	 (13.5.42)

We have known nodal temperature boundary conditions of 5 8100 C3t  and 5 8100 C4t .  
In the usual manner, as was shown in Example 13.4, we modify the stiffness and force 
matrices of Eq. (13.5.42) to obtain
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	 (13.5.43)

Equation (13.5.43) satisfies the boundary temperature conditions and is equivalent to 
Eq. (13.5.42); that is, the first, second, and fifth equations of Eq. (13.5.43) are the same as 
the first, second, and fifth equations of Eq. (13.5.42), and the third and fourth equations 
of Eq. (13.5.43) identically satisfy the boundary temperature conditions at nodes 3 and 4. 
The first, second, and fifth equations of Eq. (13.5.43) corresponding to the rows of unknown 
nodal temperatures, can now be solved simultaneously. The resulting solution is given by

	 180 C 180 C 153 C1 2 5t t t5 8 5 8 5 8 	 (13.5.44)
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We then use the results from Eq. (13.5.44) in Eq. (13.5.42) to obtain the rates of heat 
flow at nodes 3 and 4 (that is, 3F  and 4F ) as follows:

By using the third equation in Eq. (13.5.42),

	 2 5 125 25 6663 5 3t t F 	

Substituting the numerical values for 3t  and 5t , we obtain

 	 2 5 125(100) 25(153) 666 3F 	

or

	 1991 W3F 5 2 	

Similarly,

	 1991 W4F 5 2 	

The negative signs on 3F  and 4F  indicate heat flow out of the body at nodes 3 and 4.

	13.6 	 Line or Point Sources
A common practical heat-transfer problem is that of a source of heat generation present within 
a very small volume or area of some larger medium. When such heat sources exist within small 
volumes or areas, they may be idealized as line or point sources. Practical examples that can be 
modeled as line sources include hot-water pipes embedded within a medium such as concrete 
or earth, and conducting electrical wires embedded within a material.

A line or point source can be considered by simply including a node at the location of 
the source when the discretized finite element model is created. The value of the line source 
can then be added to the row of the global force matrix corresponding to the global degree of 
freedom assigned to the node. However, another procedure can be used to treat the line source 
when it is more convenient to leave the source within an element.

We now consider the line source of magnitude Qp, with typical units of W/m, located at 
( , )x yo o  within the two-dimensional element shown in Figure 13–26. The heat source Q is no 
longer constant over the element volume.

■■ Figure 13–26  Line source located within a typical triangular element
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Using Eq. (13.4.16), we can express the heat source matrix as
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	 (13.6.1)

where Ap is the cross-sectional area over which Qp acts, and the N’s are evaluated at 5x xo 
and 5y yo. Equation (13.6.1) can be rewritten as
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	 (13.6.2)

Because the N s are evaluated at 5x xo and 5y yo, they are no longer functions of x and y. 
Thus, we can simplify Eq. (13.6.2) to
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	 (13.6.3)

From Eq. (13.6.3), we can see that the portion of the line source Qp distributed to each node is 
based on the values of Ni , N j, and Nm, which are evaluated using the coordinates ( , )x yo o  of 
the line source. Recalling that the sum of the N’s at any point within an element is equal to one 

1 1 5[that is, ( , ) ( , ) ( , ) 1]N x y N x y N x yi o o j o o m o o , we see that no more than the total amount 
of Qp is distributed and that

	 1 1 5p p p pQ Q Q Qi j m 	 (13.6.4)

Example 13.8

A line source 5 65 W/cmQp  is located at coordinates (5, 2) in the element shown in 
Figure 13–27. Determine the amount of Qp allocated to each node. All nodal coordinates 
are in units of centimeters. Assume an element thickness of 5 1 cmt .

■■ Figure 13–27  Line source located within a triangular element
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SOLUTION:
We first evaluate the a’s, b’s, and g’s, defined by Eqs. (6.2.10), associated with each shape 
function as follows:
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Also,	 2
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5 5 5 	 (13.6.6)

Substituting the results of Eqs. (13.6.5) and (13.6.6) into Eq. (13.5.2) yields
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Equation (13.6.7) for Ni , N j, and Nm evaluated at 5 5x  and 5 2y  are
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Therefore, using Eq. (13.6.3), we obtain
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	13.7 	 Three-Dimensional Heat Transfer  
by the Finite Element Method

When the heat transfer is in all three directions (indicated by qx , qy and qz in Figure 13–28), 
then we must model the system using three-dimensional elements to account for the heat 
transfer. The basic partial differential equation for three-dimensional heat transfer by conduc-
tion, including the volumetric heat source, Q, is given by Eq. (13.7.1). It is an extension of the 
one-dimensional heat flow Eq. (13.1.7). It is interpreted as follows: At any point in a body the 
net heat by conduction into a unit volume plus the volumetric heat source generated must equal 
the change of thermal energy stored within the volume.
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Examples of heat transfer that often is three-dimensional are shown in Figure 13–29. Here we 
see in Figure 13–29(a) and (b) an electronic component soldered to a printed wiring board [11]. 
The model includes a silicon chip, silver-eutectic die, alumina carrier, solder joints, copper 
pads, and the printed wiring board. The model actually consisted of 965 8-noded brick elements 
with 1395 nodes and 216 thermal elements and was modeled in Autodesk [10]. One-quarter 
of the actual device was modeled. Figure 13–29(c)  shows a heat sink used to cool a personal 
computer microprocessor chip (a two-dimensional model might possibly be used with good 
results as well). Finally, Figure 13–29(d) shows an engine block, which is an irregularly shaped 
three-dimensional body requiring a three-dimensional heat transfer analysis.

The elements often included in commercial computer programs to analyze three-
dimensional heat transfer are the same as those used in Chapter 11 for three-dimensional stress 
analysis. These include the four-noded tetrahedral (Figure 11–3), the eight-noded hexahedral 
(brick) (Figure 11–5), and the twenty-noded hexahedral (Figure 11–6), the difference being that 
we now have only one degree of freedom at each node, namely a temperature. The temperature 
functions in the x; y; and z directions can now be expressed by expanding Eq. (13.5.2) to the 
third dimension or by using shape functions given by Eq. (11.2.10) for a four-noded tetrahedral 
element or by Eqs. (11.3.3) for the eight-noded brick or the Eqs. (11.3.11) through (11.3.14) 
for the twenty-noded brick. The typical eight-noded brick element is shown in Figure 13–30 
with the nodal temperatures included.

qx+dx

qy+dy

qy

qz+dz

qx

dx
dz

dy

qz

y

x
z

Q

■■ Figure 13–28  Three-dimensional heat transfer
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■■ Figure 13–29  Examples of three-dimensional heat transfer

(a) Electronic component soldered to a printed wiring board

(b1) Carrier of the FEA model
(b2) Silicon chip (left side portion) and 
Ag-Eutectic of FEA model

(b4) Close-up of solder and copper pad(b3) Solder joints and copper pads of FEA model

(b) Finite element model (quarter thermal model) showing the separate components
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	13.8 	 One-Dimensional Heat Transfer with Mass Transport
We now consider the derivation of the basic differential equation for one-dimensional heat 
flow where the flow is due to conduction, convection, and mass transport (or transfer) of 
the fluid. The purpose of this derivation including mass transport is to show how Galerkin’s 
residual method can be directly applied to a problem for which the variational method is not 
applicable. That is, the differential equation will have an odd-numbered derivative and hence 
does not have an associated functional of the form of Eq. (1.4.3).

The control volume used in the derivation is shown in Figure 13–31. Again, from 
Eq. (13.1.1) for conservation of energy, we obtain

 	 r1 5 1 1 11q A dt QA dx dt c A dx dT q A dt q P dx dt q dtx x dx h m 	 (13.8.1)

All of the terms in Eq. (13.8.1) have the same meaning as in Sections 13.1 and 13.2, except 
the additional mass-transport term is given by [1]

	 5q mcTm � 	 (13.8.2)

where the additional variable �m is the mass flow rate in typical units of kg/h.

■■ Figure 13–30  Eight-noded brick element showing nodal temperatures for the heat transfer
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■■ Figure 13–29  (Continued )

X
Y

(c) Head sink possibly used to cool a computer microchip (d) Engine block
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Again, using Eqs. (13.1.3) through (13.1.6), (13.2.2), and (13.8.2) in Eq. (13.8.1) and 
differentiating with respect to x and t, we obtain
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Equation (13.8.3) is the basic one-dimensional differential equation with odd derivative term 
� �( / )T x  for heat transfer with mass transport.

	13.9 	 Finite Element Formulation of Heat Transfer with 
Mass Transport by Galerkin’s Method

Having obtained the differential equation for heat transfer with mass transport, Eq. (13.8.3), we 
now derive the finite element equations by applying Galerkin’s residual method, as outlined in 
Section 3.12, directly to the differential equation. We assume here that 5 0Q  and that we have 
steady-state conditions so that differentiation with respect to time is zero.

The residual R is now given by
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Applying Galerkin’s criterion, Eq. (3.12.3), to Eq. (13.9.1), we have
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where the shape functions are given by Eqs. (13.4.2). Applying integration by parts to the first 
term of Eq. (13.9.2), we obtain

■■ Figure 13–31  Control volume for one-dimensional heat conduction with convection and 
mass transport
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Using Eqs. (13.9.3) in the general formula for integration by parts [see Eq. (3.12.6)], we obtain
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Substituting Eq. (13.9.4) into Eq. (13.9.2), we obtain
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Using Eq. (13.4.2) in (13.4.1) for T, we obtain
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From Eq. (13.4.2), we obtain
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	 (13.9.7)

By letting 5 5 21 ( )1N N x Li  and substituting Eqs. (13.9.6) and (13.9.7) into Eq. (13.9.5), 
along with Eq. (13.4.1) for T, we obtain the first finite element equation
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	 (13.9.8)

where the definition for qx  given by Eq. (13.1.3) has been used in Eq. (13.9.8). Equation 
(13.9.8) has a boundary condition 1qx

p  at x 5 0 only because 5 11N  at 5 0x  and 5 01N  at 
5x L. Integrating Eq. (13.9.8), we obtain
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 	 (13.9.9)

where 1qx
p  is defined to be qx  evaluated at node 1.

To obtain the second finite element equation, we let 5 52N N x Li  in Eq. (13.9.5) and 
again use Eqs. (13.9.6), (13.9.7), and (13.4.1) in Eq. (13.9.5) to obtain
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 	 (13.9.10)
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where 2qx
p  is defined to be qx evaluated at node 2. Rewriting Eqs. (13.9.9) and (13.9.10) in 

matrix form yields
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	 (13.9.11)

Applying the element equation 5{ } [ ]{ }f k t  to Eq. (13.9.11), we see that the element stiffness 
matrix is now composed of three parts:

	 5 1 1[ ] [ ] [ ] [ ]k k k kc h m 	 (13.9.12)

where
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and the element nodal force and unknown nodal temperature  matrices are
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	 (13.9.14)

We observe from Eq. (13.9.13) that the mass transport stiffness matrix [ ]km  is asymmetric and, 
hence, [k] is asymmetric. Also, if heat flux exists, it usually occurs across the free ends of a 
system. Therefore, 1qx  and 2qx  usually occur only at the free ends of a system modeled by this 
element. When the elements are assembled, the heat fluxes 1qx  and 2qx  are usually equal but 
opposite at the node common to two elements, unless there is an internal concentrated heat 
flux in the system. Furthermore, for insulated ends, the ’q sx

p  also go to zero.
To illustrate the use of the finite element equations developed in this section for heat 

transfer with mass transport, we will now solve the following problem.

Example 13.9

Air is flowing at a rate of 2.16 kg/h inside a round tube with a diameter of 20 mm and length of 
10 cm, as shown in Figure 13–32. The initial temperature of the air entering the tube is 840 C.  
The wall of the tube has a uniform constant temperature of 8100 C. The specific heat of 
the air is ? 81.005 kJ/(kg C), the convection coefficient between the air and the inner wall 
of the tube is ? 815 W/(m C)2 , and the thermal conductivity is ? 80.03 W/(m C). Determine the 
temperature of the air along the length of the tube and the heat flow at the inlet and outlet 
of the tube. Here the flow rate and specific heat are given in force units (Newtons) instead 
of mass units (kg). This is not a problem because the units cancel in the �mc product in the 
formulation of the equations.
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We first determine the element stiffness and force matrices using Eqs. (13.9.13) and 
(13.9.14). To do this, we evaluate the following factors:
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We can see from Eqs. (13.9.15) that the conduction portion of the stiffness matrix is negli-
gible. Therefore, we neglect this contribution to the total stiffness matrix and obtain
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Similarly, because all elements have the same properties,

	 5 5 5[ ] [ ] [ ] [ ](2) (3) (4) (1)k k k k 	 (13.9.17)

Using Eqs. (13.9.14) and (13.9.15), we obtain the element force matrices as
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Assembling the global stiffness matrix using Eqs. (13.9.16) and (13.9.17) and the global 
force matrix using Eq. (13.9.18), we obtain the global equations as
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(13.9.19)

■■ Figure 13–32  Air flowing through a tube, and the finite element model

100 mm

40°C
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Applying the boundary condition 5 840 C1t , we rewrite Eq. (13.9.19) as
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	 (13.9.20)

Solving the second through fifth equations of Eq. (13.9.20) for the unknown temperatures, 
we obtain

	 5 8 5 8 5 8 5 848.83 C 56.19 C 62.7 C 68.05 C2 3 4 5t t t t 	 (13.9.21)

Using Eq. (13.8.2), we obtain the heat flow into and out of the tube as
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where, again, the conduction contribution to q is negligible; that is, 2 DkA T  is negligible. 
The analytical solution in Reference [7] yields

	 5 8 568.25 C 41.15 W5 outt q 	 (13.9.23)

The finite element solution is then seen to compare quite favorably with the analytical 
solution.

The element with the stiffness matrix given by Eq. (13.9.13) has been used in Reference 
[8] to analyze heat exchangers. Both double-pipe and shell-and-tube heat exchangers were 
modeled to predict the length of tube needed to perform the task of proper heat exchange 
between two counterflowing fluids. Excellent agreement was found between the finite element 
solution and the analytical solutions described in Reference [9].

Finally, remember that when the variational formulation of a problem is difficult to obtain 
but the differential equation describing the problem is available, a residual method such as 
Galerkin’s method can be used to solve the problem.

13.10	 Flowchart and Examples of a Heat Transfer Program
Figure 13–33 is a flowchart of the finite element process used for the analysis of two- and 
three-dimensional heat-transfer problems.

Figures 13–34 and 13–35 show examples of two-dimensional temperature distribu-
tion using the two-dimensional heat-transfer element of this chapter (results obtained from 
Autodesk [10]).

Figure 13–34(a) shows a square plate subjected to boundary temperatures. Figure 13–34(b) 
shows the finite element model, along with the temperature distribution throughout the plate.
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Figure 13–35(a) shows a square duct that carries hot gases such that its surface temperature 
is 8380 C. The duct is wrapped by a layer of circular fiberglass. The finite element model, along 
with the temperature distribution throughout the fiberglass is shown in Figure 13–35(b).

Figures 13–36 and 13–37 illustrate the use of the three-dimensional solid element described 
in Section 13.7 for determining temperature distribution and heat flux in solid bodies subjected 
to temperature change. Figure 13–36 is an anvil with the nose heated to 8250 C. The tempera-
ture distribution throughout the anvil is shown. Figure 13–37 is a solid model of a steel forging 
hammer with the flat end of the hammer subjected to a 8210 C surface temperature. Notice that 
the temperature plot indicates the end of the handle temperature is 884.2 C.

■■ Figure 13.33  Flowchart of two- and three-dimensional heat-transfer process

START

Draw the geometry and apply any heat
sources, �uxes, and boundary temperatures

De�ne the element type and properties
(here the heat-transfer element is used)

DO JE = 1,NE

Solve [K]{t} = {F} for {t}

Compute the element stiffness matrix [k] and nodal load
matrix {f} in global coordinates (both conduction and/or

convection portions of [k] and {f})

Use the direct stiffness procedure to add [k] and {f} to the proper
locations in the assemblage stiffness matrix [K] and load matrix{F}

Compute the element temperature gradients
and heat �uxes

Output results

Account for known temperature boundary conditions and modify
the global stiffness matrix and force matrix accordingly

END
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■■ Figure 13–34  (a) Square plate subjected to temperature distribution and (b) finite element 
model with resulting temperature variation throughout the plate (Courtesy of David Walgrave) 
(See the full-color insert for a color version of this figure.)

40°C

1 m

1 m40°C 40°C

250°C

(b)
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■■ Figure 13–35  (a) Square duct wrapped by insulation and (b) the finite element model with 
resulting temperature variation through the insulation (See the full-color insert for a color 
version of this figure.)

Insulation
(K = 0.035 W/m-°C)

0.6 m

1.2 m

45°C
25W/m2-°C

380°C

(b)
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■■ Figure 13–36  Temperature distribution in an anvil (By Dan Baxter) (See the full-color insert 
for a color version of this figure.)

■■ Figure 13–37  Temperature distribution in a forging hammer (By Wilson Arifin)
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Summary Equations

Conservation of energy principle (conduction heat transfer):

	 1 5 D 1in generated outE E U E 	 (13.1.1)

	 q A dt QA dx dt U q A dtx x dx1 5 D 1 1 	 (13.1.2)

Fourier’s law for heat conduction:

	 5 2q K
dT

dx
x xx 	 (13.1.3)

Basic differential equation for one-dimensional steady-state heat transfer by conduction:
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 	 (13.1.8)

Basic differential equation for two-dimensional heat conduction:
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	 (13.1.12)

Conservation of energy principle (with convection):

	 ( )q A dt QA dx dt c A dx dT q A dt q P dx dtx x dx hr1 5 1 11 	 (13.2.1)

Newton’s law of cooling:

	 5 2 `( )q h T Th 	 (13.2.2)

Basic differential equation for one-dimensional heat conduction with convection:
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	 (13.2.3)

Temperature function for basic one-dimensional (two-noded) temperature element:

	 5 1( ) 1 1 2 2T x N t N t 	 (13.4.1)

Shape functions for one-dimensional temperature element:

	 5 2 511 2N
x

L
N

x

L
	 (13.4.2)

Temperature gradient matrix:

	 5 5{ } [ ]{ }g
dT

dx
B t{ } 	 (13.4.6)

Gradient matrix:

	 5[ ] 1 2B
dN

dx

dN

dx




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	 (13.4.7)
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Heat flux/temperature gradient relationship:

	 5 2[ ]{ }q D gx 	 (13.4.8)

Material properties matrix:

	 5[ ] [ ]D Kxx 	 (13.4.9)

Functional for heat transfer:

	 Uh Q q hΩ Ω Ωp 5 1 1 1 	 (13.14.10)

Stiffness matrix for heat transfer due to conduction and convection:

	 5 1[ ] [ ] [ ][ ] [ ] [ ]
3

k B D B dV h N N dST

V

T

S
∫∫∫ ∫∫ 	 (13.4.17)

Conduction part of stiffness matrix for one-dimensional (bar) element:
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Convection part of stiffness matrix for one-dimensional (bar) elements:
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Force matrix terms:
Due to uniform heat source in bar element:
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Due to uniform heat flux over perimeter surface of bar element:
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Due to uniform convection around perimeter surface of bar element:
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Stiffness matrix contribution for convection from right end of bar element:
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Force term due to convection from right end of  bar element:
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	 (13.4.29)
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Global equations:

	 5{ } [ ]{ }F K t 	 (13.4.32)

Temperature function for two-dimensional triangle element:
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Shape function for two-dimensional triangle element:
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Temperature gradient for two-dimensional triangle element:
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	 (13.5.3)

	 5{ } [ ]{ }g B t 	 (13.5.5)

Gradient matrix for two-dimensional triangle element:
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Heat flux/temperature gradient relationship for two-dimensional triangle element:
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Material property matrix for two-dimensional triangle element:
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Stiffness matrix due to conduction for two-dimensional triangle element:

	 5 5[ ] [ ] [ ][ ] [ ] [ ][ ]k B D B dV tA B D Bc
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T∫∫∫ 	 (13.5.11)

Stiffness matrix due to convection from side i-j of two-dimensional triangle element:
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Force terms for two-dimensional triangle element:
Due to uniform heat source:
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Due to uniform heat flux over side i-j:
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Force matrix for line or point source in two-dimensional triangle element:
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Basic differential equation for three-dimensional heat transfer by conduction:
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Mass transport term:

	 5q mcTm � 	 (13.8.2)

Flow chart for heat transfer program (See Figure 13–33.)
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Problems

	 13.1		  For the one-dimensional composite bar shown in Figure P13–1, determine the 
interface temperatures. For element 1, let 5 ? 8200 W/(m C);Kxx  for element 2, 
let 100 W/(m C)Kxx 5 ? 8 ; and for element 3, let 5 ? 850 W/(m C)Kxx . Let 

5 0.1 m2A . The left end has a constant temperature of 8100 C, and the right end 
has a constant temperature of 8300 C.

■■ Figure P13–1

	 13.2		  For the one-dimensional rod shown in Figure P13–2 (insulated except at the 
ends), determine the temperatures at L/3, 2L/3, and L. Let 5 860 W/(m- C)Kxx , 

5 8800 W/(m - C)2h , and 5 8` 0 CT . The temperature at the left end is 895 C.

■■ Figure P13–2

95°C

240 mm

h, T∞

50 mm radius

	 13.3		  A rod with uniform cross-sectional area of 6 cm2 and thermal conductivity of 
862.5 W/(m- C)  has heat flow in the x direction only (Figure P13–3). The right end 

is insulated. The left end is maintained at 810 C, and the system has the linearly 
distributed heat flux shown.

Use a two-element model and estimate the temperature at the node points and 
the heat flow at the left boundary. 

■■ Figure P13–3

62.5 W/(m · °C)

0.75 W/cm

6 cm210°C

1.5 m

0.75 m
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	 13.4		  The rod of 25-mm radius shown in Figure P13–4 generates heat internally at the rate 
of uniform 10 W/(m )5 35Q  throughout the rod. The left edge and perimeter of the 
rod are insulated, and the right edge is exposed to an environment of 40 C5 8T∞ .  
The convection heat-transfer coefficient between the wall and the environment is 
h 5 8600 W/(m - C)2 . The thermal conductivity of the rod is 20.77 W/(m- C)5 8Kxx .  
The length of the rod is 75 mm. Calculate the temperature distribution in the rod. 
Use at least three elements in your finite element model.

■■ Figure P13–4

75 mm
25 mm radius

40°C

	 13.5		  The fin shown in Figure P13–5 is insulated on the perimeter. The left end has a 
constant temperature of 50 C8 . A positive heat flux of 5 500 W/m2qp  acts on the 
right end. Let 5 ? 86 W/(m C)Kxx  and cross-sectional area 5 0.1 m2A . Determine 
the temperatures at L/4, L/2, 3L/4, and L, where 5 0.4 mL .

■■ Figure P13–5

q* = 500 W / m2
T = 50°C

■■ Figure P13–6

K = 1.5 W/m

8 cm 10 cm

	 13.6		  For the composite wall shown in Figure P13–6, determine the interface temperatures. 
What is the heat flux through the 8-cm portion? Use the finite element method. Use 
three elements with the nodes shown. 51 cm 0.01 m.

	 13.7		  For the composite wall idealized by the one-dimensional model shown in Figure 
P13–7, determine the interface temperatures. For element 1, let 5 ? 85 W (m C)Kxx  
for element 2, 5 ? 810 W (m C)Kxx ; and for element 3, 5 ? 815 W (m C)Kxx . 
The left end has a constant temperature of 8100 C and the right end has a constant 
temperature of 8500 C.
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	 13.8		  A composite wall is shown in Figure P13–8. For element 1, let 5 85 W (m- C)Kxx ,  
for element 2 let 5 810 W (m- C)Kxx , for element 3 let 5 815 W (m- C)Kxx . The 
left end has a heat source of 600 W applied to it. The right end is held at 810 C. 
Determine the left end temperature and the interface temperatures and the heat flux 
through element 3.

■■ Figure P13–7

T = 100°C
T = 500°C

■■ Figure P13–8

600 W 10°C2 3 4

	 13.9		  A double-pane glass window shown in Figure P13–9, consists of two 4-mm thick layers 
of glass with 5 80.80 W/m- Ck  separated by a 10 mm thick stagnant air space with 

5 80.025 W/m- Ck . Determine (a) the temperature at both surfaces of the inside layer 
of glass and the temperature at the outside surfaces of glass, and (b) the steady rate of 
heat transfer in Watts through the double pane. Assume the inside room temperature 

5 8` 20 CTi  with 5 810 W/m - C2hi  and the outside temperature 5 2 8` 10 C0T  with 
5 830 W/m - C0

2h . Assume one-dimensional heat flow through the glass.

■■ Figure P13–10

Plaster wall
Fiberglass
insulation

Plywood

Inside Outside

9 cm2.5 cm 1.25 cm

■■ Figure P13–9

10 mm 4 mm4 mm

OutsideInside

T4T3

T2T1

–10°C

20°C
Air

Glass Glass

	13.10		  For the composite wall of a house, shown in Figure P13–10, determine the tem-
peratures at the inner and outer surfaces and at the interfaces. The wall is com-
posed of 2.5 cm thick plaster wall 5 8( 0.20 W/m- C)k  on the inside, a 9 cm thick 
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layer of fiberglass insulation 5 8( 0.038 W/m- C)k , and a 1.25 cm plywood layer 
5 8( 0.12 W/m- C)k  on the outside. Assume the inside room air is 820 C with con-

vection coefficient of 810 W/m - C2  and the outside air at 2 820 C with convection 
coefficient of 820 W/m - C2 . Also, determine the rate of heat transfer through the wall 
in Watts. Assume one-dimensional heat flow through the wall thickness.

	13.11		  Condensing steam is used to maintain a room at 820 C. The steam flows through 
pipes that keep the pipe surface at 8100 C. To increase heat transfer from the pipes, 
stainless steel fins 5 8( 15 W/m- C)k , 20 cm long and 0.5 cm in diameter, are welded 
to the pipe surface as shown in Figure P13–11. A fan forces the room air over the 
pipe and fins, resulting in a heat transfer coefficient of 850 W/m - C2  at the base 
surface of the fin where it is welded to the pipe. However, the air flow distribution 
increases the heat transfer coefficient to 880 W/m - C2  at the fin tip. Assume the 
variation in heat transfer coefficient to then vary linearly from left end to right end 
of the fin surface. Determine the temperature distribution at L/4 locations along the 
fin. Also determine the rate of heat loss from each fin.

■■ Figure P13–12

1 2

1 m

3 4
T0 = 200°C

Insulated

■■ Figure P13–11

Fin diameter = df

h = 80 W/m2-°C

h = 50 W/m2-°C

Fin
tip

100°C

Pipe wall
20 cm

TÉ = 20°C

	13.12		  A tapered aluminum fin 5 8( 200 W/m- C)k , shown in Figure P13–12, has a circular 
cross section with base diameter of 1 cm and tip diameter of 0.5 cm. The base is main-
tained at 8200 C and looses heat by convection to the surroundings at 5 8` 10 CT ,  

5 8150 W/m - C2h . The tip of the fin is insulated. Assume one-dimensional heat 
flow and determine the temperatures at the quarter points along the fin. What is the 
rate of heat loss in Watts through each element? Use four elements with an average 
cross-sectional area for each element.

	13.13		  A wall is constructed of an outer layer of 10 mm thick plywood ( 1.5 W/m- C)5 8k ,  
an inner core of 100 mm thick fiberglass insulation ( 0.035 W/m- C)5 8k , and an 
inner layer of 10 mm thick sheetrock ( 0.175 W/m- C)5 8k  (Figure P13–13). The 
inside temperature is 20 C8  with 10 W/m - C25 8h , while the outside temperature is 

15 C2 8  with 25 W/m - C25 8h . Determine the temperature at the interfaces of the 
materials and the rate of heat flow in W through the wall.
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	13.14		  A large plate of stainless steel with thickness of 5 cm and thermal conductivity of 
5 815 W/m- Ck  is subjected to an internal uniform heat generation throughout the  

plate at constant rate of 5 35 10 W/m6 3Q . One side of the plate is maintained at 
80 C by ice water, and the other side is subjected to convection to an environment 

at 5 8` 35 CT , with heat transfer coefficient 5 840 W/m - C2h , as shown in Figure 
P13–14. Use two elements in a finite element model to estimate the temperatures at 
each surface and in the middle of the plate’s thickness. Assume a one-dimensional 
heat transfer through the plate.

■■ Figure P13–13

Sheetrock
Fiberglass
insulation

Plywood

Inside Outside

100 mm10 mm 10 mm

■■ Figure P13–14

Stainless steel

Q = 5 × 106 
W
m3

0°C

5 cm

h

L x0
0 1 2

TÉ

	13.15		  The base plate of an iron is 0.6 cm thick. The plate is subjected to 100 W of power 
(provided by resistance heaters inside the iron, as shown in Figure P13–15), 
over a base plate cross-sectional area of 250 cm2, resulting in a uniform flux 
generated on the inside surface. The thermal conductivity of the metal base 
plate is 5 820 W/m- Ck . The outside ambient air temperature is 820 C with a 
heat transfer coefficient of 820 W/m - C2  at steady-state conditions. Assume one-
dimensional heat transfer through the plate thickness. Using three elements, 
model the plate to determine the temperatures at the inner surface and interior 
one-third points.
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	13.16		  A hot surface is cooled by attaching fins (called pin fins) to it, as shown in 
Figure P13–16. The surface of the plate (left end of the pin) is 890 C. The fins 
are 6 cm long and have a cross-sectional area of 3 25 10 m6 2 with a perimeter of 
0.006 m. The fins are made of copper 5 8( 400 W/m- C)k . The temperature of the 
surrounding air is 5 8` 20 CT  with heat transfer coefficient on the surface (including 
the end surface) of 5 810 W/m - C2h . A model of the typical fin is also shown in 
Figure P13–16. Use three elements in your finite element model to determine the 
temperatures along the fin length.

■■ Figure P13–15

Insulation
Resistance heater 100 W

Base plate

1 2 3 4
x

0.6 cm

250 cm2

h

TÉ

■■ Figure P13–16

0.25 cm

0.8 cm

6 cm

x

90°C

≈ T∞, h ≈

6 cm
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	13.17		  Use the direct method to derive the element equations for the one-dimensional 
steady-state conduction heat-transfer problem shown in Figure P13–17. The 
bar is insulated all around and has cross-sectional area A, length L, and thermal 
conductivity Kxx. Determine the relationship between nodal temperatures 1t  and 2t  
( C)8  and the thermal inputs 1F  and 2F  (in kWh). Use Fourier’s law of heat conduction 
for this case.

■■ Figure P13–17

	13.18		  Express the stiffness matrix and the force matrix for convection from the left end of 
a bar, as shown in Figure P13–18. Let the cross-sectional area of the bar be A, the 
convection coefficient be h, and the free stream temperature be `T .

■■ Figure P13–18

h, T∞

	13.19		  For the element shown in Figure P13–19, determine the [ ]k  and { }f  matrices. 
The conductivities are 25 W/(m- C)5 5 8K Kxx yy  and the convection coefficient 
is 5 8h 125 W/(m - C)2 . Convection occurs across the i-j surface. The free-stream 
temperature is 20 C5 8`T . The coordinates are expressed in units of meters. Let 
the line source be 150 W/(m)p 5Q  as located in the figure. Take the thickness of 
the element to be 1 m.

■■ Figure P13–19

	13.20		  Calculate the [ ]k  and { }f  matrices for the element shown in Figure P13–20. The 
conductivities are 5 5 ? 810 W/(m C)K Kxx yy  and the convection coefficient is 

5 ? 820 W/(m C)2h . Convection occurs across the i-m surface. The free-stream 
temperature is 5 8` 15 CT . The coordinates are shown expressed in units of meters. 
Let the line source be 5 200 W/mQp  as located in the figure. Take the thickness of 
the element to be 1 m.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



13  |  Heat Transfer and Mass Transport662

	13.21		  For the square two-dimensional body shown in Figure P13–21, determine the 
temperature distribution. Let 45 W/(m- C)5 5 8K Kxx yy  and h 5 860 W/(m - C)2 . 
Convection occurs across side 4–5. The free-stream temperature is 10 C5 8`T . The 
temperatures at nodes 1 and 2 are 40°C. The dimensions of the body are shown in 
the figure. Take the thickness of the body to be 1 m.

■■ Figure P13–20

	13.22		  For the square plate shown in Figure P13–22, determine the temperature distribution. 
Let 5 5 ? 810 W/(m C)K Kxx yy  and 5 ? 820 W/(m C)2h . The temperature along 
the left side is maintained at 8100 C and that along the top side is maintained at 8200 C.

Use a computer program to calculate the temperature distribution in the 
following two-dimensional bodies.

	13.23		  For the body shown in Figure P13–23, determine the temperature distribution. Surface 
temperatures are shown in the figure. The body is insulated along the top and bottom 
edges, and 1.75 W/(m- C)5 5 8K Kxx yy . No internal heat generation is present.

■■ Figure P13–21

40°C
0.6 m

10°C

0.6 m

■■ Figure P13–22

■■ Figure P13–23

60°C

30 mm 30 mm

0°C 40 mm
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■■ Figure P13–26

30°C

100°C 0.6 m

0.6 m

0.2 m

30°C

■■ Figure P13–25

250°C

40°C 1 m

1 m

40°C

■■ Figure P13–24

40°C40°C

250°C

40°C

1 m

1 m

	13.24		  For the square two-dimensional body shown in Figure P13–24, determine the 
temperature distribution. Let 5 5 8K Kxx yy 15 W/(m- C). The top surface is main-
tained at 250 C8  and the other three sides are maintained at 40 C8 . Also, plot the 
temperature contours on the body.

	13.25		  For the square two-dimensional body shown in Figure P13–25, determine the 
temperature distribution. Let 15 W/(m- C)5 5 8K Kxx yy  and 60 W/(m - C)25 8h .  
The top face is maintained at 250 C8 , the left face is maintained at 40 C8 , and the  
other two faces are exposed to an environmental (free-stream) temperature of 40 C8 .  
Also, plot the temperature contours on the body.

	13.26		  Hot water pipes are located on 0.6 m centers in a concrete slab with 
5 5 8K Kxx yy 1.5 W/(m- C), as shown in Figure P13–26. If the outside surfaces 

of the concrete are at 30 C8  and the water has an average temperature of 100 C8 ,  
determine the temperature distribution in the concrete slab. Plot the temperature 
contours through the concrete. Use symmetry in your finite element model.

	13.27		  The cross section of a tall chimney shown in Figure 13–27 has an inside surface 
temperature of 165 C8  and an exterior temperature of 55 C8 . The thermal conductivity 
is 0.8 W/(m- C)5 8K . Determine the temperature distribution within the chimney 
per unit length.
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	13.28		  The square duct shown in Figure P13–28 carries hot gases such that its surface 
temperature is 300 C8 . The duct is insulated by a layer of circular fiberglass that has 
a thermal conductivity of 0.04 W/(m- C)5 8K . The outside surface temperature of  
the fiberglass is maintained at 45 C8 . Determine the temperature distribution within 
the fiberglass.

	13.29		  The buried pipeline in Figure P13–29 transports oil with an average temperature of 
15 C8 . The pipe is located 4.5 m below the surface of the earth. The thermal conduc-
tivity of the earth is 1.0 W/(m- C)8 . The surface of the earth is 10 C8 . Determine the 
temperature distribution in the earth.

■■ Figure P13–27

55°C

165°C 0.6 m

3 m

2 m

■■ Figure P13–28

45°C300°C

1.2 m

0.6 m

■■ Figure P13–29

10°C

4.5 m

15°C

	13.30		  A 250-mm-thick concrete bridge deck is embedded with heating cables, as shown in 
Figure P13–30. If the lower surface is at 0 C8 , the rate of heat generation (assumed to 
be the same in each cable) is 100 W/m and the top surface of the concrete is at 20 C8 .  
The thermal conductivity of the concrete is 1.0 W/(m- C)8 . What is the temperature 
distribution in the slab? Use symmetry in your model.

■■ Figure P13–30

20°C

0°C

100 mm

250 mm
0.3 m 0.3 m 0.3 m

	13.31		  For the circular body with holes shown in Figure P13–31, determine the temperature 
distribution. The inside surfaces of the holes have temperatures of 8200 C. The outside 
of the circular body has a temperature of 820 C. Let 5 5 ? 810 W/(m C)K Kxx yy .
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	13.32		  For the square two-dimensional body shown in Figure P13–32, determine the 
temperature distribution. Let 5 5 ? 85 W/(m C)K Kxx yy  and 5 ? 810 W/(m C)2h .  
The top face is maintained at 8100 C, the left face is maintained at 80 C, and the other 
two faces are exposed to a free-stream temperature of 80 C. Also, plot the tempera-
ture contours on the body.

	13.33		  A 200-mm-thick concrete bridge deck is embedded with heating cables as shown 
in Figure P13–33. If the ambient temperature under the deck is 2 810 C with 

5 810 W/(m - C)2h  and the ambient air temperature above the deck is 810 C with 
5 810 W/(m - C)2h , what is the temperature distribution in the slab? The heating 

cables are line sources generating heat of 5 50 W/mQp . The thermal conductivity 
of the concrete is 81.2 W/m- C. Use symmetry in your model.

■■ Figure P13–33

≈ 10˚C

≈ –10˚C

■■ Figure P13–34

0°C

■■ Figure P13–31

150°C

150°C

30°C

■■ Figure P13–32

	13.34		  For the two-dimensional body shown in Figure P13–34, determine the temperature 
distribution. Let the left and right ends have constant temperatures of 8200 C and 

80 C, respectively. Let 5 5 ? 85 W/(m C)K Kxx yy . The body is insulated along the 
top and bottom.
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	13.35		  For the two-dimensional body shown in Figure P13–35, determine the temperature 
distribution. The top and bottom sides are insulated. The left side has a constant 
temperature of 8100 C. The right side is subjected to heat transfer by convection. Let 

5 5 ? 810 W/(m C)K Kxx yy .

■■ Figure P13–35

10

■■ Figure P13–36

10
20

■■ Figure P13–37

Insulated

5 m

T = 10°C

T = 60°C

5 m

10 m

2.5 m

	13.36		  For the two-dimensional body shown in Figure P13–36, determine the temperature 
distribution. The left and right sides are insulated. The top surface is subjected to 
heat transfer by convection. The bottom and internal portion surfaces are maintained 
at 8300 C.

	13.37		  Determine the temperature distribution and rate of heat flow through the plain car-
bon steel ingot shown in Figure P13–37. Let 5 60 W/m-K)k  for the steel. The top 
surface is held at 860 C, while the underside surface is held at 810 C. Assume that no 
heat is lost from the sides.
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	13.38		  Determine the temperature distribution and rate of heat flow from a 5 cm outer 
diameter pipe at 8180 C placed eccentrically within a larger cylinder of insulation 

5 8( 0.058 W/m- C)k  as shown in Figure P13–38. The diameter of the outside cyl-
inder is 15 cm, and the surface temperature is 810 C.

■■ Figure P13–38

180°C

10°C

2.5 cm

■■ Figure P13–39

20 cm

40 cm

40°C 40°C

250°C
5 cm rad. 5 cm rad.

5 cm 5 cm
10 cm

Insulated
bottom face

	13.39		  Determine the temperature distribution and rate of heat flow in the molded foam 
insulation ( 0.3 W/m- C)5 8k  shown in Figure P13–39.

	13.40		  For the basement wall shown in Figure P13–40, determine the temperature dis-
tribution and the heat transfer through the wall and soil. The wall is constructed 
of concrete ( 1.75 W/m- C)5 8k . The soil has an average thermal conductivity of 

1.5 W/m- C5 8k . The inside air is maintained at 30 C8  with a convection coefficient 
10 W/m - C25 8h . The outside air temperature is 0 C8  with a heat transfer coeffi-

cient of 30 W/m - C25 8h . Assume a reasonable distance from the wall of five feet 
that the horizontal component of heat transfer becomes negligible. Make sure this 
assumption is correct.
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13  |  Heat Transfer and Mass Transport668

	13.41		  Now add a 150 mm thick concrete floor to the model of Figure P13–40 (as shown 
in Figure P13–41). Determine the temperature distribution and the heat transfer 
through the concrete and soil. Use the same properties as shown in Problem 13–40.

■■ Figure P13–40

200 mm

0.6 m

1.8 m

1.5 m

T∞ = 0°C
h = 30 W/(m2 -°C)

T∞ = 30°C, h = 10 W/(m2-°C)

Soil

■■ Figure P13–41

1.2 m

150 mm

200 mm

0.6 m

1.8 m

1.5 m 3.0 m

Soil

	13.42		  Aluminum fins 5( 170 W/m-K)k  with triangular profiles shown in Figure P13–42 
are used to remove heat from a surface with a temperature of 8200 C. The temperature 
of the surrounding air is 810 C. The natural convection coefficient is 5 25 W/m -K2h . 
Determine the temperature distribution throughout and the heat loss from a typical fin.
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	13.43		  The forging hammer shown in Figure P13–43 is subjected to a surface temperature 
of 8210 C acting on the lower flat surface of the steel hammer head. The hammer’s 
thermal conductivity is 20 W m-K and the room temperature is assumed to be 840 C 
with a convection coefficient of 3 823.216 10 J (s- C-mm )6 2 .

				    Determine the temperature distribution throughout the hammer.

■■ Figure P13–42

25 mm

T∞ = 10°C
h = 25 W/m2−Κ

200°C

200°C

100 mm

■■ Figure P13–43  Forging hammer (All dimensions are in millimeters)
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13  |  Heat Transfer and Mass Transport670

	13.44		  The Allen wrench shown in Figure P13–44 is unloaded but now exposed to a tempera-
ture of 300 K, at its lower end, while the other end has a heat flux of 10 W/m2 acting 
over the end surface. Determine the temperature distribution throughout the wrench. 
The thermal conductivity of the material is 43.6 W m-K. Assume the wrench is insu-
lated around the perimeter. 

■■ Figure 13–45  Fork from forklift (dimensions mm)
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■■ Figure P13–44  Allen wrench
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	13.45		  The forklift from Figure P13–45 has its load removed. The fork is made of AISI 
4130 steel. The thermal conductivity of the steel is 835 W m C. The top surface of 
the fork is at 850 C. The other surfaces of the L-shaped appendages located at the 
upper and lower left sides of the forklift are at room temperature (assume 825 C). 
Determine the temperature distribution throughout the fork.
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	13.46		  The radio control car front steering unit in Figure P13–46 (detailed dimensions 
shown in Figure P11–22) is now relieved of stress, but its base has an applied tem-
perature of 40 C8 . The lower surface of the lower right-side flange has an applied 
temperature of 10 C8 . Other surfaces are exposed to 30 C5 8`T  and 5 W/m - C25 8h .  
The unit is made of ABS (acrylonitrile butadine styrene) with k 0.5 W m - C5 8 . 
Determine the temperature throughout the steering unit.

■■ Figure P13–46  Steering unit

Lower right �ange

Base

■■ Figure P13–47  Hitch from disk

Rear end

Front end

	13.47		  The hitch shown in Figure P13–47 (detailed dimensions shown in Figure P11–23) 
is unloaded but has an applied temperature of 100 C8  to the front end and an applied 
temperature of 0 C8  to the rear surface. Determine the temperature distribution 
throughout the hitch. The rest of the surfaces are exposed to ambient temperature 
of 830 C with h 10 W m - C25 8 . Let k 5 35 W/m-°C.
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13  |  Heat Transfer and Mass Transport672

	13.48		  Air is flowing at a rate of 5 kg/h inside a round tube with a diameter of 40 mm and 
length of 250 mm, similar to Figure 13–32 on page 645. The initial temperature of 
the air entering the tube is 10 C8 . The wall of the tube has a uniform constant tem-
perature of 90°C. The specific heat of the air is 1.004 kJ (kg- C)8 , the convection 
coefficient between the air and the inner wall of the tube is 818 W (m - C)2 , and the 
thermal conductivity is 80.03 W (m - C). Determine the temperature of the air along 
the length of the tube and the heat flow at the inlet and outlet of the tube.
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Fluid Flow in Porous Media 
and through Hydraulic 
Networks; and Electrical 
Networks and Electrostatics
Chapter Objectives

At the conclusion of this chapter, you will be able to:

■	 Derive the basic differential equations for steady-state fluid flow through porous 
media, including Darcy’s law.

■	 Describe the equations used for steady-state, incompressible, and inviscid fluid flow 
through and around pipes.

■	 Formulate the one-dimensional finite element fluid flow through porous media and 
through pipe’s stiffness matrix and equations.

■	 Demonstrate longhand solutions to one-dimensional fluid flow.

■	 Develop the two-dimensional finite element for fluid flow through porous media and 
around solid objects or through pipes.

■	 Derive the stiffness matrix for elements used in hydraulic networks.

■	 Demonstrate longhand solution to the hydraulic network using the finite element 
direct stiffness method.

■	 Show a flowchart of the fluid flow process.

■	 Describe electrical network principles, including Ohm’s and Kirchhoff’s laws, and to 
introduce the stiffness matrix used to solve electrical network problems.

■	 Demonstrate the solution of an electrical network by the finite element direct stiff-
ness method.

■	 Introduce some basic concepts in electrostatics, including Coulomb’s and Gauss’s 
laws and Poisson’s equation.

■	 Present the two-dimensional finite element formulation of the electrostatics problem.

■	 Perform a longhand finite element solution to an electrostatics problem.

■	 Show examples of computer program solutions of electrostatics problems.

Introduction
In this chapter, we consider the flow of fluid through porous media, such as the flow of water 
through an earthen dam, and through pipes or around solid bodies.

 C h a p t e r

14
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14  |  Fluid Flow in Porous Media and through Hydraulic Networks674

We will observe that the form of the equations is the same as that for heat transfer described 
in Chapter 13.

We begin with a derivation of the basic differential equation in one dimension for an ideal 
fluid in a steady state, not rotating (that is, the fluid particles are translating only), incompress-
ible (constant mass density), and inviscid (having no viscosity). We then extend this deriva-
tion to the two-dimensional case. We also consider the units used for the physical quantities 
involved in fluid flow. For more advanced topics, such as viscous flow, compressible flow, and 
three-dimensional problems, consult Reference [1].

We will use the same procedure to develop the element equations as in the heat transfer 
problem; that is, we define an assumed fluid head for the flow through porous media (seepage) 
problem or velocity potential for flow of fluid through pipes and around solid bodies within 
each element. Then, to obtain the element equations, we use both a direct approach similar to 
that used in Chapters 2, 3, and 4 to develop the element equations and the minimization of a 
functional as used in Chapter 13. These equations result in matrices analogous to the stiffness 
and force matrices of the stress analysis problem or the conduction and associated force matri-
ces of the heat transfer problem.

Next, we consider both one- and two-dimensional finite element formulations of the 
fluid-flow problem and provide examples of one-dimensional fluid flow through porous media 
and through pipes and of flow within a two-dimensional region. We present the results for a 
two-dimensional fluid-flow problem.

We then consider flow through hydraulic networks and electric networks and show the 
analogies between these networks and the spring assemblage.

Finally, we describe concepts for electrostatic analysis and develop the two-dimensional 
finite element formulation for electrostatic analysis, along with computer program examples.

	14.1 	 Derivation of the Basic Differential Equations

Fluid Flow through a Porous Medium
Let us first consider the derivation of the basic differential equation for the one-dimensional 
problem of steady-state fluid flow through a porous medium. The purpose of this derivation 
is to present a physical insight into the fluid-flow phenomena, which must be understood so 
that the finite element formulation of the problem can be fully comprehended. (For additional 
information on fluid flow, consult References [2] and [3]). We begin by considering the control 
volume shown in Figure 14 –1. By conservation of mass, we have

	 1 5in generated outM M M 	 (14.1.1)

or	 r r r1 5v Adt Q dt v Adtx x dx+ 	 (14.1.2)

where
inM  is the mass entering the control volume, in units of kilograms.
generatedM  is the mass generated within the body.
outM  is the mass leaving the control volume.

vx  is the velocity of the fluid flow at surface edge x, in units of m /s.
vx dx1  is the velocity of the fluid leaving the control volume at surface edge x 1 dx.
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14.1  Derivation of the Basic Differential Equations 675

t is time, in s.
Q is an internal fluid source (an internal volumetric flow rate), in m /s3 .
r is the mass density of the fluid, in kg/m3.
A is the cross-sectional area perpendicular to the fluid flow, in m2.

By Darcy’s law, we relate the velocity of fluid flow to the hydraulic gradient (the change 
in fluid head with respect to x) as

	 v K
d

dx
K gx xx xx x

f
5 2 5 2 	 (14.1.3)

where

Kxx is the permeability coefficient of the porous medium in the x direction, in m/s.
f  is the fluid head, in m.

f 5d dx gx is the fluid head gradient or hydraulic gradient, which is a unitless quantity in the 
seepage problem.

Equation (14.1.3) states that the velocity in the x direction is proportional to the gradient 
of the fluid head in the x direction. The minus sign in Eq. (14.1.3) implies that fluid flow is 
positive in the direction opposite the direction of fluid head increase, or that the fluid flows 
in the direction of lower fluid head. Equation (14.1.3) is analogous to Fourier’s law of heat 
conduction, Eq. (13.1.3).

Similarly,

	
f

5 21

1

v K
d

dx
x dx xx

x dx
	 (14.1.4)

where the gradient is now evaluated at x 1 d x. By Taylor series expansion, similar to that used 
in obtaining Eq. (13.1.5), we have

	
f f

5 2 11v K
d

d x

d

d x
K

d

d x
dxx dx xx xx


















	 (14.1.5)

where a two-term Taylor series has been used in Eq. (14.1.5). On substituting Eqs. (14.1.3) 
and (14.1.5) into Eq. (14.1.2), dividing Eq. (14.1.2) by A dx dtr , and simplifying, we have the 
equation for one-dimensional fluid flow through a porous medium as

	
f

1 5 0
d

d x
K

d

d x
Qxx





 	 (14.1.6)

■■ Figure 14 –1  Control volume for one-dimensional fluid flow
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14  |  Fluid Flow in Porous Media and through Hydraulic Networks676

where Q Q A dx/5  is the volume flow rate per unit volume in units 1/s. For a constant perme-
ability coefficient, Eq. (14.1.6) becomes

	
f

1 5 0
2

2
K

d

d x
Qxx 	 (14.1.7)

The boundary conditions are of the form

	 f f5 on 1SB 	 (14.1.8)

where fB represents a known boundary fluid head and 1S  is a surface where this head is 
known and

	
f

5 2 5 constant on 2v K
d

d x
Sx xx

p 	 (14.1.9)

where 2S  is a surface where the prescribed velocity pvx or gradient is known. On an impermeable 
boundary, 5p 0vx .

Comparing this derivation to that for the one-dimensional heat conduction problem in 
Section 13.1, we observe numerous analogies among the variables; that is, f  is analogous 
to the temperature function T, vx is analogous to heat flux, and Kxx is analogous to thermal 
conductivity.

Now consider the two-dimensional fluid flow through a porous medium, as shown in 
Figure 14 –2. As in the one-dimensional case, we can show that for material properties coin-
ciding with the global x and y directions,

	
f f

1 1 5 0
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�


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
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
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K
x y

K
y

Qxx yy 	 (14.1.10)

with boundary conditions

	 SB on 1f f5 	 (14.1.11)

and	
f f

1 5 constant on 2
�

�

�

�
K

x
C K

y
C Sxx x yy y 	 (14.1.12)

where Cx and Cy are direction cosines of the unit vector normal to the surface 2S , as previously 
shown in Figure 13–5.

■■ Figure 14 –2  Control volume for two-dimensional fluid flow
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14.1  Derivation of the Basic Differential Equations 677

Fluid Flow in Pipes and Around Solid Bodies
We now consider the steady-state irrotational flow of an incompressible and inviscid fluid. For 
the ideal fluid, the fluid particles do not rotate; they only translate, and the friction between the 
fluid and the surfaces is ignored. Also, the fluid does not penetrate into the surrounding body 
or separate from the surface of the body, which could create voids.

The equations for this fluid motion can be expressed in terms of the stream function or 
the velocity potential function. We will use the velocity potential analogous to the fluid head 
that was used for the derivation of the differential equation for flow through a porous medium 
in the preceding subsection.

The velocity v of the fluid is related to the velocity potential function f  by

	
f f

5 2 5 2
�

�

�

�
v

x
v

y
x y 	 (14.1.13)

where vx and vy are the velocities in the x and y directions, respectively. In the absence of 
sources or sinks Q, conservation of mass in two dimensions yields the two-dimensional dif-
ferential equation as

	
f f

1 5 0
2

2

2

2

�

�

�

�x y
	 (14.1.14)

Equation (14.1.14) is analogous to Eq. (14.1.10) when we set 5 5 1K Kxx yy  and 5 0Q . 
Hence, Eq. (14.1.14) is just a special form of Eq. (14.1.10). The boundary conditions are

	 f f5 on 1SB 	 (14.1.15)

and	
f f

1 5 constant on 2
�

�

�

�x
C

y
C Sx y 	 (14.1.16)

where Cx and Cy are again direction cosines of unit vector n normal to surface 2S . Also see 
Figure 14 –3. That is, Eq. (14.1.15) states that the velocity potential fB is known on a boundary 
surface 1S , whereas Eq. (14.1.16) states that the potential gradient or velocity is known normal 
to a surface 2S , as indicated for flow out of the pipe shown in Figure 14 –3.

To clarify the sign convention on the 2S  boundary condition, consider the case of fluid 
flowing through a pipe in the positive x direction, as shown in Figure 14 –4.

■■ Figure 14 –3  Boundary conditions for fluid flow
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Assume we know the velocities at the left edge (1) and the right edge (2). By Eq. (14.1.13) the 
velocity of the fluid is related to the velocity potential by

	
f

5 2
�

�
v

x
x 	

At the left edge (1) assume we know 5 1v vx x . Then

	
f

5 21
�

�
v

x
x 	

But the normal is always positive away, or outward, from the surface. Therefore, positive 1n  is 
directed to the left, whereas positive x is to the right, resulting in

	
f f

5 2 5 5
1

1 1
�

�

�

�n x
v vx n 	

At the right edge (2) assume we know 5 2v vx x . Now the normal 2n  is in the same direction 
as x. Therefore,

	
f f

5 5 2 5 2
2

2 2
�

�

�

�n x
v vx n 	

We conclude that the boundary flow velocity is positive if directed into the surface (region), as 
at the left edge, and is negative if directed away from the surface, as at the right edge.

At an impermeable boundary, the flow velocity and thus the derivative of the veloc-
ity potential normal to the boundary must be zero. At a boundary of uniform or constant 
velocity, any convenient magnitude of velocity potential f  may be specified as the gradient 
of the potential function; see, for instance, Eq. (14.1.13). This idea is also illustrated by 
Example 14.3.

	14.2 	 One-Dimensional Finite Element Formulation
We can proceed directly to the one-dimensional finite element formulation of the fluid-flow 
problem by now realizing that the fluid-flow problem is analogous to the heat-conduction 
problem of Chapter 13. We merely substitute the fluid velocity potential function f  for the 
temperature function T, the vector of nodal potentials denoted by { }p  for the nodal temperature 
vector { }t , fluid velocity v for heat flux q, and permeability coefficient K for flow through a 
porous medium instead of the conduction coefficient K. If fluid flow through a pipe or around 
a solid body is considered, then K is taken as unity. The steps are as follows.

■■ Figure 14 – 4  Known velocities at left and right edges of a pipe
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14.2  One-Dimensional Finite Element Formulation 679

Step 1 Select Element Type
The basic two-node element is again used, as shown in Figure 14 –5, with nodal fluid heads, 
or potentials, denoted by 1p  and 2p .

Step 2 Choose a Potential Function
We choose the potential function f  similarly to the way we chose the temperature function of 
Section 13.4, as

	 f 5 11 1 2 2N p N p 	 (14.2.1)

where 1p  and 2p  are the nodal potentials (or fluid heads in the case of the seepage problem) 
to be determined, and

	 5 2 511 2N
x

L
N

x

L
	 (14.2.2)

are again the same shape functions used for the temperature element. The matrix [N] is then

	 5 2[ ] 1





N
x

L

x

L
	 (14.2.3)

Step 3 Define the Gradient /Potential and Velocity/Gradient Relationships
The hydraulic gradient matrix { }g  is given by

	
f

5 5{ } [ ]{ }g
d

d x
B p









	 (14.2.4)

where [B] is identical to Eq. (13.4.7), given by

	 5 2[ ]
1 1





B
L L

	 (14.2.5)

and	







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


5{ }

1

2
p

p

p
	 (14.2.6)

The velocity/gradient relationship based on Darcy’s law is given by

	 5 2[ ]{ }v D gx 	 (14.2.7)

where the material property matrix is now given by

	 5[ ] [ ]D Kxx 	 (14.2.8)

■■ Figure 14 –5  Basic one-dimensional fluid-flow element
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with Kxx the permeability of the porous medium in the x direction. Typical permeabili-
ties of some granular materials are listed in Table 14 –1. High permeabilities occur when 

. 210 cm/s1K , and when , 210 7K  the material is considered to be nearly impermeable. For 
ideal flow through a pipe or over a solid body, we arbitrarily—but conveniently—let 5 1K .

Step 4 Derive the Element Stiffness Matrix and Equations
The fluid-flow problem has a stiffness matrix that can be found using the first term on the right 
side of Eq. (13.4.17). That is, the fluid-flow stiffness matrix is analogous to the conduction part 
of the stiffness matrix in the heat transfer problem. There is no comparable convection matrix 
to be added to the stiffness matrix. However, we will choose to use a direct approach similar 
to that used initially to develop the stiffness matrix for the bar element in Chapter 3.

Consider the fluid element shown in Figure 14 –6 with length L and uniform cross-
sectional area A. Recall that the stiffness matrix is defined in the structure problem to relate 
nodal forces to nodal displacements or in the temperature problem to relate nodal rates of 
heat flow to nodal temperatures. In the fluid-flow problem, we define the stiffness matrix 
to relate nodal volumetric fluid-flow rates to nodal potentials or fluid heads as 5{ } [ ]{ }f k p .  
Therefore,

	 5f v Ap 	 (14.2.9)

defines the volumetric flow rate f in units of cubic meters per second. Now, using Eqs. (14.2.7) 
and (14.2.8) in Eq. (14.2.9), we obtain

	 5 2 m /s3f K Agxx 	 (14.2.10)

in scalar form; based on Eqs. (14.2.4) and (14.2.5), g is given in explicit form by

	 5
22 1

g
p p

L
	 (14.2.11)

Applying Eqs. (14.2.10) and (14.2.11) at nodes 1 and 2, we obtain

	 5 2
2

1
2 1

f K A
p p

L
xx 	 (14.2.12)

 Table 14 –1    Permeabilities of granular materials

Material K (cm/s)

Clay 3 21 10 8

Sandy clay 3 21 10 3

Ottawa sand 3 22 to 3 10 2

Coarse gravel 1

■■ Figure 14 –6  Fluid element subjected to nodal velocities
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and	 5
2

2
2 1

f K A
p p

L
xx 	 (14.2.13)

where 1f  is directed into the element, indicating fluid flowing into the element ( 1p  must be 
greater than 2p  to push the fluid through the element, actually resulting in positive 1f ), whereas 

2f  is directed away from the element, indicating fluid flowing out of the element; hence the neg-
ative sign changes to a positive one in Eq. (14.2.13). Expressing Eqs. (14.2.12) and (14.2.13) 
together in matrix form, we have

	 5
2

2

1 1
1 1

1

2

1

2

f

f
AK

L

p

p
xx


































	 (14.2.14)

The stiffness matrix is then

	 5
2

2

1 1
1 1

m s2k
AK

L
xx[ ] 







 	 (14.2.15)

for flow through a porous medium.
Equation (14.2.15) is analogous to Eq. (13.4.20) for the heat-conduction element or to 

Eq. (3.1.14) for the one-dimensional (axial stress) bar element. The permeability or stiffness 
matrix will have units of square meters.

In general, the basic element may be subjected to internal sources or sinks, such as from a 
pump, or to surface-edge flow rates, such as from a river or stream. To include these or similar 
effects, consider the element of Figure 14 – 6 now to include a uniform internal source Q acting 
over the whole element and a uniform surface flow rate source pq  acting over the surface, as 
shown in Figure 14 –7. The force matrix terms are

	 5 5{ } [ ]
2

1
1

m s3f N QdV
QAL

Q
T

V
∫∫∫









	 (14.2.16)

where Q will have units of ?m /(m s)3 3 , or 1/s, and

	 5 5{ } [ ]
2

1
1

m s3

2

f q N dS
q Lt

q
T

S
∫∫









p
p

	 (14.2.17)

where pq  will have units of m /s. Equations (14.2.16) and (14.2.17) indicate that one-half of 
the uniform volumetric flow rate per unit volume Q (a source being positive and a sink being 
negative) is allocated to each node and one-half the surface flow rate (again a source is positive) 
is allocated to each node.

■■ Figure 14 –7  Additional sources of volumetric fluid-flow rates
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Step 5 �Assemble the Element Equations to Obtain  
the Global Equations and Introduce Boundary Conditions

We assemble the total stiffness matrix [K ], total force matrix {F}, and total set of equations as

	 ∑ ∑5 5[ ] [ ] { } { }( ) ( )K k F fe e 	 (14.2.18)

and	 5{ } [ ]{ }F K p 	 (14.2.19)

The assemblage procedure is similar to the direct stiffness approach, but it is now based on 
the requirement that the potentials at a common node between two elements be equal. The 
boundary conditions on nodal potentials are given by Eq. (14.1.15).

Step 6  Solve for the Nodal Potentials
We now solve for the global nodal potentials, { }p , where the appropriate nodal potential bound-
ary conditions, Eq. (14.1.15), are specified.

Step 7  Solve for the Element Velocities and Volumetric Flow Rates
Finally, we calculate the element velocities from Eq. (14.2.7) and the volumetric flow rate Qf  as

	 5 ( )( ) m s3Q v Af 	 (14.2.20)

Example 14.1

Determine (a) the fluid head distribution along the length of the coarse gravelly medium 
shown in Figure 14 –8, (b) the velocity in the upper part, and (c) the volumetric flow rate in 
the upper part. The fluid head at the top is 200 mm. and that at the bottom is 20 mm. Let the 
permeability coefficient be 5 10 mm/sKxx . Assume a cross-sectional area of 5 400 mm2A .

■■ Figure 14 –8  One-dimensional fluid flow in porous medium

0.6 m

SOLUTION:
The finite element discretization is shown in Figure 14 –9. For simplicity, we will use three 
elements, each 400 mm long.
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We calculate the stiffness matrices for each element as follows:

	 5 5
(400 mm )(10 mm s)

200 mm
20 mm s

2
2AK

L
xx 	

Using Eq. (14.2.15) for elements 1, 2, and 3, we have

	 5 5 5
2

2
[ ] [ ] [ ] 20 1 1

1 1
mm s(1) (2) (3) 2k k k









 	 (14.2.21)

In general, we would use Eqs. (14.2.16) and (14.2.17) to obtain element forces. However, 
in this example 5 0Q  (no sources or sinks) and 5p 0q  (no applied surface flow rates). 
Therefore,

	 5 5 5{ } { } { } 0(1) (2) (3)f f f 	 (14.2.22)

The assembly of the element stiffness matrices from Eq. (14.2.21), via the direct stiff-
ness method, produces the following system of equations:
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	 (14.2.23)

Known nodal fluid head boundary conditions are 5 200 mm1p  and 5 20 mm4p  These 
nonhomogeneous boundary conditions are treated as described for the stress analysis and  
heat transfer problems. We modify the stiffness (permeability) matrix and force matrix as 
follows:
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2
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	 (14.2.24)

■■ Figure 14 –9  Finite element discretized porous medium

200 mm

200 mm

200 mm
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where the terms in the first and fourth rows and columns of the stiffness matrix 
corresponding to the known fluid heads 200 mm1 5p  and 20 mm4 5p  have been set 
equal to 0 except for the main diagonal, which has been set equal to 1, and the first and 
fourth rows of the force matrix have been set equal to the known nodal fluid heads at nodes 
1 and 4. Also the terms ( 20) (200 mm) 4000 mm2 3 5 2  on the left side of the second 
equation of Eq. (14.2.24) and ( 20) (20 mm) 400 mm2 3 5 2  on the left side of the third 
equation of Eq. (14.2.24) have been transposed to the right side in the second and third 
rows (as 14000 and 1400). The second and third equations of Eq. (14.2.24) can now be 
solved. The resulting solution is given by

	 140 mm 80 mm2 35 5p p 	 (14.2.25)

Next we use Eq. (14.2.7) to determine the fluid velocity in element 1 as

	 5 2 [ ]{ }(1) (1)v K B px xx 	 (14.2.26)

	 5 2 2
1 1 1

2
K

L L

p

pxx

















	 (14.2.27)

or	 3mm s1( ) 5vx 	 (14.2.28)

You can verify that the velocities in the other elements are also 3 mm/s because the cross 
section is constant and the material properties are uniform. We then determine the volumet-
ric flow rate Qf  in element 1 using Eq. (14.2.20) as

	 (3mm s)(400 mm ) 1200 mm s2 35 5 5Q vAf 	 (14.2.29)

This volumetric flow rate is constant throughout the length of the medium.

■■ Figure 14 –10  Variable-cross-section pipe subjected to fluid flow

Example 14.2

For the smooth pipe of variable cross section shown in Figure 14 –10, determine the potential 
at the junctions, the velocities in each section of pipe, and the volumetric flow rate. The 
potential at the left end is 5 10 m /s1

2p  and that at the right end is 5 1m /s4
2p .

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



14.2  One-Dimensional Finite Element Formulation 685

SOLUTION:
For the fluid flow through a smooth pipe, 5 1Kxx . The pipe has been discretized into three 
elements and four nodes, as shown in Figure 14 –11. Using Eq. (14.2.15), we find that the 
element stiffness matrices are

■■ Figure 14 –11  Discretized pipe
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m(1) (2) (3)k k k     (14.2.30)

where the units on [k] are now meters for fluid flow through a pipe.
There are no applied fluid sources. Therefore, 5 5 5{ } { } { } 0(1) (2) (3)f f f . The assem-

bly of the element stiffness matrices produces the following system of equations:
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	 (14.2.31)

Solving the second and third of Eqs. (14.2.31) for 2p  and 3p  in the usual manner, we obtain

	 5 58.365 m s 5.91 m s2
2

3
2p p 	 (14.2.32)

Using Eqs. (14.2.7) and (14.2.20), the velocities and volumetric flow rates in each element are

	 
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The potential, being higher at the left and decreasing to the right, indicates that the velocities 
are to the right. The volumetric flow rate is constant throughout the pipe, as conservation 
of mass would indicate.
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We now illustrate how you can solve a fluid-flow problem where the boundary condition 
is a known fluid velocity, but none of the p’s are initially known.

Example 14.3

For the smooth pipe shown discretized in Figure 14 –12 with uniform cross section of 4 cm2,  
determine the flow velocities at the center and right end, knowing the velocity at the left 
end is 4 cm/s5vx .

■■ Figure 14 –12  Discretized pipe for fluid-flow problem

20 cm

4 cm/s

20 cm

SOLUTION:
Using Eq. (14.2.15) the element stiffness matrices are
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k k 	 (14.2.33)

where now the units on [k] are centimeters for fluid flow through a pipe and 0.5 cm s5Kxx  ,
Assembling the element stiffness matrices produces the following equations:
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	 (14.2.34)

The specified boundary condition is 5 4 cm/svx , so that by Eq. (14.2.9), we have

	 (4 cm s)(4 cm ) 16 cm s1 1
2 35 5 5f v A 	 (14.2.35)

Because 1p , 2p , and 3p  in Eq. (14.2.34) are not known, we cannot determine these potentials 
directly. The problem is similar to that occurring if we try to solve the structural problem 
without prescribing displacements sufficient to prevent rigid body motion of the structure. 
This was discussed in Chapter 2. Because the p’s correspond to displacements in the struc-
tural problem, it appears that we must specify at least one value of p in order to obtain a 
solution. We then proceed as follows. Select a convenient value for 3p  (for instance set 

5 03p ). (The velocities are functions of the derivatives or differences in p’s, so a value of 
5 03p  is acceptable.) Then 1p  and 2p  are the unknowns. The solution will yield 1p  and 2p  

relative to 5 03p . Therefore, from the first two of Eqs. (14.2.34), we have
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p 	 (14.2.36)
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where 16 cm /s1
35f  from Eq. (14.2.35) and 5 02f , because there is no applied fluid force 

at node 2.
Solving Eq. (14.2.36), we obtain

	 320 1601 25 5p p 	 (14.2.37)

These are not absolute values for 1p  and 2p ; rather, they are relative to 3p . The fluid veloc-
ities in each element are absolute values, because velocities depend on the differences in 
p’s. These differences are the same no matter what value for 3p  was chosen. You can verify 
this by choosing 803 5p , for instance, and re-solving for the velocities. [You would find 

4001 5p  and 2402 5p  and the same v’s as in Eq. (14.2.38).]
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■■ Figure 14 –13  Typical pipe network (composed of five branches, 1–4, 1–2, 2–3U, 2–3L, 
and 3–4 (where U and L stand for upper and lower branches between nodes 2 and 3)
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Fluid Flow through Hydraulic Networks
Hydraulic or piping networks typically found in buildings, industrial plants, farm irrigation 
pipe networks, municipal water systems, and power plants also can be analyzed using the 
finite element method. Pressure flow in these networks can be described by a system of linear 
equations. In these networks, such as the one shown in Figure 14 –13, the fluid flow source 
(volumetric flow rate) Q (in units of  m /s3 ) forces fluid through the pipe network. As the fluid 
flows through each branch, there is resistance in each branch which is typically a function 
of the fluid viscosity m  (in units of N-s/m2) (a typical value of m  is 3 21.002 10 N-s/m6 2 for 
water at 820 C), the length of the pipe branch, the diameter of the pipe, the average velocity 
of the fluid flow in the branch, and the friction factor. These factors cause a pressure drop 
through the pipe branch. We assume the fluid to be laminar, incompressible, and in a steady 
state and the pressure drop D p (in units of  N/m2) in a branch of the network to be pro-
portional to the volumetric flow rate q (in units of m /s3 ) through that branch, such that by 
Poiseuille’s law

	 D 5p Rq	 (14.2.39)
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where R is the branch resistance coefficient in units of N-s/m5. A typical equation to predict 
R is given by R L dπ128 ( )4m5  for flow through long circular pipes, where L is the length 
of the branch and d the diameter of the pipe both in units consistent with those used for p 
and q.

Here we consider the basic element as a branch of the network analogous to a spring 
element, as shown in Figure 14 –14.

Using Eq. (14.2.39), we relate the volumetric flow rates to the pressures at each node by 
the matrix equation as follows:
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	 (14.2.40)

Equation (14.2.40) is considered the element equilibrium relations between the nodal pressures 
and volumetric flow rates. The stiffness matrix for the pipe resistance is now defined as the 
matrix relating the nodal volumetric flow rates to the nodal pressures. From Eq. (14.2.40), the 
element stiffness matrix is
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R

	 (14.2.41)

We can draw analogies between the pipe resistor element and the spring element from Chapter 2 
as follows: The nodal pressures are analogous to nodal displacements, the nodal volumetric 
flow rates are analogous to nodal forces, and the resistance R is analogous to the inverse of 
the spring constant k.

We will now use Eq. (14.2.39) for each branch of Figure 14 –13 along with the continu-
ity of flow that states that the mass of fluid passing all sections in a stream of fluid per unit 
time must be the same. For networks of a single fluid property with constant density, this is 
equivalent to 51 2Q Q  at two different cross sections of a pipe. In this network, we assume 
pressures at nodes 1, 2, and 3 to be unknown and use a baseline pressure of zero for the 
pressure at node 4.

We first use Eq. (14.2.39) to express the flow rates in each branch (element) as follows:
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	 (14.2.42)

■■ Figure 14 –14  Basic branch resistor element showing nodal pressures and flow rates
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We now apply the continuity of flow equations as follows:
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	 (14.2.43)

You should note that by continuity of flow, 52 5q q .
We now use Eq. (14.2.42) in Eq. (14.2.43) to obtain the following set of equations:
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	 (14.2.44)

In matrix form, we express Eqs. (14.2.44) as
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	 (14.2.45)

We will now demonstrate how to use the direct stiffness method to obtain the same system 
of linear equations as in Eq. (14.2.45). Using Eq. (14.2.41) for the stiffness matrix for each 
element branch, we have
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(14.2.46)

where the superscript numbers in Eq. (14.2.46) indicate the element branch. That is, element 
1 is from node 1 to node 4, element 2 is from node 1 to node 2, element 3 is from node 2 to 3 
in the upper section of pipe from 2 to 3, element 4 is from node 2 to node 3 along the lower 
section of pipe between nodes 2 and 3, and element 5 is from node 3 to 4, as indicated by the 
numbers above the matrices in Eq. (14.2.46). Using the stiffness matrices in Eq. (14.2.46) 
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along with the direct stiffness method, we assemble the global stiffness matrix and the global 
equations in the usual manner as
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	 (14.2.47)

where Q is analogous to an applied global force at node 1.
Comparing Eq. (14.2.47) to Eq. (14.2.45), we observe them to be identical.

Example 14.4

For the piping network shown in Figure 14 –13, let 5 101R , 5 52R , 5 23R , 5 34R , 
and 5 55R  all in units of N-s/m5. Set the pressure at node 4 to zero. Let Q 0.5 m /s35 . 
Determine the pressures at nodes 1, 2, and 3. Use the direct stiffness method to solve this 
problem.

SOLUTION:
From Eq. (14.2.46), the element stiffness matrices are
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Using the direct stiffness method or Eq. (14.2.47), we assemble the global stiffness matrix 
and global equations as
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where the global nodal volumetric flow rate at node 1 is 5 0.5 m /s1
3Q . There are no vol-

umetric flow rates at nodes 2 and 3. Therefore, 5 5 02 3Q Q .
Solving Eq. (14.2.49) simultaneously, the nodal pressures are

	 5 5 52.642 N m 1.462 N m 1.179 N m1
2

2
2

3
2p p p 	 (14.2.50)

■■ Figure 14 –15  Basic triangular element with nodal potentials

Finally, we should understand that the assumptions presented in this section do not always 
apply to real pipe network systems. It should be noted that complex pipe networks often are 
composed of piping with network fittings such as elbows, tees, contractors, expansions, valves, 
and pumps. Also, the flow may not always be laminar and steady state. Numerous programs 
(such as described in References [6, 7, 8]) have been developed to deal with these additional 
design problems.

	14.3 	T wo-Dimensional Finite Element Formulation
Because many fluid-flow problems can be modeled as two-dimensional problems, we now 
develop the equations for an element appropriate for these problems. Examples using this 
element then follow.

Step 1
The three-node triangular element in Figure 14 –15 is the basic element for the solution of the 
two-dimensional fluid-flow problem.

Step 2
The potential function is
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where pi pj, and pm are the nodal potentials (for groundwater flow, f  is the piezometric fluid 
head function, and the p s are the nodal heads), and the shape functions are again given by 
Eq. (6.2.18) or (13.5.2) as

	 a b g5 1 1
1

2
( )N

A
x yi i i i 	 (14.3.2)

with similar expressions for N j and Nm. The a s, b  s, and g s are defined by Eqs. (6.2.10).

Step 3
The gradient matrix { }g  is given by

	 5{ } [ ]{ }g B p 	 (14.3.3)

where the matrix [B] is again given by
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	 (14.3.5)

with	
�

�

�

�

f f
5 5g

x
g

y
x y 	 (14.3.6)

The velocity/gradient matrix relationship is now
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where the material property matrix is
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D
K

K
xx

yy
	 (14.3.8)

and the K s are permeabilities (for the seepage problem) of the porous medium in the x and y  
directions. For fluid flow around a solid object or through a smooth pipe, 5 5 1K Kxx yy .

Step 4
The element stiffness matrix is given by

	 5[ ] [ ] [ ][ ]∫∫∫k B D D dVT

V

	 (14.3.9)
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Assuming constant-thickness (t) triangular elements and noting that the integrand terms are 
constant, we have

	 [ ] [ ] [ ][ ] m s25k t A B D BT 	 (14.3.10)

which can be simplified to
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The force matrices are

	 5 5{ } [ ] [ ]∫∫∫ ∫∫∫f Q N dV Q N dVQ
T

V

T

V

	 (14.3.12)

for constant volumetric flow rate per unit volume over the whole element. On evaluating 
Eq. (14.3.12), we obtain
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We find that the second force matrix is
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This reduces to
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with similar terms on sides j-m and m-i [see Eqs. (13.5.19) and (13.5.20)]. Here 2Li j is the 
length of side i–j of the element and pq  is the assumed constant surface flow rate. Both Q and 

pq  are positive quantities if fluid is being added to the element. The units on Q and pq  are 
m /(m s)3 3 ⋅  and m /s. The total force matrix is then the sum of { }fQ  and { }fq .

Example 14.5

For the two-dimensional sandy soil region shown in Figure 14 –16, determine the potential 
distribution. The potential (fluid head) on the left side is a constant 10.0 m and that on 
the right side is 0.0. The upper and lower edges are impermeable. The permeabilities are 

5 5 3 225 10 m/s5K Kxx yy . Assume unit thickness.
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The finite element model is shown in Figure 14 –16. We use only the four triangular 
elements of equal size for simplicity of the longhand solution. For increased accuracy in 
results, we would need to refine the mesh. This body has the same magnitude of coordinates 
as Figure 13–25. Therefore, the total stiffness matrix is given by Eq. (13.5.40) as
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The force matrices are zero, because 5 0Q  and qp 05 . Applying the boundary con-
ditions, we have

	 5 5 5 510.0 m 01 4 2 3p p p p 	

The assembled total system of equations is then
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Solving the fifth of Eqs. (14.3.17) for 5p , we obtain

	 5 5 m5p 	

Using Eqs. (14.3.7) and (14.3.3) we obtain the velocity in element 2 as
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■■ Figure 14 –16  Two-dimensional porous medium
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■■ Figure 14 –17  Triangular element with pump located within element

where b 5 211 , b 5 25 , b 5 214 , g 5 211 , g 5 05 , and g 5 14  were obtained from 
Eq. (13.5.24). Simplifying Eq. (14.3.18), we obtain

	 v vx y125 10 m s 0(2) 5 (2)5 3 52 	

A line or point fluid source from a pump, for instance, can be handled in the same manner 
as described in Section 13.6 for heat sources. If the source is at a node when the discretized 
finite element model is created, then the source can be added to the row of the global force 
matrix corresponding to the global degree of freedom assigned to the node. If the source is 
within an element, we can use Section 13.6 to allocate the source to the proper nodes, as illus-
trated by the following example.

Example 14.6

A pump, pumping fluid at p 5 6500 m /h2Q , is located at coordinates (5, 2) in the element 
shown in Figure 14 –17. Determine the amount of pQ  allocated to each node. All nodal 
coordinates are in units of meters. Assume unit thickness of t 1mm5 .

The magnitudes of the numbers are the same as in Example 13.8. Therefore, the shape 
functions are identical to Eq. (13.6.7); when evaluated at the source x 5 m5 , y 2 m5 , they 
are equal to Eq. (13.6.8). Using Eq. (13.6.3), we obtain the amount of pQ  allocated to each 
node or equivalently the force matrix as
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	14.4 	 Flowchart and Example of a Fluid-Flow Program
Figure 14 –18 is a flowchart of a finite element process used for the analysis of two-dimensional 
steady-state fluid flow through a porous medium or through a pipe. Recall that flow through a 
porous medium is analogous to heat transfer by conduction. For more complicated fluid flows, 
see Reference [6].

We now present computer program results for a two-dimensional steady-state, incompress-
ible fluid flow. The program is based on the flowchart of Figure 14 –18.

For flow through a porous medium, we recall the analogies between conductive heat 
transfer and flow through a porous medium and use the heat transfer processor from Reference 
[4] to solve the problem shown in Figure 14 –19. The fluid flow problem shown discretized in 

■■ Figure 14 –18  Flowchart of two-dimensional fluid-flow process

START

END

Draw the geometry and apply
any boundary potentials

De�ne the element type and properties
(here the 2-D element is used)

Compute the element stiffness matrix [k] and nodal load
matrix {f} in global coordinates

Use the direct stiffness procedure to add [k] and {f} to the proper
locations in assemblage stiffness matrix [K] and load matrix {F}

Account for known potential boundary conditions and modify
the global stiffness matrix and force matrix accordingly

Compute the element velocities
and volumetric �ow rates

DO JE = 1, NE

Solve [K]{p} = {F} for {p}

Output results
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Figure 14 –19 has the top and bottom sides impervious, whereas the right side has a constant 
head of 3 cm and the left side has a constant head of 4 cm.

Results for the nodal potentials obtained using [4] are shown in Table 14 –2. They compare 
exactly with solutions obtained using another computer program (see Reference [5]).

	14.5 	 Electrical Networks
Current flow in electrical networks or circuits can be described by a system of linear equations 
developed using the direct stiffness method. In an electrical network such as the one shown in 
Figure 14 –20, a voltage source (such as from a battery) forces a current of electrons to flow 
through the network. When the current passes through a resistor (such as a lightbulb or motor), 
some of the voltage is absorbed by the resistor. By Ohm’s law, the voltage drop DV  across the 
resistor is given by

	 D 5V RI 	 (14.5.1)

where the voltage V is measured in units of volts, the resistance R is measured in ohms (the 
Greek omega symbol Ω or R is used to designate ohms), and the current flow I is measured in 
units of amperes or amps.

■■ Figure 14 –19  Two-dimensional fluid-flow problem

 Table 14 –2  Nodal potentials

Node Number Potential

1 4.00

2 3.50

3 3.00

4 4.00

5 3.00

6 4.00

7 3.50

8 3.00
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Here we consider the basic element as the resistor element analogous to a spring element 
shown in Figure 14 –21.

Using Ohm’s law, Eq. (14.5.1), we relate the voltage difference across the resistor to the 
current flow through each end of the resistor by the matrix equation as
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	 (14.5.2)

Equation (14.5.2) represents the element equilibrium relations between the nodal currents and 
nodal voltages.

The stiffness matrix for the resistor is now defined as the matrix relating the nodal voltages 
to the nodal currents. From Eq. (14.5.2), the stiffness matrix is then

	 5
2

2
[ ] 1 1

1 1








k R 	 (14.5.3)

We can draw analogies between the resistor element and the spring element from Chapter 2 
as follows: The nodal currents are analogous to nodal displacements, the nodal voltages are 
analogous to nodal forces, and the resistance R is analogous to the spring constant k.

We now describe some sign conventions associated with the solution of the network in 
Figure 14 –20. The network contains three closed loops. We designate these loops one (left 
loop), two (center loop), and three (right loop) and by standard circuit analysis indicate the 
currents flowing in each loop with current 1I , 2I , and 3I , respectively, shown by the curved 
arrows inside each loop. The designated directions of the loop currents are arbitrary, but we 
will use counterclockwise notation as positive in this description. Upon solving the equations 
for the currents, if a current is negative, then the actual direction of current flow is opposite to 

■■ Figure 14 –20  Typical electrical network (this one composed of three loops)
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■■ Figure 14 –21  Basic resistor element showing nodal currents and voltages
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that chosen or clockwise. We must be careful regarding the positive direction of the voltages 
provided by the battery. If the current-direction curved arrowhead shown points from the neg-
ative side (shorter side) within the battery to the positive (longer side), the voltage is taken as 
positive; otherwise the voltage is negative. For example, 1V  is positive as 1I  goes around in a 
counterclockwise manner into the short side of battery 1V .

Current flow in a loop is described by Kirchhoff’s law as follows: The algebraic sum of 
the product of resistance times current (RI) voltage drops in one direction around a loop equals 
the algebraic sum of the voltage sources (from batteries for instance) in the same direction 
around the loop.

We will now use both Ohm’s and Kirchhoff’s laws, along with afore-described sign con-
ventions to set up the three loop equations used to solve for the currents in each loop in 
Figure 14 –20. That is, from Figure 14 –20 for the three loops, we have

Loop 1:	 V V V VR R R1 2 3 11 1 5 	 (14.5.4)

where the voltage drops through the resistors associated with loop 1 are

	 V R I V R I I V R IR R R, ( ),1 1 1 2 2 1 2 3 3 15 5 2 5 	 (14.5.5)

Note that current 2I  from loop 2 also flows through branch AD of loop 1 with associated RI 
drop of 2( )2 2 2 2R I R I  due to 2I  flowing down the branch into 2R  from D towards A, whereas 
current 1I  flows up the branch into 2R  from A to D. Also, battery voltage 1V  is taken as positive 
in Eq. (14.5.4) as 1I  goes from the negative (short) side to the positive (long) side of this battery.
Similarly,

Loop 2:	 R I R R R R I R I V( )2 1 2 4 5 6 2 5 3 22 1 1 1 1 2 5 	 (14.5.6)

where R I2 12  is due to the flow 1I  through branch AD with a negative drop as 1I  is flowing 
through 2R  in the opposite direction from 2I  flowing into 2R  for loop 2.

Loop 3:	 R I R R R I V V( )5 2 5 7 8 3 2 32 1 1 1 5 2 2 	 (14.5.7)

Note that the battery voltages 2V  and 3V  are now negative in loop 3 as 3I  passes through the 
positive (long) side to the negative (short) side of both 2V  and 3V .

Equations (14.5.5) through (14.5.7) could now be expressed in matrix form as 5[ ]{ } { }K I V .  
We will leave this exercise to your discretion and instead illustrate how to use the direct stiff-
ness method to solve this electrical network with numerical values in Example 14.7.

Example 14.7

For the three-loop electrical network shown in Figure 14 –22, determine the currents in 
each loop. The resistances from each resistor and the voltages provided by each battery 
are shown in the figure. Use the stiffness matrix for the resistors and the direct stiffness 
method.
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SOLUTION:
The resistor-element stiffness matrices are given by Eq. (14.5.3) as follows:
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(14.5.8)

where the labels above the matrices indicate the currents from each loop going through that 
resistor. A zero means only one current going through that resistor.

Assembling the global equations using the direct stiffness method yields:
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	(14.5.9)

We should note that in assembling the equations, the stiffness matrices account for the 
currents going through each resistor. For instance, by Kirchhoff’s law, element 1 only has 
current 1I  from loop 1 current passing through it, while element 2 has positive current 1I  
going through it from the counterclockwise direction around loop 1 (upward current), and 
negative current 2I  going through it from the counterclockwise flow around loop 2 heading 
down through element 2, as shown in Figure 14 –22. Also, the voltage in loop 1 is 115 V 
by convention, as the current through loop 1 passes down through the negative (short) side 
of the battery to the positive (long) side, as shown in Figure 14 –22. Similarly, the voltage 
in loop 2 is considered positive in Eq. (14.5.9), as the current 2I  passes through the negative 
side of the battery to the positive side. Finally, the voltage in loop 3 is from both the 10 V 
and 5 V batteries. As the current in loop 3 goes from the positive side of the 10 V battery 
to the negative side, the voltage is considered 210 V through this battery. Similarly, the 

■■ Figure 14 –22  Three-loop electrical network
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current 3I  goes through the 5 V battery through the positive side to the negative side, so this 
voltage is also considered 25 V. The total voltage for 3V  is then V V10 5 153 5 2 2 5 2 .

Notice also that by convention we have chosen all loop currents to be positive in the 
counterclockwise direction resulting in all off-diagonal terms of the stiffness matrix to be 
negative.

Solving Eq. (14.5.9) simultaneously for the currents, we obtain

	 I I I2.638 amps 0.414 amps 0.646 amps1 2 35 5 5 2 	 (14.5.10)

The negative sign on 3I  indicates that 3I  is really in a clockwise direction in Figure 14 –22.
The branch current also can be obtained after determining the currents in each loop. 

If only one loop current passes through a branch, such as from A to B in Figure 14 –22, 
the branch current 2I  equals the loop current. If more than one loop current passes through 
a branch, such as A to D or B to C, the branch current is the algebraic sum of the loop 
currents in the branch (based on Kirchoff’s law). For example, the current in branch AD 
is I I 2.638 0.414 2.224 amps1 22 5 2 5  in the direction of 1I . Similarly, the current in 
branch BC is I I 0.414 ( 0.646) 1.060 amps2 32 5 2 2 5 .

■■ Figure 14 –23  Illustration of coulomb’s law for two charged particles
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	14.6 	 Electrostatics
Electrostatics describes the forces between charged bodies at known positions. We will first 
present some basic laws associated with the concept of electrostatics. We will then describe the 
finite element method for solving electrostatics problems where electric potentials and electric 
fields are of concern. For more details on electrostatics consult [8–11].

Coulomb’s Law
The charge on a body is denoted by symbol q. The units of q are 5 2coulombs ( Amp s)C . The 
charge of an electron is 2 3 21.60219 10 coulombs19 . For two small stationary particles with 
charges q1 and 1q , separated by distance r, as shown in Figure 14 –23, the electric force vector 1F  
with magnitude 1F  on charged particle 1 from charged particle 2 is given by coulomb’s law as

	
q q

r
N

π
( )F

n
4

1
1 2 21

0
2«

5 	 (14.6.1)
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where 21n  is the unit vector pointing from particle 2 to particle 1 and «0 is the permittivity of 
free space (electric constant) given by value 8.854 10 farads/m123 2  (or − −A s/V m) for force 
in newtons, charge in coulombs, and distance r in meters.

For an electrostatic field created by multiple charges, we extend coulomb’s law and use 
superposition that states the total force on a test or base charge 0q  located at x y z( , , )0 0 0  from 
several charges N (called a charge distribution) is the vector sum of individual forces. This 
force can be expressed as follows:

	 x y z q
q

ri

N
i

i
i∑ π

F n( , , )
4

0 0 0 0
1 0

2«
5

5

	 (14.6.2)

where ri denotes the distance from 0q  to each individual charge qi.
We now define the total electric field at position x y z( , , )0 0 0  due to a quantity of point 

charges N as force F x y z( , , )0 0 0  per charge 0q  by dividing both sides of Eq. (14.6.2) by 0q  as 
follows:

	 ∑ π
E n

«
5

5

( , , )
4

(V m)0 0 0
1 0

2
x y z

q

ri

N
i

i
i 	 (14.6.3)

The electric field is expressed in units of volts per meter. Given the electric field for a charge 
distribution, the force on a test charge q at any location (x, y, z), can be expressed by

	 x y z q x y zF E( , , ) ( , , )5 	 (14.6.4)

Electric fields are often illustrated by plots of field lines as shown in Figure 14 –24. These 
will also be shown by the computer program model results given by Examples 14.9 and 10.

We will subsequently derive the finite element equations for two-dimensional electrostatic 
problems. The basis for the finite element equations is the Poisson equation which is derived 
from Gauss’s law. Therefore, we now derive Gauss’s law in differential form.

Gauss’s Law
Gauss’s law relates the relationship between the distribution of electric charge in space, called 
the charge density r (in coulombs per cubic meter units (C/m )3 ) and the resulting electric field.  

■■ Figure 14 –24  Electric field lines surrounding a positive and a negative charge
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If the electric field from a point charge is spherically symmetric, coulomb’s law can be derived 
from Gauss’s law.

Consider the three-dimensional differential elemental volume shown in Figure 14 –25 
with a charge density r acting over it where we define charge density as the sum of charge in 
a differential element divided by the element volume given by

	
∑

ρ x y z

q

x y z
i

i

( , , ) (C m )3

D D D
> 	 (14.6.5)

By Gauss’s law, the total flux of electric field lines out of the surface in free space is equal 
to the total charge enclosed within the differential volume divided by «0. If there is no enclosed 
charge r 5( 0), every field line that enters the volume must exit it.

First consider the two faces normal to the x axis, as shown in Figure 14 –25, with areas Dy 
times Dz. The contribution of the flux out of the control volume surface is

	 ∆2 D D 1 D D1E y z E y zx x x 	 (14.6.6)

For small variations in E in the y and z directions and keeping the first two terms of the Taylor 
series expansion of the second term in Eq. (14.6.6), we have

	
�

∂
5 1 D1 DE E

E

x
xx x x

x 	 (14.6.7)

Substituting Eq. (14.6.7) into Eq. (14.6.6), yields

	 D D D
�

�

E

x
x y zx 	 (14.6.8)

Contributions to the other faces normal to the y and z axes have similar forms to Eq. (14.6.8). 
Setting the contributions from the surface fluxes equal to the total charge within the control 
volume divided by «0, we obtain

	
r

«
1 1 5 (V m )
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�
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E

x
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y

E

z
x y z 	 (14.6.9)

■■ Figure 14 –25  Differential control volume showing typical electric field lines entering and 
exiting the volume along sides x and 1x x∆  and charge density within element
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The left side of Equation (14.6.9) is called the divergence of the electric field vector. Therefore, 
the differential form of Gauss’s law is

	
r

«
= ? 5

0
E 	 (14.6.10)

where ∇ is the del operator (nabla symbol) defined by

	 = 5 1 1
�

�

�

�

�

�x y z
i j k	 (14.6.11)

and the dot represents the dot product.

Poisson’s Equation
We can express the electric field as a vector E as

	 f5 2 = (V m)E 	 (14.6.12)

where f  is the scalar electrostatic potential in units of volts (the negative sign is due to the fact 
that the E field is directed from positive to negative charges, while the potential increases in 
the opposite direction).

Substituting Eq. (14.6.12) into Eq. (14.6.10), we obtain

	 f
r

«
= ? = 5 2( )

0
	 (14.6.13)

or in explicit form, we write Eq. (14.6.13) as

	
f f f r

«
1 1 5
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2

2

2

2

2
0

�

�

�

�

�

�x y z
	 (14.6.14)

Equation (14.6.14) is called the Poisson equation in cartesian coordinates.

Dielectric Constants
For linear isotropic dielectric charges present, (isotropic dielectric constant meaning the dielec-
tric constant is the same in all directions), the total electric field vector points in the same 
direction as the applied electric field, such that

	 «5 0E E r 	

where «r is called the relative dielectric constant. Relative dielectric constant is also defined 
as the absolute electric constant of the material « divided by the electric constant «0. Relative 
dielectric constants (also called relative permittivity or in electrostatics relative static 
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permittivity) are used in solving electrostatics problems and are listed in textbooks on electro-
statics [8–9]. Typical values for some materials are:

5

5 5

5 5

5 5 8

Air at standard temperature and pressure 1.00058986,

Polyethylene 2.25, paper 3.5,

Silicon dioxide 3.9, rubber 7,

Graphite 10–15, Water 80 at 20 C.

Dielectric materials are used in transmission lines. In a coaxial cable, polyethylene is 
often used between the center conductor and outside shield. The relative static permittivity of a 
solvent is a relative measure of its polarity. For example, water, which is a very polar material, 
has a dielectric constant of 80 at 820 C as listed above, and hexane used as a spot remover has 
dielectric constant of 2.

The generalized Poisson’s equation, Eq. (14.6.13), with both free space charge and dielec-
tric charge present in any medium, is now given by (see [9–11])

	 r( )
0

« f
r

«
= ? = 5 2 	 (14.6.15)

Finite Element Formulation of a Two-Dimensional Triangle Element
We will now present the finite element formulation of the electrostatics problem.

The basic differential equation (Poisson’s equation) governing the two-dimensional elec-
trostatics problem in any isotropic medium based on Eq. (14.6.15) is given by
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y
	 (14.6.16)

where absolute permittivity « « «5 0r  and f5V  have been used in Eq. (14.6.16).
The steps defined in Chapter 6 will be followed to derive the stiffness matrix and equations 

for solving the electrostatics problem.

Step 1 Select Element Type
In the finite element method of solution, the basic triangle as described in Section 6.2 for 
stress analysis or Section 13.5 for heat transfer is the basis for two-dimensional finite element 
solutions, although the rectangular element (Section 6.6) and general quadrilateral element 
(Section 10.2) also can be used. For simplicity’s sake, we consider the so-called first order 
triangle with corner nodes only as shown in Figure 14 –26. The potentials vi, v j, and vm at 
nodes i, j, and m are analogous to the nodal temperatures of the heat transfer problem described 
in Chapter 13.

Step 2 Select a Potential Function
The potential function is described by the bilinear equation

	 V x y a a x a y( , ) 1 2 35 1 1 	 (14.6.17)
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Or in a manner as specifically shown in Section 6.2,
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	 (14.6.18)

where vi, v j, and vm are the nodal voltages or potentials, and the shape functions are again 
given by Eqs. (6.2.18), that is,

	 a b g5 1 1
1

2
( )N

A
x yi i i i 	 (14.6.19)

with similar expressions for N j and Nm. Here the a’s, b ’s, and g’s are defined by Eqs. (6.2.10).
As in the heat transfer problem, only a single scalar value (nodal potential) is the pri-

mary unknown at each node, as shown by Eq. (14.6.18). Again, we then have a scalar-valued 
boundary value problem.

Step 3 �Define the Potential Gradient/Potential and Electric Field/ 
Potential Gradient Relationships

We define the voltage or potential gradient matrix analogous to the temperature gradient 
material as
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	 (14.6.20)

Using Eq. (14.6.18) in Eq. (14.6.20), we have
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In compact matrix form, we express {g} as

	 5{ } [ ]{ }g B v 	 (14.6.22)

■■ Figure 14 –26  Basic triangular element with nodal potentials
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where gradient matrix [B] is again
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	 (14.6.23)

The electric field vector is given by
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grad5 2 5 2 = 5 2 2 	 (14.6.24)

Using Eq. (14.6.18) with Eq. (14.6.19) in Eq. (14.6.24), the electric field vector can be 
expressed as
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Using Eq. (14.6.20) and Eq. (14.6.22), we can express E in matrix form as
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	 (14.6.26)

The electric displacement field vector for linear and isotropic media D in C/m2 is related to the 
electric field vector E for linear and isotropic media by

	 D E(C m or A s m )2 2«5 2 	 (14.6.27)

Using Eq. (14.6.26) in Eq. (14.6.27), we express the electric field displacement/voltage gradi-
ent relationship analogous to the heat flux/temperature gradient relationship in Eq. (13.5.7) as
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	 (14.6.28)

Step 4 Derive the Element Stiffness Matrix and Equations
The element stiffness matrix is based on using the minimization of a functional similar to 
Eq. (13.4.10) with the functional called the electrostatic energy functional given by

	 π Ω5 1 rUe 	 (14.6.29)

where the potential from internal energy stored in the electric field (field energy) over the 
volume 9V  of the element is given by

	 «5 9
9

1

2
2∫∫∫U E dV

V

	 (14.6.30)

and the potential energy of the charge density r (analogous to weight density as in Eq. (6.2.41) 
or an internal heat source as in Eq. (13.4.11) is given by

	 ∫∫∫Ω r5 2 9r

9

V dV
V

	 (14.6.31)
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Noting that 5 ?E E2E  and using Eq. (14.6.24) for E in Eq. (14.6.30), we express U as
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	 (14.6.32)

We want to express eπ  as a function of the nodal voltages so that we can minimize pe with 
respect to these voltages to obtain the stiffness matrix and equations for the basic element. It 
is then most convenient to express the total energy in matrix form as a function of the nodal 
voltages, by using Eqs. (14.6.18), (14.6.19), (14.6.20), and (14.6.28) in Eqs. (14.6.31) and 
(14.6.32) as follows:

	 ∫∫∫ ∫∫∫π r5 9 2 9
9 9

1

2
{ } [ ]{ } { }{ } [ ]g D g dV v N dVe

T

V

T T

V

	 (14.6.33)

In general, for proper multiplication of column matrices {V} and r{ } in Eq. (14.6.33) (similar to 
Eq. (6.2.41) for body forces), the voltage function {V} must have a transpose on it. Hence, by 
the property of matrix transpose multiplication as illustrated in Eq. (A.2.10), 5{ } { } [ ]V v NT T T  
has been used in Eq. (14.6.33).

Now substituting Eq. (14.6.22) for {g} into Eq. (14.6.33), we obtain

	 r5 9 2 9
9 9

1

2
{ } [ ] [ ][ ] { } { } [ ] { }∫∫∫ ∫∫∫π v B D B dV v v N dVe

T T

V

T T

V

	 (14.6.34)

where the nodal voltages are independent of the general x – y coordinates, so {v} has been 
taken out of the integrals.

Now minimizing the total energy with respect to the nodal voltage matrix, we obtain

	
�

� ∫∫∫ ∫∫∫
π 









v

B D B dV v N dVe T

V

T

V
{ }

[ ] [ ][ ] { } [ ] { }r5 9 2 9
9 9

	 (14.6.35)

The first integral multiplied by the nodal voltage matrix in Eq. (14.6.35) represents the stiffness 
matrix, while the second integral represents the source or force matrix due to the charge density.

The integrand in Eq. (14.6.35) is constant. Therefore, the stiffness matrix in simplified 
form becomes

	 5[ ] [ ] [ ][ ] (C V)k t A B D BT 	 (14.6.36)

where t is the constant thickness of the element, A is the surface area of the element as 
determined by Eq. (6.2.9), [B] is given by Eq. (14.6.23), and [D] is given by Eq. (14.6.28). 
The specific form of Eq. (14.6.36) for the stiffness matrix of the three-noded triangle can be 
shown to be

	

γ γ
γ γ
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
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b b b b g g
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1 1 1
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1

[ ]
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t

i i i i i j i j i m i m

j j j j j m j m

m m m m

	 (14.6.37)
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where we must go counterclockwise around the element from the initial arbitrarily chosen node 
i to node j and then to node m.

For constant charge density acting uniformly over the element, the second integral in 
Eq. (14.6.35) is evaluated as described in Section 6.3 and given by Eq. (6.3.6) for body forces 
due to uniform weight density or for constant heat source by Eq. (13.5.16). This integral 
becomes
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


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
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r
5 5r

r

r

r

{ }
3

1
1
1

(C)

1

2

3

f

f

f

f

t A
	 (14.6.38)

Therefore, one-third of the assumed uniform charge density within the element is applied to 
each node.

Step 5 �Assemble the Element Equations to Obtain the Global  
Equations and Introduce Boundary Conditions

We obtain the global stiffness matrix, source matrix, and equations by using the direct stiffness 
method as

	 K k F fe e∑ ∑[ ] [ ] { } { }( ) ( )5 5 	 (14.6.39)

and

	 5{ } [ ]{ }F K v 	 (14.6.40)

where {v} is the total system nodal voltage matrix.

The boundary conditions are of two types.

1.	 Dirichlet or imposed potentials on surface 1S . These are enforced by applying a known 
voltage at one or more nodes (analogous to applying a known displacement in the stress 
analysis problem), such as imposing a potential or voltage at node 1 (say v 1V1 5 ) as 
shown in Figure 14 –27.

2.	 Neumann or derivative of voltage or potential is known on surface 2S . In this case, the 
electric field intensity, E grad V5 2  must be tangential to the surface 2S  as shown in 
Figure 14 –28. (These boundary conditions do not need to be specified in the finite element 
applications.)

■■ Figure 14 –27  Dirichlet or imposed boundary potential or voltage at node 1

er
V1 = 1

1
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Step 6 Solve for the Nodal Potentials or Voltages
We determine the unknown global potentials or voltages by solving the system of algebraic 
equations given by Eq. (14.6.40) with the boundary conditions invoked.

Step 7 Solve for the Electric Fields and Electric Displacement Fields
We determine the electric fields and electric displacement fields at each node or at element 
centroids using Eq. (14.6.26) and (14.6.28), respectively.

We now present a simple hand solution of an electrostatics problem.

Example 14.8

For the two-element model shown in Figure 14 –29, determine the nodal voltages at the right 
end. Node 1 has an applied voltage set to 10 V and node 2 is set to 0 V. The plate is one unit 
thick t( 1m)5  and the permittivity is « 5 5. There is no charge density.

■■ Figure 14 –28  Neumann-type derivative boundary conditions on electric field intensity (Line 
AB is a geometric and potential symmetry line.)

Line of symmetry
AB or S2

B Plate

A

Ex =

S2

∂V

n

te∇V
∂x

= 0

■■ Figure 14 –29  Plate subjected to nodal voltages and elements separated

2 3 3 3

4 4

1 m

2 m
i = 1

2

1 1

11

22

SOLUTION:
Using Eq. (13.5.6) with b  s and g s defined by Eq. (6.2.10), we obtain the following.

For element 1:

	

y y

y y

y y

x x

x x

x x

i

j

m

i

j

m

1 1 0,

1 0 1,

0 1 1
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1 3 2

3 2 1

2 1 3

1 2 3

3 1 2

2 3 1

b b

b b

b b

g g

g g

g g

5 5 2 5 2 5

5 5 2 5 2 5

5 5 2 5 2 5 2

5 5 2 5 2 5 2

5 5 2 5 2 5

5 5 2 5 2 5

	 (14.6.41)
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Similarly for element 2:

	
y y y y y y

x x x x x xγ
0 1 1, 1 0 1, 0 0 0

2 2 0, 0 2 2, 2 0 2

1 4 3 4 3 1 3 1 4

1 3 4 4 1 3 3 4 1

b b b

g g

5 2 5 2 5 2 5 2 5 2 5 5 2 5 2 5

5 2 5 2 5 5 2 5 2 5 2 5 2 5 2 5
	

(14.6.42)

Using Eqs. (14.6.41) and (14.6.42) in Eq. (14.6.23) for [B], Eq. (14.6.28) for [D] and 
A 1m25  in Eq. (14.6.36), we obtain the stiffness matrices of the two elements as
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	(14.6.43)

Similarly,
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Assembling the total stiffness matrix by the direct stiffness method, we obtain the global 
equations 5{ } [ ]{ }F K v  as
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	 (14.6.45)

Applying the boundary conditions of nodal voltages of 5 101v , v 0 V2 5 , we solve equa-
tions 3 and 4 of Eq. (14.6.45) for the nodal voltages 3v  and 4v  as

	 v v4.444 V, 5.556 V3 45 5 	 (14.6.46)

The electric field through elements 1 and 2 is determined using Eq. (14.6.26) as

    5 2 5 2
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2
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E B v 	 (14.6.47)
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and
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V m(2) (2) (2)E B v 	 (14.6.48)

We now present two computer model solutions of electrostatics problems.

■■ Figure 14 –30  Voltage variation throughout channel (See the full-color insert for a color 
version of this figure.)

Example 14.9

An infinitely long enclosed rectangular channel 1 m by 0.4 m is filled with air. The top is 
insulated from the sides and connected to a potential of 50 V. The sides and bottom are 
grounded (0 V). Assume the dielectric constant of air to be 1. Determine the voltage varia-
tion and the electric field through the channel.
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SOLUTION:
The finite element model of the channel is shown in Figure 14 –30 with the voltage 
variation throughout the channel. Figure 14 –31 shows the electric field variation in the 
y direction.

Example 14.10

A busbar is a rectangular conductor used in the distribution of electric power in a distri-
bution box at 110 V. The sides of the busbar give off 110 V. In the system shown in Figure 
14 –32, the bottom side is assumed ground at 0 V. Assume the medium around the busbar 
is air ( 1)« 5 . Also assume symmetry in geometry and potential with respect to a vertical 
line along the left side of the model. Therefore, the model is really one-half of the whole 
system. Determine the voltage distribution and maximum electric field intensity. Use a 
two-dimensional finite element model. Let the thickness be 0.1 m.

■■ Figure 14 –31  Electric field variation throughout channel
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■■ Figure 14 –32  Busbar surrounded by air along with the finite element model and the 
resulting voltage distribution (See the full-color insert for a color version of this figure.)

0.15 m

0.20 m

0.01 m

0.01 m
0.02 m

■■ Figure 14 –33  Electric field intensity magnitude
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SOLUTION:
The results in Figures 14 –32 and 14 –33 show the voltage distribution through the air 
around the busbar and the electric field intensity magnitude distribution. As the voltage 
has not died out to near zero along the right side of the model, more air should be used 
in the model. The maximum electric field intensity magnitude is 2689 V/m near the right 
edge of the busbar.

Summary Equations

Basic Equations for Fluid Flow through Porous  
Medium and through Pipes
Conservation of mass equation:

	 1 5in generated outM M M 	 (14.1.1)

or

	 r r r1 5 1v Adt Qdt v Adtx x dx 	 (14.1.2)

Darcy’s law:

	
f

5 2 5 2v K
d

d x
K gx xx xx x	 (14.1.3)

Basic differential equation for one-dimensional fluid flow through porous medium:
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Qxx 	 (14.1.6)

Basic differential equation for two-dimensional fluid flow through porous medium:
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Velocity/velocity potential relations for flow through pipe and around solid bodies:

	 v
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v
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f f
5 2 5 2 	 (14.1.13)

Basic differential equation for fluid flow in pipes and around solid bodies:
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	 (14.1.14)
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One-Dimensional Fluid Flow Finite Element Equations
Potential function for finite element formulation of one-dimensional fluid flow:

	 f 5 11 1 2 2N p N p 	 (14.2.1)

Velocity/gradient relationship based on Darcy’s law:

	 5 2[ ]{ }v D gx 	 (14.2.7)

Stiffness matrix for one-dimensional fluid flow through porous medium:
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xx 	 (14.2.15)

Force matrix terms for one-dimensional fluid flow through porous medium:
Due to volumetric flow from internal source:
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	 (14.2.16)

Due to surface flow rate:
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p 	 (14.2.17)

Hydraulic Network Equations
Poiseuille’s law for flow through hydraulic pipe network:

	 D 5p Rq	 (14.2.39)

Stiffness matrix for flow through pipe with resistance:
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R
	 (14.2.41)

Two-Dimensional Equations for Finite Element  
Formulation of Fluid Flow
Potential function:
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Velocity/gradient matrix relationship:
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Material property matrix:

	 5[ ]
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Stiffness matrix:
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Force matrix for uniform volumetric flow rate over element:

	 { }
3

1
1
1

m

s

3











5f

QV
Q 	 (14.3.13)

Force matrix for uniform surface flow over side of element:
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Force matrix for line or point fluid source:
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	 (14.3.19)

See Figure 14 –18 for flow chart for fluid flow computer program.

Electrical Networks
Ohm’s law:

	 D 5V RI 	 (14.5.1)

Voltage difference/current flow matrix equation:
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	 (14.5.2)

Stiffness matrix for resistor element:
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Electrostatics
Basic equations:

Coulomb’s law:

	
p«

5
4

1
1 2 21

0
2

q q

r
F

n
	 (14.6.1)

Gauss’s law:
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Poisson’s equation:
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	 (14.6.14)

Dielectric constants, ε, (See page 705).

Finite element equations for two-dimensional electrostatic analysis: 
Basic differential equation:
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	 (14.6.16)

Potential function:

	 ( )V x y a a x a y, 1 2 35 1 1 	 (14.6.17)

Gradient matrix:
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	 (14.6.20)

Gradient/nodal voltage matrix equation:

	 5{ } [ ]{ }g B v 	 (14.6.22)

where
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	 (14.6.23)

Electric field vector:
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Electric field/nodal voltage matrix equation:
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Electric displacement field/voltage gradient matrix equation:
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Electrostatic energy functional:

	 π Ω5 1 rUe 	 (14.6.29)

Electrostatic functional expressed as function of nodal voltages:

	 ∫∫∫ ∫∫∫π v B D B dV v v N dVe
T T

V

T T

V

1

2
{ } [ ] [ ][ ] { } { } [ ] { }r5 9 2 9

9 9

	 (14.6.34)

Stiffness matrix:

	

γ γ
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

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1 1 1

1 1
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m m m m

	 (14.6.37)

Force matrix for uniform charge density within element:

	





























r
5 5r

r

r

r

{ }
3

1
1
1

(C)

1

2

3

f

f

f

f

t A
	 (14.6.38)

Global equations:

	 5{ } [ ]{ }F K v 	 (14.6.40)
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14  |  Fluid Flow in Porous Media and through Hydraulic Networks720

Problems

	 14.1		  For the one-dimensional flow through the porous media shown in Figure P14 –1, 
determine the potentials at one-third and two-thirds of the length. Also determine 
the velocities in each element. Let A 0.2 m25 .

■■ Figure P14 –4

4

■■ Figure P14 –1

20 cm 20 cm 20 cm

A2 5 16 cm2 A3 5 8 cm2A1 5 24 cm2p1 5 20 cm

■■ Figure P14 –3

■■ Figure P14 –2

50

	 14.2		  For the one-dimensional flow through the porous medium shown in Figure P14 –2 
with fluid flux at the right end, determine the potentials at the third points. Also 
determine the velocities in each element. Let A 2 m25 .

	 14.3		  For the one-dimensional fluid flow through the stepped porous medium shown in 
Figure P14 –3, determine the potentials at the junction of each area. Also determine 
the velocities in each element. Let 2 cm/s5Kxx .

	 14.4		  For the one-dimensional fluid-flow problem (Figure P14 –4) with velocity known at 
the right end, determine the velocities and the volumetric flow rates at nodes 1 and 
2. Let 5 2 cm/sKxx .

	 14.5		  Derive the stiffness matrix, Eq. (14.2.15), using the first term on the right side of 
Eq. (13.4.17).

	 14.6		  For the one-dimensional fluid-flow problem in Figure P14 –6, determine the 
velocities and volumetric flow rates at nodes 2 and 3. Let 2 cm/s5Kxx .
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■■ Figure P14 –6

4 cm/s A1 5 8 cm2 A2 5 4 cm2

2 cm 2 cm

■■ Figure P14 –7

R2

P1

P2 P3

P4

QQ

(a)

(b)

q1

q2

q3

q4

q5

R1

R3

R4

R5

R2

P1

P2

P3Q

Q

q1

q2

q3

q4

P4

q5

R1

R3

R4
R5

■■ Figure P14 –8

	 14.7		  For the simple pipe networks shown in Figure P14 –7, determine the pressures at 
nodes 1, 2, and 3 and the volumetric flow rates through the branches. Assume the 
pressure at node 4 is zero. In network (a), let Q 1m /s35 . Let the resistances be, 

11R 5 , 22R 5 , 33R 5 , R 44 5 , and 55R 5  all in units of N-s/m5. In network (b), 
let 1m /s35Q  and the resistances be 101R 5 , 202R 5 , 303R 5 , 404R 5 , and 

505R 5  all in units of N-s/m5

	 14.8		  For the triangular element subjected to a fluid source shown in Figure P14 –8, deter-
mine the amount of pQ  allocated to each node.
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		 14.9		� For the triangular element subjected to the surface fluid source shown in 
Figure P14 –9, determine the amount of fluid force at each node.

■■ Figure P14 –11

■■ Figure P14 –10

■■ Figure P14 –9

10 cm/s

(4, 6)

All units centimeters)

(4, 2) (8, 2)

		 14.10	� For the two-dimensional fluid flow shown in Figure P14 –10, determine the 
potentials at the center and right edge.

	14.11–14.16	 �Using a computer program, determine the potential distribution in the two-
dimensional bodies shown in Figures P14 –11 to P14 –16.
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■■ Figure P14 –12

■■ Figure P14 –13

■■ Figure P14 –14

■■ Figure P14 –15
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	14.17–14.18	� For the direct current (DC) electrical networks shown in Figures P14 –17 and 
P14 –18, determine the currents through each loop and in branches AD and 
BC in Figure P14 –17 or branches AB and BC in Figure P14 –18.

■■ Figure P14 –17

A

B

D

C

5 Ω
5 V

10 V

I3

5Ω

10 Ω

20 V

5 Ω

40 Ω80 Ω

10 Ω10 Ω I2

I1

■■ Figure P14 –18

A C
B

10 Ω

5 Ω 20 Ω

60 Ω

12 V

I1 I2

I3

6 V

■■ Figure P14 –16

	14.19–14.20	� For the direct current (DC) networks consisting of batteries, resistors (shown 
by the rectangular shapes), and light emitting diodes (LEDs) (shown by the 
triangular shapes) in Figures P14 –19 and P14 –20, determine the currents 
through each loop, in branches AD and BC in Figure P14 –19, and in branch 
AD in Figure P14 –20. What are the currents in each diode in these figures? 
If the desired current through the LEDs is to be not greater than 0.015 amp, 
are the standard resistors acceptable?
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	14.21		  For the thin plate shown in Figure P14 –21, determine the voltages at the right end 
nodes. The voltages at nodes 1 and 2 are, respectively 20 and 0 V. Let the dielectric 
constant of the material be that of silicon dioxide ( 3.9)« 5 . Use a model of two 
elements as in Example 14.8. Assume a thickness of 0.01 m.

■■ Figure P14 –19

Vs = 9 V

R1 = 301 Ω R2 = 392 Ω

Green diode

Red diode

D

A

I1

I2

C

B

■■ Figure P14 –20

Vs = 12 V
R1 = 221 Ω R2 = 383 Ω

A

D

CB

I1 I2

■■ Figure P14 –21

1

2

4

1 m

2 m

3

			   For the following problems, use a computer program that solves electrostatics 
problems.

	14.22		  For the infinitely long air-enclosed channel shown in Figure P14 –22, determine the 
voltage variation through the air ( 1)« 5  and the largest electric field magnitude and 
where it is located.
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■■ Figure P14 –23

0.01 m

0.005 m

0.01 m

Air

	14.23		  A busbar is a rectangular conductor used in distribution of electric power in a 
distribution box. The ground and busbar are considered perfect insulators. Assume 
the potential of the busbar is 240 V. For the system shown in Figure P14 –23, 
determine the voltage distribution in the air ( 1)ε 5  around the busbar and the 
maximum electric field intensity.

■■ Figure P14 –22

3 m

V = 0

V = 0

V = 100 V around
semicircular arc

air

e = 1 2 m
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Thermal Stress

CHAPTER OBJECTIVES

At the conclusion of this chapter, you will be able to:

■	 Formulate the thermal stress problem.

■	 Derive the thermal force matrix for a one-dimensional bar.

■	 Derive the thermal force matrix for the three-noded triangle for both plane stress 
and plane strain.

■	 Solve examples of bars, trusses, and plane stress problems for thermal stresses due 
to temperature change.

■	 Show a finite element computer result for the thermal stress solution of a plate sub-
ject to temperature change.

■	 Demonstrate a finite element computer result for the thermal stress solution of a 
three-dimensional object subjected to temperature change.

Introduction
In this chapter, we consider the problem of thermal stresses within a body. First, we will discuss 
the strain energy due to thermal stresses (stresses resulting from the constrained motion of a 
body or part of a body during a temperature change in the body).

The minimization of the thermal strain energy equation is shown to result in the thermal 
force matrix. We will then develop this thermal force matrix for the one-dimensional bar ele-
ment and the two-dimensional plane stress and plane strain elements.

We will outline the procedures for solving both one- and two-dimensional problems and 
then provide solutions of specific problems, including illustration of a computer program used 
to solve thermal stress problems for two- and three-dimensional stress problems.

	15.1 	 Formulation of the Thermal Stress  
Problem and Examples

In addition to the strains associated with the displacement functions due to mechanical loading, 
there may be other strains within a body due to temperature variations, swelling (moisture 
differential), or other causes. We will concern ourselves only with the strains due to temperature 
variation, T« , and will consider both one- and two-dimensional problems.

C H A P T E R 

15

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



15  |  Thermal Stress728

Temperature changes in a structure can result in large stresses if not considered properly 
in design. In bridges, improper constraint of beams and slabs can result in large compressive 
stresses and resulting buckling failures due to temperature changes. In statically indeterminate 
trusses, members subjected to large temperature changes can result in stresses induced in mem-
bers of the truss. Similarly, machine parts constrained from expanding or contracting may have 
large stresses induced in them due to temperature changes. Composite members made of two 
or more different materials may experience large stresses due to temperature change if they are 
not thermally compatible; that is, if the materials have large differences in their coefficients of 
thermal expansion, stresses may be induced even under free expansion (Figure 15 –1).

When a member undergoes a temperature change the member attempts to change 
dimensions. For an unconstrained member AB (Figure 15 –2) undergoing uniform change in 
temperature T, the change in the length L is given by

	 d a5 TLT 	 (15.1.1)

where a is called the coefficient of thermal expansion and T is the change in temperature. The 
coefficient a is a mechanical property of the material having units of 1 C⁄ 8  (where 8C is degrees 
Celsius). In Eq. (15.1.1), d T  is considered to be positive when expansion occurs and negative 
when contraction occurs. Typical values of a are: for structural steel (12 10 ) C6 ⁄a 5 3 82  and 
for aluminum alloys (23 10 ) C6a 5 3 82 ⁄ .

Based on the definition of normal strain, we can determine the strain due to a uniform 
temperature change. For the bar subjected to a uniform temperature change T (Figure 15 –2), 

■■ Figure 15 –1  Composite member composed of two materials with different coefficients of 
thermal expansion

a1

a2

■■ Figure 15 –2  (a) Unconstrained member and (b) same member subjected to uniform 
temperature increase

L
A B

L
A B

(a)

d T

(b)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



15.1  Formulation of the Thermal Stress Problem and Examples 729

the strain is the change in a dimension due to a temperature change divided by the original 
dimension. Considering the axial direction, we then have

	 TT a« 5 	 (15.1.2)

Since the bar in Figure 15 –2 is free to expand, that is, it is not constrained by other members or 
supports, the bar will not have any stress in it. In general, for statically determinate structures, 
a uniform temperature change in one or more members does not result in stress in any of the 
members. That is, the structure will be stress free. For statically indeterminate structures, a 
uniform temperature change in one or more members of the structure usually results in stress 

Ts  in one or more members. We can have strain due to temperature change T«  without stress 
due to temperature change, and we can have Ts  without any actual change in member lengths 
or without strains.

We will now consider the one-dimensional thermal stress problem. The linear stress/strain 
diagram with initial (thermal) strain T« 5 «( )0  is shown in Figure 15 –3.

For the one-dimensional problem, we have, from Figure 15 –3,

	
E

x
x

T
s

« 5 1 « 	 (15.1.3)

If, in general, we let E D5 21 / [ ] 1, then in general matrix form Eq. (15.1.3) can be written as

	 D Ts« 5 1 «2{ } [ ] { } { }1 	 (15.1.4)

From Eq. (15.1.4), we solve for s{ } as

	 D Ts 5 « 2 «{ } ({ } { })	 (15.1.5)

The strain energy per unit volume (called strain energy density) is the area under the s2« 
diagram in Figure 15 –3 and is given by

	 u Ts5 « 2 «
1

2
{ }({ }) { })0 	 (15.1.6)

Using Eq. (15.1.5) in Eq. (15.1.6), we have

	 u DT
T

T5 « 2 « « 2 «
1

2
({ } { }) [ ]({ } { })0 	 (15.1.7)

where, in general, the transpose is needed on the strain matrix to multiply the matrices properly.

■■ Figure 15 –3  Linear stress/strain law with initial thermal strain

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



15  |  Thermal Stress730

The total strain energy is then

	 ∫U u dV
V

5 0 	 (15.1.8)

Substituting Eq. (15.1.7) into Eq. (15.1.8), we obtain

	 ∫U D dV
V

T
T

T5 « 2 « « 2 «
1

2
({ } { }) [ ]({ } { }) 	 (15.1.9)

Now, using B d« 5{ } [ ]{ } in Eq. (15.1.9), we obtain

	 ∫U B d D B d dVT
T

T
V

5 2 « 2 «
1

2
([ ]{ } { }) [ ]([ ]{ } { }) 	 (15.1.10)

Simplifying Eq. (15.1.10) yields

	

1

2
({ } [ ] [ ][ ]{ } { } [ ] [ ]{ }

{ } [ ][ ]{ } { } [ ]{ })

∫U d B D B d d B D

D B d D dV

T T
V

T T
T

T
T

T
T

T

5 2 «

2 « 1 « «

	 (15.1.11)

The first term in Eq. (15.1.11) is the usual strain energy due to stress produced from mechanical 
loading—that is,

	 ∫U d B D B d dVL
T

V
T5

1

2
{ } [ ] [ ][ ]{ } 	 (15.1.12)

Terms 2 and 3 in Eq. (15.1.11) are identical and can be written together as

	 ∫U d B D dVT
T

V
T

T5 «{ } [ ] [ ]{ } 	 (15.1.13)

The last (fourth) term in Eq. (15.1.11) is a constant and drops out when we apply the principle 
of minimum potential energy by setting

	
�

�
5

{ }
0

U

d
	 (15.1.14)

Therefore, letting U U UL T5 1  and substituting Eqs. (15.1.12) and (15.1.13) into 
Eq. (15.1.14), we obtain two contributions as

	
�

� ∫5
{ }

[ ] [ ][ ] { }
U

d
B D B dV d

L T
V

	 (15.1.15)

and	
�

� ∫5 « 5
{ }

[ ] [ ]{ } { }
U

d
B D dV f

T T
V

T T 	 (15.1.16)

We recognize the integral term in Eq. (15.1.15) that multiplies by the displacement matrix d{ } 
as the general form of the element stiffness matrix [k], whereas Eq. (15.1.16) is the load or 
force vector due to temperature change in the element.
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One-Dimensional Bar
We will now consider the one-dimensional thermal stress problem.We define the thermal 
strain matrix for the one-dimensional bar made of isotropic material with coefficient of ther-
mal expansion a, and subjected to a uniform temperature rise T, as

	 TT xT a« 5 « 5{ } { } { }	 (15.1.17)

where the units on a are typically 8(mm/mm)/ C.
For the simple one-dimensional bar (with a node at each end), we substitute Eq. (15.1.17) 

into Eq. (15.1.16) to obtain the thermal force matrix as

	 ∫f A B D T dxT
T

L
a5{ } [ ] [ ]{ }

0
	 (15.1.18)

Recall that for the one-dimensional case, from Eqs. (3.10.15) and (3.10.13), we have

	 





D E B
L L

5 5 2[ ] [ ] [ ]
1 1

	 (15.1.19)

Substituting Eqs. (15.1.19) into Eq. (15.1.18) and simplifying, we obtain the thermal force 
matrix as

	




















f
f

f
E TA
E TA

T
T

T

a
a

5 5
2{ }

1

2
	 (15.1.20)

Two-Dimensional Plane Stress and Plane Strain
For the two-dimensional thermal stress problem, there will be two normal strains, xT«  and 

yT« , along with a shear strain xyTg  due to the change in temperature because of the different 
mechanical properties (such as E Ex y± ) in the x and y directions for the anisotropic material 
(see Figure 15 –4). The thermal strain matrix for an anisotropic material is then

	 { }

















T

xT

yT

xyTg

« 5

«

« 	 (15.1.21)

■■ Figure 15 –4  Differential two-dimensional element (a) before and (b) after being subjected 
to uniform temperature change for an anisotropic material

x

y

dy
dx

(a)

dx + exT dx

dy + eyT dy

(b)

p
2
gxyT−
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For the case of plane stress in an isotropic material E Ex y5( ) with coefficient of thermal 
expansion a subjected to a temperature rise T, the thermal strain matrix is

	












T
TT

a
a« 5{ }
0

	 (15.1.22)

No shear strains are caused by a change in temperature of isotropic materials, only expansion 
or contraction.

For the case of plane strain in an isotropic material, the thermal strain matrix is

	
a
a« 5 1{ } (1 )
0

ν












T
TT 	 (15.1.23)

For a constant-thickness (t), constant-strain triangular element, Eq. (15.1.16) can be 
simplified to

	 5 «{ } [ ] [ ]{ }f B D tAT
T

T 	 (15.1.24)

The forces in Eq. (15.1.24) are contributed to the nodes of an element in an unequal manner 
and require precise evaluation. It can be shown that substituting Eq. (6.1.8) for [D], Eq. (6.2.34) 
for [B], and Eq. (15.1.22) for T«{ } for a plane stress condition into Eq. (15.1.24) reveals the 
constant-strain triangular element thermal force matrix to be

	



















































a

b

g

b

g

b

g

5 5
2

{ }
2(1 )�

f

f

f

f

EtT

v
T

Tix

Tiy

Tmy

i

i

j

j

m

m

	 (15.1.25)

where the b  s and g s are defined by Eqs. (6.2.10).

Axisymmetric Element
For the case of an axisymmetric triangular element of isotropic material subjected to uniform 
temperature change, the thermal strain matrix is

	





































g

a
a
a

« 5

«

«

«
5

u
{ }

0

T
T
TT

rT

zT

T

r zT

	 (15.1.26)
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15.1  Formulation of the Thermal Stress Problem and Examples 733

The thermal force matrix for the three-noded triangular element is obtained by substituting the 
[B] from Eq. (9.1.19) and Eq. (9.1.21) into the following:

	 ∫π5 «{ } 2 [ ] [ ]{ }f B D rdAT

A

T
T 	 (15.1.27)

For the element stiffness matrix evaluated at the centroid ( , )r z , Eq. (15.1.27) becomes

	 { } 2 [ ] [ ]{ }πf rA B DT
T

T5 « 	 (15.1.28)

where B[ ] is given by Eq. (9.2.3), A is the surface area of the element which can be found in 
general from Eq. (6.2.8) when the coordinates of the element are known, and [D] is given by 
Eq. (9.2.6).

We will now describe the solution procedure for both one- and two-dimensional thermal 
stress problems.

Step 1
Evaluate the thermal force matrix, such as Eq. (15.1.20) or Eq. (15.1.25). Then treat this 
force matrix as an equivalent (or initial) force matrix F{ }0  analogous to that obtained when we 
replace a distributed load acting on an element by equivalent nodal forces (Chapters 4 and 5 
and Appendix D).

Step 2
Apply F K d F5 2{ } [ ]{ } { }0 , where if only thermal loading is considered, we solve 
F K d5{ } [ ]{ }0  for the nodal displacements. Recall that when we formulate the set of simulta-

neous equations, {F} represents the applied nodal forces, which here are assumed to be zero.

Step 3
Back-substitute the now known {d} into step 2 to obtain the actual nodal forces, 
F K d F5 2{ }( [ ]{ } { })0 .

Hence, the thermal stress problem is solved in a manner similar to the distributed load 
problem discussed for beams and frames in Chapters 4 and 5. We will now solve the following 
examples to illustrate the general procedure.

EXAMPLE 15.1

For the one-dimensional bar fixed at both ends and subjected to a uniform temperature rise 
30 C5 8T  as shown in Figure 15 –5, determine the reactions at the fixed ends and the axial stress 

in the bar. Let 200 GPa5E , 24 cm25A , 1.2 m5L , and 1.25 10 (mm / mm) / C6a 5 3 82 .

■■ Figure 15 –5  Bar subjected to a uniform temperature rise

 T 5 30°C
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SOLUTION:
Two elements will be sufficient to represent the bar because internal nodal displacements 
are not of importance here. To solve F K d5{ } [ ]{ }0 , we must determine the global stiffness 
matrix for the bar. Hence, for each element, we have

	
1 2 2 3

[ ]
/ 2

1 1
1 1
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m
[ ]

/ 2
1 1
1 1
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	 (15.1.29)

where the numbers above the columns in the [k] s indicate the nodal displacements associ-
ated with each element.

Step 1
Using Eq. (15.1.20), the thermal force matrix for each element is given by

	 { } { }(1) (2)




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


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





f
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f
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a

a
a

5
2

5
2 	 (15.1.30)

where these forces are considered to be equivalent nodal forces.

Step 2
Applying the direct stiffness method to Eqs. (15.1.29) and (15.1.30), we assemble the global 
equations F K d5{ } [ ]{ }0  as
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	 (15.1.31)

Applying the boundary conditions u 5 01  and u 5 03  and solving the second equation of 
Eq. (15.1.31), we obtain

	 u 5 02 	 (15.1.32)

Step 3
Back-substituting Eq. (15.1.32) into the global equation F K d F5 2{ } [ ]{ } { }0  for the nodal 
forces, we obtain the actual nodal forces as
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	 (15.1.33)

Using the numerical quantities for E, a, T, and A in Eq. (15.1.33), we obtain

	 180 kN 0 180 kN1 2 35 5 5 2F F Fx x x 	
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as shown in Figure 15 –6. The stress in the bar is then

	
180 kN

24 10 m
75 MPa (compressive)

4 2
s 5

3
5

2
	 (15.1.34)

■■ Figure 15 –6  Free-body diagram of the bar of Figure 15 –5

180 kN 180 kN

■■ Figure 15 –7  Bar assemblage for thermal stress analysis

EXAMPLE 15.2

For the bar assemblage shown in Figure 15 –7, determine the reactions at the fixed ends 
and the axial stress in each bar. Bar 1 is subjected to a temperature drop of 810 C. Let 
bar 1 be aluminum with 70 GPaE 5 , a 5 3 8223 10 (mm/mm)/ C6 , A 5 3 212 10 m4 2,  
and 5 2 mL . Let bars 2 and 3 be brass with 100 GPaE 5 , a 5 3 8220 10 (mm/mm)/ C6 ,  

6 10 m4 2A 5 3 2 , and 2 mL 5 .

SOLUTION:
We begin the solution by determining the stiffness matrices for each element.

Element 1

	
1 2
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2 	 (15.1.35)

Elements 2 and 3
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2 4
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	(15.1.36)
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Step 1
We obtain the element thermal force matrices by evaluating Eq. (15.1.20). First, evaluating 

E TAa2  for element 1, we have

	 (70 10 )(23 10 )( 10)(12 10 ) 19.32 kN6 6 4E TAa2 5 2 3 3 2 3 52 2 	 (15.1.37)

where the 210 term in Eq. (15.1.37) is due to the temperature drop in element 1. Using the 
result of Eq. (15.1.37) in Eq. (15.1.20), we obtain
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2
	 (15.1.38)

There is no temperature change in elements 2 and 3, and so

	

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
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f f5 5{ } { }
0
0

(2) (3) 	 (15.1.39)

Step 2
Assembling the global equations using Eqs. (15.1.35), (15.1.36), (15.1.38), and (15.1.39) 
into F K d5{ } [ ]{ }0 , we obtain
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2 	 (15.1.40)

where the right-side thermal forces are considered to be equivalent nodal forces. Using the 
boundary conditions

	 u u u5 5 50 0 01 3 4 	 (15.1.41)

we obtain, from the second equation of Eq. (15.1.40),

	 1000(102) 19.322u 5 2 	

Solving for u2, we obtain

	 1.89 10 m2
4u 5 2 3 2 	 (15.1.42)

Step 3
Back-substituting Eq. (15.1.42) into the global equation for the nodal forces, 
F K d F5 2{ } [ ]{ } { }0 , we have
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	 (15.1.43)
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Simplifying Eq. (15.1.43), we obtain the actual nodal forces as
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	 (15.1.44)

A free-body diagram of the bar assemblage is shown in Figure 15 –8. The stresses in each 
bar are then tensile and given by
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	 (15.1.45)

■■ Figure 15 –8  Free-body diagram of the bar assemblage of Figure 15 –7

EXAMPLE 15.3

For the plane truss shown in Figure 15 –9, determine the displacements at node 1 and the axial 
stresses in each bar. Bar 1 is subjected to a temperature rise of 47.62 C8 . Let 210 GPa5E ,  

12.5 10 (mm/mm)/ C6a 5 3 82 , and 12 cm25A  for both bar elements.

■■ Figure 15 –9  Plane truss for thermal stress analysis

x ′ x ′

2.4 m

1.8 m
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SOLUTION:
First, using Eq. (3.4.23), we determine the stiffness matrices for each element.

Element 1
Choosing x9 from node 2 to node 1, u 5 890 , and so u 5cos 0, u 5sin 1, and
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	 (15.1.46)

Element 2
Choosing x9 from node 3 to node 1, u 5 8 2 8 5 8180 53.13 126.87 , and so u 5 2cos 0.6, 

u 5sin 0.8 and
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	(15.1.47)

Step 1
We obtain the element thermal force matrices by evaluating Eq. (15.1.20) as follows:

	 (210 10 )(12.5 10 )(47.62)(12 10 ) 150.0 kN6 6 4E TAa2 5 2 3 3 3 5 22 2 	 (15.1.48)

Using the result of Eq. (15.1.48) for element 1, we then have the local thermal force matrix as
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	 (15.1.49)

There is no temperature change in element 2, so
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	 (15.1.50)

Recall that by Eq. (3.4.16), f T f9 5{ } [ ]{ }. Since we have shown that T T T52[ ] [ ]1 , we can 
obtain the global forces by premultiplying Eq. (3.4.16) by T T[ ]  to obtain the element nodal 
forces in the global reference frame as

	 f T fT5 9{ } [ ] { }	 (15.1.51)
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Using Eq. (15.1.51), the element 1 global nodal forces are then
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	 (15.1.52)

where the order of terms in Eq. (15.1.52) is due to the choice of the x9 axis from node 2 to 
node 1 and where [T], given by Eq. (3.4.15), has been used.

Substituting the numerical quantities C 5 0 and S 5 1 (consistent with x9 for element 1), 
and 15019 5f x , 9 5 01f y , 15029 5 2f x , and 9 5 02f y  into Eq. (15.1.52), we obtain

	 0 150 kN 0 150 kN2 2 1 15 5 2 5 5f f f fx y x y 	 (15.1.53)

These element forces are now the only equivalent global nodal forces, because element 2 is 
not subjected to a change in temperature.

Step 2
Assembling the global equations using Eqs. (15.1.46), (15.1.47), and (15.1.53), into 
F K d5{ } [ ]{ }0 , we obtain
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	 (15.1.54)

The boundary conditions are given by

	 u u v u v5 5 5 5 50 0 0 0 01 2 2 3 3 	 (15.1.55)

Using the boundary condition Eqs. (15.1.55) and the second equation of Eq. (15.1.54), 
we obtain

	 (1.89 84,000) 15013 5v 	

or	 9.45 10 m 0.945 mm1
45 3 52v 	 (15.1.56)

Step 3
We now illustrate the procedure used to obtain the local element forces in local coordinates; 
that is, the local element forces are

	 99 5 9 9 2{ } [ ]{ } { }0f k d f 	 (15.1.57)
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We determine the actual local element nodal forces by using the relationship pd T d9 5{ } [ ]{ } 
in Eq. (15.1.57) the usual bar element k9[ ] matrix [Eq. (3.1.14)], the transformation matrix 

pT[ ] [Eq. (3.4.8)], and the calculated displacements and initial thermal forces applicable for 
the element under consideration. Substituting the numerical quantities for element 1, from 
Eq. (15.1.57) into p 99 5 9 2[ ] [ ][ ]{ } { }0f k T d f , we have
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(15.1.58)

Simplifying Eq. (15.1.58), we obtain

	 50.8 kN 50.8 kN2 19 95 5 2f fx x 	 (15.1.59)

Dividing the local element force 91f x (which is the far-end force consistent with the conven-
tion used in Section 3.5) by the cross-sectional area, we obtain the stress as
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Similarly, for element 2, we have
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(15.1.61)
Simplifying, Eq. (15.1.61), we obtain

	 63.5 kN 63.5 kN3 19 95 2 5f fx x 	 (15.1.62)

where no initial thermal forces were present for element 2 because the element was not 
subjected to a temperature change. Dividing the far-end force f x

9
1  by the cross-sectional 

area results in

	 52.9 MPa ( )(2)s 5 T 	 (15.1.63)

For two- and three-dimensional stress problems, this direct division of force by 
cross-sectional area is not permissible. Hence, the total stress due to both applied loading 
and temperature change must be determined by

	 L Ts s s5 2{ } { } { }	 (15.1.64)
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We now illustrate Eq. (15.1.64) for bar element 1 of the truss of Example 15.3. For the 
bar, Ls  can be obtained using Eq. (3.5.6) C dLs 5 9{ } [ ]{ }, and Ts  is obtained from

	 D E TT Ts a5 « 5{ } [ ]{ } 	 (15.1.65)

because D E5[ ]  and TT a« 5{ }  for the bar element. The stress in bar element 1 is then 
determined to be

	





















E

L
C S C S

u

v

u

v

E Ts a5 2 2 2[ ](1)

2

2

1

1

	 (15.1.66)

Substituting the numerical quantities for element 1 into Eq. (15.1.66), we obtain

	
210 10

2.4
[0 1 0 1]

0
0
0

9.45 10

(210 10 )(12.5 10 ) (47.62)(1)
6

4

6 6s 5
3

2

3

2 3 3

2

2



















  (15.1.67)

or	 42.3 10 kN / m 42.3 MPa ( )(1) 3 2s 5 3 5 C 	 (15.1.68)

We will now illustrate the solutions of two plane thermal stress problems.

EXAMPLE 15.4

For the plane stress element shown in Figure 15 –10, determine the element equations. The 
element has a 15000 kN/m2 pressure acting perpendicular to side j–m and is subjected to a 
16 C8  temperature rise.

SOLUTION:
Recall that the stiffness matrix is given by [Eq. (6.2.52) or (6.4.1)]

	 5[ ] [ ] [ ][ ]k B D B tAT 	 (15.1.69)

and	
6 cm 0.06 m 2 cm 0.02 m

6 cm 0.06 m 2 cm 0.02 m

0 4 cm 0.04 m

b g

b g

b g

5 2 5 2 5 5 2 5 2 5

5 2 5 5 5 2 5 2 5

5 2 5 5 2 5 5

y y x x

y y x x

y y x x

i j m i m j

j m i j i m

m i j m j i

	

and	
(6)(4)

2
12 cm 12.0 10 m2 4 25 5 5 3 2A 	 (15.1.70)
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Therefore, substituting the results of Eqs. (15.1.70) into Eq. (6.2.34) for B[ ], we obtain

	 [ ]
10

24

6 0 6 0 0 0
0 2 0 2 0 4
2 6 2 6 4 0

10
4

2

















5

2

2 2

2 2 2

3 2B 	 (15.1.71)

Assuming plane stress conditions to be valid, we have

	 [ ]
1

1 0
1 0

0 0
1

2

210 10

1 (0.25)

1 0.25 0
0.25 1 0
0 0 0.375

2

6

2ν

ν
ν

ν



































5
2

2

5
3

2
D

E
	

	 (28 10 )
8 2 0
2 8 0
0 0 3

kN

m
6

2

















5 3 	 (15.1.72)

Also,	 [ ] [ ]
10

24
(2) 10

3 0 1
0 1 3
3 0 1
0 1 3
0 0 2
0 2 0

(28 10 )
8 2 0
2 8 0
0 0 3

4
2 6









































5 3 3

2 2

2 2

2

2
32B DT 	 (15.1.73)

■■ Figure 15 –10  Plane stress element subjected to mechanical loading and a 
temperature change

6 cm

4 cm

2 cm

15,000 kN/m2

2 cm
210 GPa
12.5 (mm/mm)/°C
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Simplifying Eq. (15.1.73), we obtain

	 [ ] [ ]
(28)(2) 10

24

24 6 3
2 8 9

24 6 3
2 8 9
0 0 6
4 16 0

8

























5
3

2 2 2

2 2 2

2

2 2
B DT 	 (15.1.74)

Therefore, substituting the results of Eqs. (15.1.71) and (15.1.74) into Eq. (15.1.69) yields 
the element stiffness matrix as

	

[ ] (1 10 m) (12 10 m )
10

24
2 10

56 10

24

24 6 3
2 8 9

24 6 3
2 8 9
0 0 6
4 16 0

3 0 3 0 0 0
0 1 0 1 0 2
1 3 1 3 2 0

2 4 2
4

2
8

k 5 3 3 3 3
3

3

2 2 2

2 2 2

2

2 2

2

2 2

2 2 2

2 2 



















































−

	 (15.1.75)

Simplifying Eq. (15.1.75), we have the element stiffness matrix as

	 [ ] 2.33 10

75 15 69 3 6 12
15 35 3 19 18 16
69 3 75 15 6 12

3 19 15 35 18 16
6 18 6 18 12 0

12 16 12 16 0 32

kN

m
4

























5 3

2 2 2 2

2 2 2

2 2 2

2 2 2 2

2 2 2

2 2 2

k 	 (15.1.76)

Using Eq. (15.1.25), the thermal force matrix is given by

	
{ }

2(1 )

(12.5 10 )(210 10 )(1 10 )(16)

2(1 0.25)

3
1
3
1
0
2

2 10 5.6

3
1
3
1
0
2

6 6 2
2

ν























































































a

b

g

b

g

b

g

5
2

5
3 3 3

2

2

2

2
3 5

2

2

2

2 2
2f

EtT
T

i

i

j

j

m

m

	

or	 { }

16.8
5.6

16.8
5.6

0
11.2

kN





























5

2

2

2
fT 	 (15.1.77)
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The force matrix due to the pressure applied alongside j–m is determined as follows:

	

[(4 2) (6 0) ] 6.326 cm

cos 15,000
6

6.326
14,227 kN/m

sin 15,000
1

6.326
4742 kN/m

-
2 2 1/2

2

2













u

u

5 2 1 2 5

5 5 5

5 5 5

L

p p

p p

j m

x

y

	 (15.1.78)

where θ is the angle measured from the x axis to the normal to surface j–m. Using Eq. (6.3.7) 
to evaluate the surface forces, we have

	

f N
p

p
dS

N

N

N

N

N

N

p

p
dS

tL p

p

L S
T

S

x

y

i

i

j

j

m

m

S

j m

x

y

j m x

y

j m

j m

∫∫

∫∫























































































5

5 5

{ } [ ]

0

0

0

0

0

0

2

0 0
0 0
1 0
0 1
1 0
0 1

evaluated
alongside -

-

-

-

	 (15.1.79)

Evaluating Eq. (15.1.79), we obtain

	 { }
(1 10 m)(6.326 10 m)

2

0 0
0 0
1 0
0 1
1 0
0 1

14,227

4742

0
0
4.5
1.5
4.5
1.5

kN
2 2

5
3 3

5
2 2

fL

































































	 (15.1.80)

Using Eqs. (15.1.76), (15.1.77), and (15.1.80), we find that the complete set of element 
equations is

	 2.33 10

75 15 69 3 6 12

35 3 19 18 16

75 15 6 12

35 18 16

12 0

Symmetry 32

16.8
5.6

21.3
4.8
4.5

12.7

43

2 2 2 2

2 2 2

2 2

2
5

2

2

2

u

v

u

v

u

v

i

i

j

j

m

m























































































	 (15.1.81)

where the force matrix is f fT L1{ } { }, obtained by adding Eqs. (15.1.77) and (15.1.80).
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EXAMPLE 15.5

For the plane stress plate fixed along one edge and subjected to a uniform temperature rise 
of 850 C as shown in Figure 15 –11, determine the nodal displacements and the stresses in 
each element. Let E 5 210 GPa, 5 0.30ν , t 5 5 mm, and a 5 3 8212 10 (mm/mm) / C6 .

■■ Figure 15 –11  Discretized plate subjected to a temperature change

SOLUTION:
The discretized plate is shown in Figure 15 –11. We begin by evaluating the stiffness matrix 
of each element using Eq. (6.2.52).

Element 1
Element 1 has coordinates x 5 01 , y 5 01 , x 5 0.52 , y 5 02 , x 5 0.255 , and y 5 0.255 . 
From Eqs. (6.2.10), we obtain

y y y y y y

x x x x x x

0.25 m 0.25 m 0

0.25 m 0.25 m 0.5 m

1 2 5 2 5 1 5 1 2

1 5 2 2 1 5 5 2 1

b b b

g g g

5 2 5 2 5 2 5 5 2 5

5 2 5 2 5 2 5 2 5 2 5
	(15.1.82)

Using Eqs. (6.2.32) in Eq. (6.2.34), we have

	





































B
A

b b b

g g g

g b g b g b

5

5

2

2 2

2 2 2

[ ]
1

2

0 0 0

0 0 0

1

0.125

0.25 0 0.25 0 0 0

0 0.25 0 0.25 0 0.5

0.25 0.25 0.25 0.25 0.5 0

1

m

1 2 5

1 2 5

1 1 2 2 5 5

	 (15.1.83)

For plane stress, [D] is given by

	 [ ]
(1 )

1 0
1 0

0 0
1

2

210 10

0.91

1 0.3 0
0.3 1 0
0 0 0.35

N

m2

9

2



































D
E

v

v
v

v
5

2
2

5
3

	 (15.1.84)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



15  |  Thermal Stress746

We obtain the element stiffness matrix using

	 k t A B D BT[ ] [ ] [ ][ ]5 	 (15.1.85)

Substituting the results of Eqs. (15.1.83) and (15.1.84) into Eq. (15.1.85) and carrying out 
the multiplications, we have



























u v u v u v

k 5 3

2 2 2 2

2 2

2 2 2

2 2 2

2 2 2

2 2 2

[ ] 4.615 10

8.4375 4.0625 4.0625 0.3125 4.375 3.75

4.0625 8.4375 0.3125 4.0625 4.375 12.5

4.0625 0.3125 8.4375 4.0625 4.375 3.75

0.3125 4.0625 4.0625 8.4375 4.375 12.5

4.375 4.375 4.375 4.375 8.75 0

3.75 12.5 3.75 12.5 0 25

N

m

1 1 2 2 5 5

7

(15.1.86)

Element 2
For element 2, the coordinates are x 5 0.52 , y 5 02 , x 5 0.53 , y 5 0.53 , x 5 0.255 , and 
y 5 0.255 . Proceeding as for element 1, we obtain

	
0.25 m 0.25 m 0.5 m

0.25 m 0.25 m 0

2 3 5

2 3 5γ γ γ

b b b5 5 52

52 5 5
	

The element stiffness matrix then becomes

[ ] 4.615 10

8.4375 4.0625 4.0625 0.3125 12.5 4.375

4.0625 8.4375 0.3125 4.0625 3.75 4.375
4.0625 0.3125 8.437 4.0625 12.5 4.375

0.3125 4.0625 4.0625 8.4375 3.75 4.375
12.5 3.75 12.5 3.75 25 0

4.375 4.375 4.375 4.375 0 8.75

N

m

2 2 3 3 5 5

7



























u v u v u v

k 5 3

2 2 2

2 2 2

2 2

2 2 2 2

2 2 2

2 2 2

(15.1.87)

Element 3
For element 3, using the same steps as for element 1, we obtain the stiffness matrix as

[ ] 4.615 10

8.437 4.0625 4.0625 0.3125 4.375 3.75

4.0625 8.437 0.3125 4.0625 4.375 12.5

4.0625 0.3125 8.437 4.0625 4.375 3.75

0.3125 4.0625 4.0625 8.4375 4.375 12.5

4.375 4.375 4.375 4.375 8.75 0

3.75 12.5 3.75 12.5 0 25

N

m

3 3 4 4 5 5

7



























u v u v u v

k 5 3

2 2 2 2

2 2

2 2 2

2 2 2

2 2 2

2 2 2

(15.1.88)
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Element 4
Finally, for element 4, we obtain



























u v u v u v

k 5 3

2 2 2

2 2 2

2 2

2 2 2 2

2 2 2

2 2 2

[ ] 4.615 10

8.437 4.0625 4.0625 0.3125 12.5 4.375

4.0625 8.4375 0.3125 4.0625 3.75 4.375
4.0625 0.3125 8.4375 4.0625 12.5 4.375

0.3125 4.0625 4.0625 8.4375 3.75 4.375
12.5 3.75 12.5 3.75 25 0

4.375 4.375 4.375 4.375 0 8.75

N

m

4 4 1 1 5 5

7

(15.1.89)

Using the direct stiffness method, we assemble the element stiffness matrices, Eqs. (15.1.86) 
through (15.1.89), to obtain the global stiffness matrix as









































u v u v

K

u v u v u v

5 3

2 2

2 2

2 2

2 2

2

2

2 2 2

2 2 2

2 2

2 2 2 2

2 2

2 2

2 2 2 2

2 2

2 2 2

2 2 2

2 2 2

2 2 2

[ ] 4.615 10

16.874 8.125 4.0625 0.3125

8.125 16.874 0.3125 4.0625

4.0625 0.3125 16.874 8.125

0.3125 4.0625 8.125 16.875

0 0 4.0625 0.3125

0 0 0.3125 4.0625

4.0625 0.3125 0 0

0.3125 4.0625 0 0

16.875 8.125 16.875 8.125

8.125 16.875 8.125 16.875

0 0 4.0625 0.3125 16.875 8.125

0 0 0.3125 4.0625 8.125 16.875

4.0625 0.3125 0 0 16.875 8.125

0.3125 4.0625 0 0 8.125 16.875

16.875 8.125 4.0625 0.3125 16.875 8.125

8.125 16.875 0.3125 4.0625 8.125 16.875

4.0625 0.3125 16.875 8.125 16.875 8.125

0.3125 4.0625 8.125 16.875 8.125 16.875

16.875 8.125 16.875 8.125 67.5 0

8.125 16.875 8.125 16.875 0 67.5

N

m

1 1 2 2

7

3 3 4 4 5 5

(15.1.90)
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Next, we determine the thermal force matrices for each element by using Eq. (15.1.25) 
as follows:

Element 1

	

a

b

g

b

g

b

g

5
2

5
3 3

2

2

2

2

5

2

2

2
5 5

2

2

2

2

{ }
2(1 )

(12 10 )(210 10 )(0.005 m)(50)

2(1 0.3)

0.25
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Element 2
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Element 3
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Element 4
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We then obtain the global thermal force matrix by direct assemblage of the element force 
matrices [Eqs. (15.1.91) through (15.1.94)]. The resulting matrix is
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Using Eqs. (15.1.90) and (15.1.95) and imposing the boundary conditions 
u v u v5 5 5 5 01 1 4 4 , we obtain the system of equations for solution as
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Solving Eq. (15.1.96) for the nodal displacements, we have
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We now use Eq. (15.1.64) to obtain the stresses in each element. Using Eqs. (6.2.36) and 
(15.1.65), we write Eq. (15.1.64) as

	 D B d D Ts 5 2 «{ } [ ][ ]{ } [ ]{ }	 (15.1.98)
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Using Eqs. (15.1.82) and (15.1.97) along with the mechanical properties E, n, and a  in 
Eq. (15.1.99), we obtain
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Simplifying Eq. (15.1.100) yields
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Similarly, we obtain the stresses in element 2 as follows:

Element 2
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Stresses in elements 3 and 4 can be determined similarly. The clamped plate subjected 
to uniform heating (see the longhand solution, Example 15.5) was also solved using the 
Autodesk computer program from Reference [1]. The plate was discretized using the 
“automesh” feature of [1]. These results are similar to those obtained from the longhand 
solution of Example 15.5 using the very coarse mesh. The computer program solution with 
342 elements is naturally more accurate than the longhand solution with only four elements. 
Figure 15 –12 shows the discretized plate with resulting displacement superimposed on the 
maximum principal stress plot.

■■ Figure 15 –12  Discretized plate showing displaced plate superimposed with maximum 
principal stress plot in Pa (See the full-color insert for a color version of this figure.)
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15  |  Thermal Stress752

Finally, Figure 15 –13 shows a three-dimensional solid part that is fixed on the small front 
surfaces and uniformly heated by a temperature increase of 8100 C acting over the entire inside 
surface of the hole. The resulting von Mises stress plot is shown with the maximum value of 
329.9 MPa occurring inside the hole.

SUMMARY EQUATIONS

Unconstrained displacement of bar due to uniform temperature change:

	 TLTd a5 	 (15.1.1)

Strain due to uniform temperature change for a bar:

	 TT a« 5 	 (15.1.2)

Thermal strain matrix for a bar:

	 TT xT a« 5 « 5{ } { } { }	 (15.1.17)

■■ Figure 15 –13  von Mises stress plot for a solid part subjected to 100 C8  temperature rise 
inside the surface of the hole (See the full-color insert for a color version of this figure.)
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Thermal force matrix for a bar:
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Thermal strain matrix for isotropic material in plane stress:

	

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Thermal strain matrix for isotropic material in plane strain:
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Thermal force matrix for plane stress triangle:
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Thermal strain matrix for axisymmetric triangular element:

	


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Thermal force matrix for axisymmetric element evaluated at its centroid:

	 f rA B DT
T

Tp5 «{ } 2 [ ] [ ]{ }	 (15.1.28)

Reference
[1]	 Autodesk, Inc., McInnis Parkway, San Rafael, CA 94903.
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PROBLEMS

	 15.1		  For the one-dimensional steel bar fixed at the left end, free at the right end, and 
subjected to a uniform temperature rise 10 C5 8T  as shown in Figure P15 –1, 
determine the free-end displacement, the displacement 1.5 m from the fixed end, 
the reactions at the fixed end, and the axial stress. Let 210 GPa5E , 25 cm25A ,  
and 12.0 10 (mm/mm)/ C6a 5 3 82 .

■■ Figure P15 –1

10°C

3 m

■■ Figure P15 –2

	 15.2		  For the one-dimensional steel bar fixed at each end and subjected to a uniform 
temperature drop of T 5 830 C as shown in Figure P15 –2, determine the reactions 
at the fixed ends and the stress in the bar. Let 200 GPaE 5 , 1 10 m2 2A 5 3 2 , and 

11.7 10 (mm/mm)/ C6a 5 3 82 .
	 15.3		  For the plane truss shown in Figure P15 –3, bar element 2 is subjected to a uni-

form temperature rise of 10 C5 8T . Let 210 GPa5E , 12.5 cm25A , and 
12 10 (mm/mm)/ C6a 5 3 82 . The lengths of the truss elements are shown in the 

figure. Determine the stresses in each bar. [Hint: See Eqs. (3.6.4) and (3.6.6) in 
Example 3.5 for the global and reduced [K] matrices.]

■■ Figure P15 –3

3 m

3 m

■■ Figure P15 –4

3 m

	 15.4		  For the plane truss shown in Figure P15 –4, bar element 1 is subjected to 
a uniform temperature rise of 5 C8 . Let 210 GPa5E , 12 cm25A , and 

12 10 (mm/mm)/ C6a 5 3 82 . The lengths of the truss elements are shown in the 
figure. Determine the stresses in each bar. (Hint: Use Problem 3.21 for [K].)

	 15.5		  For the structure shown in Figure P15 –5, bar element 1 is subjected to a uni-
form temperature rise of T 5 840 C. Let 200 GPaE 5 , 2 10 m2 2A 5 3 2 , and 

12 10 (mm/mm)/ C6a 5 3 82 . Determine the stresses in each bar.
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	 15.6		  For the plane truss shown in Figure P15 –6, bar element 2 is subjected to a uni-
form temperature drop of T 5 830 C. Let 70 GPaE 5 , 4 10 m2 2A 5 3 2 , and 

23 10 (mm/mm)/ C6a 5 3 82 . Determine the stresses in each bar and the displace-
ment of node 1.

	 15.7		  For the bar structure shown in Figure P15 –7, element 1 is subjected to a uni-
form temperature rise of T 5 830 C. Let 210 GPaE 5 , 3 10 m2 2A 5 3 2 , and 

12 10 (mm/mm)/ C6a 5 3 82 . Determine the displacement of node 1 and the 
stresses in each bar.

■■ Figure P15 –5 ■■ Figure P15 –6

■■ Figure P15 –7 ■■ Figure P15 –8

	 15.8		  A bar assemblage consists of two outer steel bars and an inner brass bar. The three-
bar assemblage is then heated to raise the temperature by an amount 20 C5 8T . 
Let all cross-sectional areas be 12.5 cm25A  and 1.5 m5L , 210 GPasteelE 5 ,  

105 GPabrassE 5 , 12 10 / Csteel
6a 5 3 82 , and 18 10 / Cbrass

6a 5 3 82 . Determine 
(a) the displacement of node 2 and (b) the stress in the steel and brass bars. See 
Figure P15 –8.
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756 15  |  Thermal Stress

	 15.9		  For the plane truss shown in Figure P15 –9, bar element 2 is subjected to a uni-
form temperature rise of T 5 810 C. Let 210 GPaE 5 , A 5 12.5 cm2, and 
a 5 3 8212 10 / C6 . What temperature change is needed in bars 1 and 3 to remove 
the stress due to the uniform temperature rise in bar 2? Show enough work to prove 
your answer. Use a longhand solution.

■■ Figure P15 –9

■■ Figure P15 –11

Steel, E = 210 GPa,     = 12 × 10−6 (mm/mm)/°C
A

L

Aluminum, E = 70 GPa,     = 24 × 10−6 (mm/mm)/°C

	15.10		  When do stresses occur in a body made of a single material due to uniform tempera-
ture change in the body? Consider Problem 15.1 and also compare the solution to 
Example 15.1 in this chapter.

	15.11		  Consider two thermally incompatible materials, such as steel and aluminum, attached 
together as shown in Figure P15 –11. Will there be temperature-induced stress in 
each material upon uniform heating of both materials to the same temperature when 
the boundary conditions are simple supports (a pin and a roller such that we have a 
statically determinate system)? Explain. Let there be a uniform temperature rise of 

30 C5 8T .

	15.12		  A bimetallic thermal control is made of cold-rolled yellow brass and magnesium 
alloy bars (Figure P15 –12). The bars are arranged with a gap of 0.1 mm between 
them at 20 C8 . The brass bar has a length of 20 mm and a cross-sectional area of 
0.4 cm2, and the magnesium bar has a length of 30 mm and a cross-sectional area 
of 0.6 cm2. Determine (a) the axial displacement of the end of the brass bar and (b) 
the stress in each bar after it has closed up due to a temperature increase of 55 C8 . 
Use at least one element for each bar in your finite element model.

	15.13		  For the plane stress element shown in Figure P15 –13 subjected to a uniform tem-
perature drop of 30 C5 8T , determine the thermal force matrix fT{ }.
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			   Let 70 GPa5E  5 0.30ν , and 23 10 (mm/mm)/ C6a 5 3 82 . The coordinates (in 
millimeters) are shown in the figure. The element thickness is 25 mm5t .

	15.14		  For the plane stress element shown in Figure P15 –14 subjected to a uniform tempera-
ture rise of T 5 850 C, determine the thermal force matrix fT{ }. Let 70 GPaE 5 ,  

5 0.3ν , 23 10 (mm/mm)/ C6a 5 3 82 , and 5 mmt 5 . The coordinates (in millimeters)  
are shown in the figure.

■■ Figure P15 –12

Brass Magnesium

20 mm 30 mm

d = 0.1 mm

Figure P15 –13

(100, 0)

(50, 25)

■■ Figure P15 –15■■ Figure P15 –14

	15.15		  For the plane stress element shown in Figure P15 –15 subjected to a uniform 
temperature rise of 55 C5 8T , determine the thermal force matrix fT{ }. Let 

210 GPa5E , 5 0.3ν , 12 10 (mm/mm)/ C6a 5 3 82 , and 1cm5t . The coordinates 
(in centimeters) are shown in the figure.

	15.16		  For the plane stress element shown in Figure P15 –16 subjected to a uniform tempera-
ture drop of T 5 820 C, determine the thermal force matrix fT{ }. Let 210 GPaE 5 ,  

5 0.25ν , and 12 10 (mm/mm)/ C6a 5 3 82 . The coordinates (in millimeters) are 
shown in the figure. The element thickness is 10 mm.

	15.17		  For the plane stress plate fixed along the left and right sides and subjected to a uni-
form temperature rise of 30 C8  as shown in Figure P15 –17, determine the stresses 
in each element. Let 70 GPa5E , 5 0.30ν , 22.5 10 (mm/mm)/ C6a 5 3 82 , and 

10 mm5t . The coordinates (in millimeters) are shown in the figure. (Hint: The 
nodal displacements are all equal to zero. Therefore, the stresses can be determined 
from D Ts 5 2 «{ } [ ]{ }.)

Problems
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758 15  |  Thermal Stress

	15.18		  For the plane stress plate fixed along all edges and subjected to a uniform tempera-
ture decrease of 820 C as shown in Figure P15 –18, determine the stresses in each 
element. Let 210 GPaE 5 , 5 0.25ν , and 12 10 (mm/mm)/ C6a 5 3 82 . The coor-
dinates of the plate are shown in the figure. The plate thickness is 10 mm. (Hint: The 
nodal displacements are all equal to zero. Therefore, the stresses can be determined 
from D Ts 5 2 «{ } [ ]{ }.)

■■ Figure P15 –16 ■■ Figure P15 –17

400 mm

800 mm

■■ Figure P15 –18

	15.19		  If the thermal expansion coefficient of a bar is given by x La a5 1(1 / )0 , determine 
the thermal force matrix. Let the bar have length L, modulus of elasticity E, and 
cross-sectional area A.

	15.20		  Assume the temperature function to vary linearly over the length of a bar as 
T t t x5 11 2 ; that is, express the temperature function as T N t5{ } [ ]{ }, where 
[N] is the shape function matrix for the two-node bar element. In other words, 
N x L x L5 2[ ] [1 / / ]. Determine the force matrix in terms of E, A, a, L, t1, and t2. 

[Hint: Use Eq. (15.1.18).]
	15.21		  Derive the thermal force matrix for the axisymmetric element of Chapter 9. [Also 

see Eq. (15.1.27).]
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Using a computer program, solve the following problems.

	15.22		  The square plate in Figure P15 –22 is subjected to uniform heating of 40 C8 . Deter-
mine the nodal displacements and element stresses. Let the element thickness be 

2 mm5t , 210 GPa5E , 5 0.33ν , and a 5 3 8212 10 / C6 . Then fix the left and 
right nodes and repeat the problem. Compare answers.

■■ Figure P15 –22

2 cm

2 cm

■■ Figure P15 –23

2 cm

2 cm

	15.23		  The square plate in Figure P15 –23 has element 1 made of steel with 210 GPa5E ,  
5 0.33ν , and 12 10 / C6a 5 3 82  and element 2 made of a material with 

105 GPa5E , 5 0.25ν , and a 5 3 8220 10 / C6 . Let the plate thickness be 
2 mm5t . Determine the nodal displacements and element stresses for both ele-

ments subjected to an 40 C8  temperature increase. Then fix the left and right nodes 
and repeat the problem. Compare answers.

	15.24		  Solve Problem 15.3 using a computer program.

	15.25		  Solve Problem 15.6 using a computer program.

	15.26		  The aluminum tube shown in Figure P15 –26 fits snugly into a hole (with surround-
ing material aluminum) at room temperature. If the temperature of the tube is then 
increased by 840 C, determine the deformed configuration and the stress distribution 
of the tube. Let 70 GPaE 5 , 5 0.33ν , and a 5 3 8223 10 / C6  for the tube.

■■ Figure P15 –26

50-mm diameter

30-mm diameter

C

y

40 mm

30 mm

20 mm20 mm

40 mm

z

D

A B

Problems
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760 15  |  Thermal Stress

	15.27		  For the solid model of a fixture shown in Figure P15 –27, the inside surface of the 
hole is subjected to a temperature increase of 880 C. The right end surfaces are fixed. 
Determine the von Mises stresses throughout the fixture due to this temperature 
increase. What is the largest von Mises stress? Is it a concern against yielding of the 
material? Assume the material is AISI 1020 cold-rolled steel.

■■ Figure P15 –27

20 rad.

30 dia.

(All dimensions in mm units)

40 mm

75 mm
50 mm

Fixed

Fixed

15 mm

30 m
m

	15.28		  For the fixture shown in Figure P15 –28, the inside surfaces of the eight holes are 
increased in temperature by 50 C8 . Determine the von Mises stresses throughout the 
fixture. What is the largest von Mises stress in the fixture? Is there concern for fail-
ure due to yielding of the material? Assume the material is aluminum alloy 6061-O 
(annealed). Fix the inside surface of the upper hole.

■■ Figure P15 –28

6 R
10

8 10

R.3

ϕ 12

ϕ 10 6

12 dia.

3 R
15.5

50

12.5
12.5
30

12 dia.

60

12

Y

X

10 mm R chamfer typ.

0.10

(All holes 12 mm dia. (ϕ)
with 10 mm rad. chamfer)

(All dimensions in mm units)

5 R
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Structural Dynamics and 
Time-Dependent Heat 
Transfer

Chapter Objectives

At the conclusion of this chapter, you will be able to:

■	 Discuss the dynamics of a single-degree-of-freedom spring-mass system.

■	 Derive the finite element equations for the time-dependent stress analysis of the 
one-dimensional bar, including derivation of the lumped-and consistent-mass 
matrices.

■	 Introduce procedures for numerical integration in time, including the central differ-
ence method, Newmark’s method, and Wilson’s method.

■	 Describe how to determine the natural frequencies of bars by the finite element 
method.

■	 Illustrate the finite element solution of a time-dependent bar problem.

■	 Develop the beam element lumped-and consistent-mass matrices.

■	 Illustrate the determination of natural frequencies for beams by the finite element 
method.

■	 Develop the mass matrices for truss, plane frame, plane stress, plane strain, 
axisymmetric, and solid elements.

■	 Derive the time-dependent heat transfer equations, including the consistent-and 
lumped-mass matrices in one dimension.

■	 Describe numerical time integration methods which originate from the generalized 
trapezoid rule. These include the forward difference, Crank-Nicolson, Galerkin, and 
backward difference methods.

■	 Report some results of structural dynamics problems solved using a computer 
program, including a fixed-fixed beam for natural frequencies, a bar, a fixed-fixed 
beam, a rigid frame, and a gantry crane—all subjected to time-dependent forcing 
functions.

Introduction
This chapter provides an elementary introduction to time-dependent problems. We will intro-
duce the basic concepts using the single-degree-of-freedom spring-mass system. We will 

C h a p t e r

16
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16  |  Structural Dynamics and Time-Dependent Heat Transfer762

include discussion of the stress analysis of the one-dimensional bar, beam, truss, and plane 
frame. This is followed by the analysis of one-dimensional heat transfer.

We will provide the basic equations necessary for structural dynamics analysis and 
develop both the lumped- and the consistent-mass matrices involved in the analyses of the 
bar, beam, truss, and plane frame. We will describe the assembly of the global mass matrix 
for truss and plane frame analysis and then present numerical integration methods for han-
dling the time derivative. We also present the mass matrices for the constant strain triangle 
and quadrilateral plane elements, for the axisymmetric element, and for the tetrahedral solid 
element.

We will provide longhand solutions for the determination of the natural frequencies for 
bars and beams and then illustrate the time-step integration process involved with the stress 
analysis of a bar subjected to a time-dependent forcing function.

We will next derive the basic equations for the time-dependent one-dimensional 
heat-transfer problem and discuss their applications. This chapter provides the basic con-
cepts necessary for the solution of time-dependent problems. We conclude with a section on 
some computer program results for structural dynamics and time-dependent heat-transfer 
problems.

	16.1 	 Dynamics of a Spring-Mass System
In this section, we discuss the motion of a single-degree-of-freedom spring-mass system to 
introduce the important concepts necessary for the later study of continuous systems such as 
bars, beams, and plane frames. In Figure 16 –1, we show the single-degree-of-freedom spring-
mass system subjected to a time-dependent force F(t). Here k represents the spring stiffness or 
constant, and m represents the mass of the system.

The free-body diagram of the mass is shown in Figure 16 –2. The spring force 5T kx  
and the applied force F(t) act on the mass, and the mass-times-acceleration term is shown 
separately.

Applying Newton’s second law of motion, 5ff mmaa, to the mass, we obtain the equation 
of motion in the x direction as

	 F t kx mx( ) ��2 5 	 (16.1.1)

■■ Figure 16 –1  Spring-mass system subjected to a time-dependent force

■■ Figure 16 –2  Free-body diagram of the mass of Figure 16 –1

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



16.1  Dynamics of a Spring-Mass System 763

where a dot over a variable denotes differentiation with respect to time; that is, 5( ) () /⋅ d dt . 
Rewriting Eq. (16.1.1) in standard form, we have

	 ��mx kx F t1 5 ( )	 (16.1.2)

Equation (16.1.2) is a linear differential equation of the second order whose standard solution 
for the displacement x consists of a homogeneous solution and a particular solution. Standard 
analytical solutions for this forced vibration can be found in texts on dynamics or vibrations 
such as Reference [1]. The analytical solution will not be presented here as our intent is to 
introduce basic concepts in vibration behavior. However, we will solve the problem defined 
by Eq. (16.1.2) by an approximate numerical technique in Section 16.3 (see Examples 16.1 
and 16.2).

The homogeneous solution to Eq. (16.1.2) is the solution obtained when the right side is 
set equal to zero. A number of useful concepts regarding vibrations are obtained by considering 
this free vibration of the mass—that is, when 5( ) 0F t . Hence, defining

	
k

m
v 52 	 (16.1.3)

and setting the right side of Eq. (16.1.2) equal to zero, we have

	 ��x xv1 5 02 	 (16.1.4)

where ω is called the natural circular frequency of the free vibration of the mass, expressed 
in units of radians per second or revolutions per minute (rpm). Hence, the natural circular 
frequency defines the number of cycles per unit time of the mass vibration. We observe from 
Eq. (16.1.3) that ω depends only on the spring stiffness k and the mass m of the body.

The motion defined by Eq. (16.1.4) is called simple harmonic motion. The displacement 
and acceleration are seen to be proportional but of opposite direction. Again, a standard solu-
tion to Eq. (16.1.4) can be found in Reference [1]. A typical displacement/time curve is repre-
sented by the sine curve shown in Figure 16 –3, where xm denotes the maximum displacement 
(called the amplitude of the vibration). The time interval required for the mass to complete 
one full cycle of motion is called the period of the vibration τ and is given by

	 τ π2

v
5 	 (16.1.5)

where τ is measured in seconds. Also the frequency in hertz 5(Hz 1 / s) is 1 / / (2 )v5 5f πτ .

■■ Figure 16 –3  Displacement/time curve for simple harmonic motion
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Finally, note that all vibrations are damped to some degree by friction forces. These forces 
may be caused by dry or Coulomb friction between rigid bodies, by internal friction between 
molecules within a deformable body, or by fluid friction when a body moves in a fluid. Damp-
ing results in natural circular frequencies that are smaller than those for undamped systems; 
maximum displacements also are smaller when damping occurs. A basic treatment of damping 
can be found in Reference [1], and additional discussion is included in Section 16.9.

	16.2 	 Direct Derivation of the Bar Element Equations
We will now derive the finite element equations for the time-dependent (dynamic) stress anal-
ysis of the one-dimensional bar. Recall that the time-independent (static) stress analysis of the 
bar was considered in Chapter 3. The steps used in deriving the dynamic equations are the same 
as those used for the derivation of the static equations.

Step 1 Select Element Type
Figure 16 –4 shows the typical bar element of length L, cross-sectional area A, and mass den-
sity ρ (with typical units of kg/m3), with nodes 1 and 2 subjected to external time-dependent 
loads ( )f tx

e .

Step 2 Select a Displacement Function
Again, we assume a linear displacement function along the x axis of the bar [see Eq. (3.2.1)]; 
that is, we let

	 u a a x5 11 2 	 (16.2.1)

As was shown in Chapter 3, Eq. (16.2.1) can be expressed in terms of the shape functions as

	 u N u N u5 11 1 2 2	 (16.2.2)

where	 N
x

L
N

x

L
5 2 511 2 	 (16.2.3)

Step 3 Define the Strain/ Displacement and Stress/Strain Relationships
Again, the strain/displacement relationship is given by

	
�

�

u

x
B dx« 5 5{ } [ ]{ }	 (16.2.4)

■■ Figure 16 –4  Bar element subjected to time-dependent loads

u u
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where	 
















B

L L
d

u

u
5 2 5[ ]

1 1
{ } 1

2
	 (16.2.5)

and the stress/strain relationship is given by

	 s 5 « 5{ } [ ]{ } [ ][ ]{ }D D B dx x 	 (16.2.6)

Step 4 Derive the Element Stiffness and Mass Matrices and Equations
The bar is generally not in equilibrium under a time-dependent force; hence, ?1 2f fx x. There-
fore, we again apply Newton’s second law of motion, 5ff mmaa, to each node. In general, the 
law can be written for each node as “the external (applied) force fx

e minus the internal force 
is equal to the nodal mass times acceleration.” Equivalently, adding the internal force to the 
ma term, we have

	
�

�

�

�
5 1 5 11 1 1

2
1

2 2 2 2

2
2

2
f f m

u

t
f f m

u

tx
e

x x
e

x 	 (16.2.7)

where the masses 1m  and 2m  are obtained by lumping the total mass of the bar equally at the 
two nodes such that

	 m
AL

m
ALr r

5 5
2 2

1 2 	 (16.2.8)

In matrix form, we express Eqs. (16.2.7) as

	
























































f

f

f

f

m

m

u

t

u

t

x
e

x
e

x

x
5 1

0

0
1

2

1

2

1

2

2
1

2

2
2

2

�

�

�

�

	 (16.2.9)

Using Eqs. (3.1.13) and (3.1.14), we replace { f } with [k] {d} in Eq. (16.2.9) to obtain the 
element equations

	 ��5 1{ ( )} [ ]{ } [ ]{ }f t k d m de 	 (16.2.10)

where	








5

2

2
[ ] 1 1

1 1
k

AE

L
	 (16.2.11)

is the bar element stiffness matrix, and

	








m

ALr
5[ ]

2
1 0
0 1

	 (16.2.12)
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is called the lumped-mass matrix. Also,

	 d
d

t

�

�
�� 5{ }

{ }2

2
	 (16.2.13)

Observe that the lumped-mass matrix has diagonal terms only. This facilitates the com-
putation of the global equations. However, solution accuracy is usually not as good as when a 
consistent-mass matrix is used [2].

We will now develop the consistent-mass matrix for the bar element. Numerous meth-
ods are available to obtain the consistent-mass matrix. The generally applicable virtual work 
principle (which is the basis of many energy principles, such as the principle of minimum 
potential energy for elastic bodies previously used in this text) provides a relatively simple 
method for derivation of the element equations and is included in Appendix E. However, an 
even simpler approach is to use D’Alembert’s principle; thus, we introduce an effective body 
force Xe as

	 ��r5 2{ } { }X ue 	 (16.2.14)

where the minus sign is due to the fact that the acceleration produces D’Alembert’s body forces 
in the direction opposite the acceleration. The nodal forces associated with { }Xe  are then found 
by using Eq. (6.3.1), repeated here as

	 ∫∫∫5{ } [ ] { }f N X dVb
T

V

	 (16.2.15)

Substituting { }Xe  given by Eq. (16.2.14) into Eq. (16.2.15) for {X}, we obtain

	 ��∫∫∫ r5 2{ } [ ] { }f N u dVb
T

V

	 (16.2.16)

Recalling from Eq. (16.2.2) that 5{ } [ ]{ }u N d , we find that the first and second derivatives 
with respect to time are

	 � � �� ��5 5{ } [ ]{ } { } [ ]{ }u N d u N d 	 (16.2.17)

where �{ }d  and ��{ }d  are the nodal velocities and accelerations, respectively. Substituting 
Eqs. (16.2.17) into Eq. (16.2.16), we obtain

	 ∫∫∫f N N dV d m db
T

V

r5 2 5 2{ } [ ] [ ] { } [ ]{ }�� �� 	 (16.2.18)

where the element mass matrix is defined as

	 ∫∫∫ r5[ ] [ ] [ ]m N N dVT

V

	 (16.2.19)
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16.2  Direct Derivation of the Bar Element Equations 767

This mass matrix is called the consistent-mass matrix because it is derived from the same 
shape functions [N] that are used to obtain the stiffness matrix [k]. In general, [m] given by 
Eq. (16.2.19) will be a full but symmetric matrix. Equation (16.2.19) is a general form of the 
consistent-mass matrix; that is, substituting the appropriate shape functions, we can generate 
the mass matrix for such elements as the bar, beam, and plane stress.

We will now develop the consistent-mass matrix for the bar element of Figure 16 –4 by 
substituting the shape function Eqs. (16.2.3) into Eq. (16.2.19) as follows:

	 m

x

L
x

L

x

L

x

L
dV

V
∫∫∫
























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Simplifying Eq. (16.2.20), we obtain
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or, on multiplying the matrices of Eq. (16.2.21),
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	 (16.2.22)

On integrating Eq. (16.2.22) term by term, we obtain the consistent-mass matrix for a bar 
element as

	










r
5[ ]

6
2 1
1 2

m
AL

	 (16.2.23)

Step 5 �Assemble the Element Equations to Obtain  
the Global Equations and Introduce Boundary Conditions

We assemble the element equations using the direct stiffness method such that interelement 
continuity of displacements is again satisfied at common nodes and, in addition, interelement 
continuity of accelerations is also satisfied; that is, we obtain the global equations

	 ��5 1{ ( )} [ ]{ } [ ]{ }F t K d M d 	 (16.2.24)

where	 ∑ ∑ ∑5 5 5
5 5 5

[ ] [ ] [ ] [ ] { } { }
1

( )

1

( )

1

( )K k M m F f
e

N
e

e

N
e

e

N
e 	 (16.2.25)
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are the global stiffness, mass, and force matrices, respectively. Note that the global mass matrix 
is assembled in the same manner as the global stiffness matrix. Equation (16.2.24) represents a 
set of matrix equations discretized with respect to space. To obtain the solution of the equations, 
discretization in time is also necessary. We will describe this process in Section 16.3 and will 
later present representative solutions illustrating these equations.

	16.3 	 Numerical Integration in Time
We now introduce procedures for the discretization of Eq. (16.2.24) with respect to time. These 
procedures will enable us to determine the nodal displacements at different time increments 
for a given dynamic system. The general method used is called direct integration. There are 
two classifications of direct integration: explicit and implicit. We will formulate the equations 
for three direct integration methods. The first, and simplest, is an explicit method known as 
the central difference method [3, 4]. The second and third, more complicated but more versa-
tile than the central difference method, are implicit methods known as the Newmark-Beta (or 
Newmark’s) method [5] and the Wilson-Theta (or Wilson’s) method [7, 8]. The versatility of 
both Newmark’s and Wilson’s methods is evidenced by their adaptation in many commercially 
available computer programs. Wilson’s method is used in the Autodesk computer program [16]. 
Numerous other integration methods are available in the literature. Among these are Houboldt’s 
method [8] and the alpha method [13].

Central Difference Method
The central difference method is based on finite difference expressions in time for velocity and 
acceleration at time t given by

	 � 5
2

D

1 2{ }
{ } { }

2( )
1 1d

d d

t
i

i i 	 (16.3.1)

	 ��
� �

5
2

D

1 2{ }
{ } { }

2( )
1 1d

d d

t
i

i i 	 (16.3.2)

where the subscripts indicate the time step; that is, for a time increment of Dt, 5{ } { ( )}d d ti  and 
5 1 D1{ } { ( )}1d d t ti . The procedure used in deriving Eq. (16.3.1) is illustrated by use of the 

displacement /time curve shown in Figure 16 –5. Graphically, Eq. (16.3.1) represents the slope 
of the line shown in Figure 16 –5; that is, given two points at increments i 2 1 and i 1 1 on 
the curve, two Dt increments apart, an approximation of the first derivative at the midpoint i of 
the increment is given by Eq. (16.3.1). Similarly, using a velocity/time curve, we could obtain 
Eq. (16.3.1), or we can see that Eq. (16.3.2) is obtained simply by differentiating  Eq. (16.3.1) 
with respect to time.

It has been shown using, for instance, Taylor series expansions [3] that the acceleration 
can also be expressed in terms of the displacements by

	 �� 5
2 1

D

1 2{ }
{ } 2{ } { }

( )
1 1

2
d

d d d

t
i

i i i 	 (16.3.3)
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Because we want to evaluate the nodal displacements, it is most suitable to use Eq. (16.3.3) 
in the form

	 ��5 2 1 D1 2{ } 2{ } { } { }( )1 1
2d d d d ti i i i 	 (16.3.4)

Equation (16.3.4) will be used to determine the nodal displacements in the next time step i 1 1 
knowing the displacements at time steps i and i 2 1 and the acceleration at time i.

From Eq. (16.2.24), we express the acceleration as

	 �� 5 22{ } [ ] ({ } [ ]{ })1d M F K di i i 	 (16.3.5)

To obtain an expression for di1{ }1 , we first multiply Eq. (16.3.4) by the mass matrix [M] 
and then substitute Eq. (16.3.5) for di

��{ } into this equation to obtain

	 M d M d M d F K d ti i i i i5 2 1 2 D1 2[ ]{ } 2[ ]{ } [ ]{ } ({ } [ ]{ })( )1 1
2	 (16.3.6)

Combining like terms of Eq. (16.3.6), we obtain

	 M d t F M t K d M di i i i5 D 1 2 D 21 2[ ]{ } ( ) { } [2[ ] ( ) [ ]]{ } [ ]{ }1
2 2

1 	 (16.3.7)

To start the computations to determine di1{ }1 , di1
�{ }1 , and di1

��{ }1 , we need the displacement 
di2{ }1  initially, as indicated by Eq. (16.3.7). Using Eqs. (16.3.1) and (16.3.4), we solve for 
di2{ }1  as

	 � ��5 2 D 1
D

2{ } { } ( ){ }
( )

2
{ }1

2

d d t d
t

di i i i 	 (16.3.8)

The procedure for solution is then as follows:

Step 1
Given: d{ }0 , d{ }0

� , and F ti{ ( )}.

■■ Figure 16 –5  Numerical integration (approximation of derivative at ti)
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Step 2
If d��{ }0  is not initially given, solve Eq. (16.3.5) at t 5 0 for d��{ }0 ; that is,

	 �� 5 22{ } [ ] ({ } [ ]{ })0
1

0 0d M F K d 	

Step 3
Solve Eq. (16.3.8) at t t5 2D  for d2{ }1 ; that is,

	 � ��5 2 D 1
D

2{ } { } ( ){ }
( )

2
{ }1 0 0

2

0d d t d
t

d 	

Step 4
Having solved for d2{ }1  in step 3, now solve for d{ }1  using Eq. (16.3.7) as

	 d M t F M t K d M d5 D 1 2 D 22
2{ } [ ] {( ) { } [2[ ] ( ) [ ]]{ } [ ]{ }}1

1 2
0

2
0 1 	

Step 5
With d{ }0  initially given, and d{ }1  determined from step 4, use Eq. (16.3.7) to obtain

	 5 D 1 2 D 22{ } [ ] {( ) { } [2[ ] ( ) [ ]]{ } [ ]{ }}2
1 2

1
2

1 0d M t F M t K d M d 	

Step 6
Using Eq. (16.3.5), solve for d��{ }1  as

	 �� 5 22{ } [ ] ({ } [ ]{ })1
1

1 1d M F K d 	

Step 7
Using the result of step 5 and the boundary condition for d{ }0  given in step 1, determine the 
velocity at the first time step by Eq. (16.3.1) as

	 � 5
2

D
{ }

{ } { }

2( )
1

2 0d
d d

t
	

Step 8
Use steps 5 through 7 repeatedly to obtain the displacement, acceleration, and velocity for all 
other time steps.

Figure 16 –6 is a flowchart of the solution procedure using the central difference equations. 
Note that the recurrence formulas given by equations such as Eqs. (16.3.1) and (16.3.2) are 
approximate but yield sufficiently accurate results provided the time step tD  is taken small in 
relation to the variations in acceleration. Methods for determining proper time steps for the 
numerical integration process are described in Section 16.5.
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We will now illustrate the central difference equations as they apply to the following 
example problem.

Example 16.1

Determine the displacement, velocity, and acceleration at 0.05-s time intervals up to 0.02 s 
for the one-dimensional spring-mass oscillator subjected to the time-dependent forcing 
function shown in Figure 16 –7. [Guidelines regarding appropriate time intervals (or time 
steps) are given in Section 16.5.] This forcing function is a typical one assumed for blast 
loads. The restoring spring force versus displacement curve is also provided. [Note that 
Figure 16 –7 also represents a one-element bar with its left end fixed and right node sub-
jected to F(t) when a lumped mass is used.]

■■ Figure 16 –6  Flowchart of the central difference method
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SOLUTION:
Because we are considering the single degree of freedom associated with the mass, the 
general matrix equations describing the motion reduce to single scalar equations. We will 
represent this single degree of freedom by d.

The solution procedure follows the steps outlined in this section and in the flowchart 
of Figure 16 –6.

Step 1
At time t 5 0, the initial displacement and velocity are zero; therefore,

	 �5 50 00 0d d 	

Step 2
The initial acceleration at t 5 0 is obtained using Eq. (16.3.5) as

	 5
3 2 3

5 5d��
10 10 (20 10 )(0)

6000
1.67 m / s 1670 mm / s0

3 3
2 2	

where we have used 5F{ (0)} 10 kN and 5K[ ] 20 kN / m.

Step 3
The displacement d21 is obtained using Eq. (16.3.8) as

	 5 2 1 5 3 52
2d 0 0

(0.05)

2
(1.67) 2.08 10 m 2.08 mm1

2
3 	

■■ Figure 16 –7  Spring-mass oscillator subjected to a time-dependent force

 m 5 6000 kg

 F (t), kN

 F, kN

x, m

20

10
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Step 4
The displacement at time t 0.05 s5  using Eq. (16.3.7) is

	
5 1 2 2 3

5 3 5

2

2

d
1

6000
({(0.05) (10,000) [2(6000) (0.05) (20,000)]0 (6000)(2.08 10 )})

2.08 10 m 2.08 mm

1
2 2 3

3

Step 5
Having obtained d1, we now use Eq. (16.3.7) to determine the displacement at time 
t 0.10 s5  as

	
5 1 2 3 2

5 3 5

2

2

d
1

6000
((0.05) (7500) [2(6000) (0.05) (20,000)](2.08 10 ) (6000)(0))

7.27 10 m 7.27 mm

2
2 2 3

3
	

Step 6
The acceleration at time t 0.05 s5  is obtained using Eq. (16.3.5) as

	 5 2 3 52d��
1

6000
[7500 20,000(2.08 10 )] 1.24 m / s1

3 2	

Step 7
The velocity at time t 0.05 s5  is obtained using Eq. (16.3.1) as

	 5
3 2

5 5
2

d�
7.27 10 0

2(0.05)
0.0727 m / s 72.7 m / s1

3

	

Step 8
Repeated use of steps 5 through 7 will result in the displacement, acceleration, and velocity 
for additional time steps as desired. We will now perform one more time-step iteration of 
the procedure.

Repeating step 5 for the next time step, we have displacement d3 as

	
5 1 2 3

2 3 5 5

2

2

d
1

6000
((0.05) (5000) [2(6000) (0.05) (20,000)](7.27 10 )

(6000)(2.08 10 )) 0.01448 14.48 mm

3
2 2 3

3
	

Repeating step 6 for the next time step, we have acceleration d��2 as

	 5 2 3 52d��
1

6000
[5000 (20,000)(7.27 10 ] 0.809 m / s2

3 2	

Finally, repeating step 7 for the next time step, we obtain velocity d�2 as

	 5
3 2 3

5
2 2

d�
(14.48 10 ) (2.08 10 )

2(0.05)
124.02

3 3
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Table 16 –1 summarizes the results obtained through time t 0.25 s5 . In Table 16 –1, Q kdi5  
is the restoring spring force. Also, the exact analytical solution for displacement based on 
the equation in Reference [14] is given by

	 



v

v

v
5 2 1 2(1 cos )

sin0 0y
F

k
t

F

kt

t
t

d
	

where 5 10 kN0F , 5 20 kN / mk , td 0.2 s5 , and

	 v 5 5
3

5
20 10

6000
1.825 rad/s

3k

m
	

 Table 16 –1  Results of the analysis of Example 16.1

t (s) F(t) (kN) di (mm) Q (kN) di
�� (mm/s )2 �di (mm/s) di (exact)

0 10 0 0 1670 0 0

0.05 7.5 2.08 41.6 1240 72.7 1.795

0.10 5.0 7.27 145.4 810 124.0 6.51

0.15 2.5 14.48 289.6 370 153.4 13.13

0.20 0 22.65 453 271 160.8 20.63

0.25 0 30.61 612.2 20.089 156.6 28.3

Newmark’s Method
We will now outline Newmark’s numerical method, which, because of its general versatility, 
has been adopted into numerous commercially available computer programs for purposes of 
structural dynamics analysis. (Complete development of the equations can be found in Refer-
ence [5].) Newmark’s equations are given by

	 � � �� ��g g5 1 D 2 11 1{ } { } ( )[(1 ){ } { }]1 1d d t d di i i i 	 (16.3.9)

	 � �� ��b b5 1 D 1 D 2 11 1{ } { } ( ){ } ( ) [( ){ } { }]1
2 1

2 1d d t d t d di i i i i 	 (16.3.10)

where b  and g are parameters chosen by the user. The parameter b  is generally chosen 
between 0 and 1

4 , and g is often taken to be 1
2 . For instance, choosing g 5 1

2 and b 5 0, it 
can be shown that Eqs. (16.3.9) and (16.3.10) reduce to the central difference Eqs. (16.3.1) 
and (16.3.2). If g 5 1

2 and b 5 1
6 are chosen, Eqs. (16.3.9) and (16.3.10) correspond to 

those for which a linear acceleration assumption is valid within each time interval. For 
g 5 1

2 and b 5 1
4 , it has been shown that the numerical analysis is stable; that is, computed 

quantities such as displacement and velocities do not become unbounded regardless of the 
time step chosen. Furthermore, it has been found [5] that a time step of approximately 1

10  
of the shortest natural frequency of the structure being analyzed usually yields the best 
results.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



16.3  Numerical Integration in Time 775

To find di1{ }1 , we first multiply Eq. (16.3.10) by the mass matrix [M] and then substitute 
Eq. (16.3.5) for di1

��{ }1  into this equation to obtain

M d M d t M d t M d t F K di i i i i i[ ]{ } [ ]{ } ( )[ ]{ } ( ) [ ]( ){ } ( ) [{ } [ ]{ }]1
2 1

2
2

1 1b b5 1 D 1 D 2 1 D 21 1 1
� ��

(16.3.11)

Combining like terms of Eq. (16.3.11), we obtain

M t K d t F M d t M d t M di i i i i([ ] ( ) [ ]){ } ( ) { } [ ]{ } ( )[ ]{ } ( ) [ ]( ){ }2
1

2
1

2 1
2b b b1 D 5 D 1 1 D 1 D 21 1

� ��

(16.3.12)

Finally, dividing Eq. (16.3.12) by tb D( )2, we obtain

	 9 51 1
9[ ]{ } { }1 1K d Fi i 	 (16.3.13)

where	
b

9 5 1
D

[ ] [ ]
1

( )
[ ]

2
K K

t
M 	 (16.3.14)
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( ) { }1 1 2

2F F
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t
d t d t di i i i i 	

The solution procedure using Newmark’s equations is as follows:

	 1.	 Starting at time t 5 0, d{ }0  is known from the given boundary conditions on displacement, 
and d�{ }0  is known from the initial velocity conditions.

	 2.	 Solve Eq. (16.3.5) at t 5 0 for d��{ }0  (unless d��{ }0  is known from an initial acceleration 
condition); that is,

	 �� 5 22{ } [ ] ({ } [ ]{ })0
1

0 0d M F K d 	

	 3.	 Solve Eq. (16.3.13) for d{ }1 , because Fi1{ }1  is known for all time steps and d{ }0 , d�{ }0 , and 
d��{ }0  are now known from steps 1 and 2.

	 4.	 Use Eq. (16.3.10) to solve for d��{ }1  as

	 �� � ��









b

b5
D

2 2 D 2 D 2{ }
1

( )
{ } { } ( ){ } ( )

1

2
{ }1 2 1 0 0

2
0d

t
d d t d t d 	

	 5.	 Solve Eq. (16.3.9) directly for d�{ }1 .
	 6.	 Using the results of steps 4 and 5, go back to step 3 to solve for d{ }2  and then to steps 4 and 

5 to solve for d��{ }2  and d�{ }2 . Use steps 3 –5 repeatedly to solve for di1{ }1 , di1
�{ }1 , and  di1

��{ }1 .

Figure 16 –8 is a flowchart of the solution procedure using Newmark’s equations. The advan-
tages of Newmark’s method over the central difference method are that Newmark’s method can 
be made unconditionally stable (for instance, if b 5 1

4  and g 5 1
2) and that larger time steps 

can be used with better results because, in general, the difference expressions more closely 
approximate the true acceleration and displacement time behavior [8] to [11]. Other difference 
formulas, such as Wilson’s and Houboldt’s, also yield unconditionally stable algorithms.

We will now illustrate the use of Newmark’s equations as they apply to the following 
example problem.
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Example 16.2

Determine the displacement, velocity, and acceleration at 0.1-s time increments up to a time 
of 0.5 s for the one-dimensional spring-mass oscillator subjected to the time-dependent 
forcing function shown in Figure 16 –9, along with the restoring spring force versus 
displacement curve. Assume the oscillator is initially at rest. Let b 5 1

6 and g 5 1
2, which 

corresponds to an assumption of linear acceleration within each time step.

SOLUTION:
Because we are again considering the single degree of freedom associated with the mass, 
the general matrix equations describing the motion reduce to single scalar equations. Again, 
we represent this single degree of freedom by d.

The solution procedure follows the steps outlined in this section and in the flowchart 
of Figure 16 –8.

Step 1
At time t 5 0, the initial displacement and velocity are zero; therefore,

	 �5 50 00 0d d 	

■■ Figure 16 –8  Flowchart of numerical integration in time using Newmark’s equations
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Step 2
The initial acceleration from Eq. (16.3.5) at t 5 0 is obtained as

	 5
2

5 5d��
500 14,000(0)

300
1.67 m/s 1670 mm/s0

2 2	

where we have used 5F{ } 500 N0  and 5K[ ] 14 kN/m.

Step 3
We now solve for the displacement from Eq. (16.3.13) and Eq. (16.3.14) at time t 0.1s5  as

	 9

9 5 1 5

5 1 1 1 2 5

5 5 5

K

F

d













14,000
1

( )(0.1)
(300) 194,000 N/m

400
300

( )(0.1)
0 (0.1)(0)

1

2

1

6
(0.1) (1.67) 1402

1402

194,000
0.0072 m 7.2 mm

1
6

2

1 1
6

2
2

1

	

Step 4
Solve for the acceleration from Eq. (16.3.10) at time t 0.1s5  as

	
5 3 2 2 2 2

5 5

2d

d













��

��

1

( )(0.1)
7.2 10 0 (0.1)(0) (0.1)

1

2

1

6
(1.67)

0.98 m/s 980 mm/s

1 1
6

2
3 2

1
2 2

	

■■ Figure 16 –9  Spring-mass oscillator subjected to a time-dependent force

 m 5 300 kg

F, kN

14

500

250

 F(t), N

x, m
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Step 5
Solve Eq. (16.3.9) for the velocity at time t 0.1s5  as

	
5 1 2 1

5 5

d

d

�

�
0 (0.1)[(1 )(1.67) ( )(0.98)]

0.132 m/s 132 mm/s

1
1
2

1
2

1

	

Step 6
Repeated use of steps 3 through 5 will result in the displacement, acceleration, and 
velocity for additional time steps as desired. We will now perform one more time-step 
iteration.

Repeating step 3 for the next time step t( 0.2 s)5 , we have

	

5 1 3 1 1 2

5

5 5 5

9 2

9

F

F

d













300
300

( )(0.1)
7.2 10 (0.1)(0.132)

1

2

1

6
(0.1) (0.98)

4560

4560

194000
0.024 m 24 mm

2 1
6

2
3 2

2

2

	

Repeating step 4 for time step t 0.2 s5 , we obtain

	
5 2 3 2 2 2

5 5

2d

d













��

��

1

( )(0.1)
0.024 7.2 10 (0.1)(0.132) (0.1)

1

2

1

6
(0.98)

0.202 m/s 202 mm/s

2 1
6

2
3 2

2
2 2

	

Finally, repeating step 5 for time step t 0.2 s5 , we have

	
5 1 2 1

5 5

d

d

�

�
0.132 (0.1)[(1 )(0.98) (0.202)]

0.191m/s 191mm/s

2
1
2

1
2

2

	

Table 16 –2 summarizes the results obtained through time t 0.5 s5 .

Table 16–2  Results of the analysis of Example 16.2

t (s) F(t) (N) di (mm) Q (N) di
�� (mm/s )2 �di (mm/s)

0. 500 0 0 1670 0

0.1 400 7.2 100.8 980 132

0.2 300 24 336 202 191

0.3 243 39.5 553 2750 149.9

0.4 228.5 50.1 701.4 21208 50.1

0.5 214.5 48.8 683.2 21208 270.5
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Wilson’s Method
We will now outline Wilson’s method (also called the Wilson-Theta method). Because of its 
general versatility, it has been adopted into the Autodesk computer program for purposes of 
structural dynamics analysis. Wilson’s method is an extension of the linear acceleration method 
wherein the acceleration is assumed to vary linearly within each time interval now taken from t 
to t t1 QD , where Q $ 1.0. For Q 5 1.0, the method reduces to the linear acceleration scheme. 
However, for unconditional stability in the numerical analysis, we must use Q $ 1.37 [7, 8]. 
In practice, Q 5 1.40 is often selected. The Wilson equations are given in a form similar to the 
previous Newmark’s equations, Eqs. (16.3.9) and (16.3.10), as

	 � � �� ��5 1
QD

11 1{ } { }
2

({ } { })1 1d d
t

d di i i i 	 (16.3.15)

	 � �� ��5 1 QD 1
Q D

11 1{ } { } { }
( )

6
({ } 2{ })1

2 2

1d d t d
t

d di i i i i 	 (16.3.16)

where di1
��{ }1 , di1

�{ }1 , and di1{ }1  represent the acceleration, velocity, and displacement, respec-
tively, at time t t1 QD .

We seek a matrix equation of the form of Eq. (16.3.13) that can be solved for displacement 
di1{ }1 . To obtain this equation, first solve Eqs. (16.3.15) and (16.3.16) for di1

��{ }1  and di1
�{ }1  in 

terms of di1{ }1  as follows:
Solve Eq. (16.3.16) for di1

��{ }1  to obtain

	 �� � ��5
Q D

2 2
QD

21 1{ }
6

( )
({ } { })

6
{ } 2{ }1 2 2 1d

t
d d

t
d di i i i i 	 (16.3.17)

Now use Eq. (16.3.17) in Eq. (16.3.15) and solve for di1
�{ }1  to obtain

	 � � ��5
QD

2 2 2
QD

1 1{ }
3

({ } { }) 2{ }
2

{ }1 1d
t

d d d
t

di i i i i 	 (16.3.18)

To obtain the displacement di1{ }1  (at time t t1 QD ), we use the equation of motion Eq. (16.2.24) 
rewritten as

	 ��5 11 1 1{ } [ ]{ } [ ]{ }1 1 1F M d K di i i 	 (16.3.19)

Now, substituting Eq. (16.3.17) for di1
��{ }1  into Eq. (16.3.19), we obtain

	 � ��



Q D

2 2
QD

2 1 51 1 1[ ]
6

( )
({ } { })

6
{ } 2{ } [ ]{ } { }

2 2 1 1 1M
t

d d
t

d d K d Fi i i i i i 	 (16.3.20)

Combining like terms and rewriting in a form similar to Eq. (16.3.13), we obtain

	 9 5 91 1K d Fi i[ ]{ } { }1 1 	 (16.3.21)
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where

	
� ��

9 5 1
QD

9 5 1
QD

1 QD 1 QD1 1

K K
t

M

F F
M

t
d t d t di i i i i

[ ] [ ]
6

( )
[ ]

{ } { }
[ ]

( )
[6{ } 6 { } 2( ) { }]

2

1 1 2
2

	 (16.3.22)

You will note the similarities between Wilson’s Eqs. (16.3.22) and Newmark’s Eqs. (16.3.14). 
Because the acceleration is assumed to vary linearly, the load vector is expressed as

	 5 1 Q 21 1{ } { } ({ } { })1 1F F F Fi i i i 	 (16.3.23)

where Fi1{ }1  replaces Fi1{ }1  in Eq. (16.3.22). Note that if Q 5 1, F Fi i51 1{ } { }1 1 .
Also, Wilson’s method (like Newmark’s) is an implicit integration method, because the 

displacements show up as multiplied by the stiffness matrix and we implicitly solve for the 
displacements at time t t1 QD .

The solution procedure using Wilson’s equations is as follows:

	 1.	 Starting at time t 5 0, d{ }0  is known from the given boundary conditions on displacement, 
and d�{ }0  is known from the initial velocity conditions.

	 2.	 Solve Eq. (16.3.5) for d��{ }0  (unless d��{ }0  is known from an initial acceleration condition).
	 3.	 Solve Eq. (16.3.21) for d{ }1 , because 91Fi{ }1  is known for all time steps, and d{ }0 , d�{ }0 , and 

d��{ }0  are now known from steps 1 and 2.
	 4.	 Solve Eq. (16.3.17) for d��{ }1 .
	 5.	 Solve Eq. (16.3.18) for d�{ }1 .
	 6.	 Using the results of steps 4 and 5, go back to step 3 to solve for d{ }2 , and then return to 

steps 4 and 5 to solve for d��{ }2  and d�{ }2 . Use steps 3–5 repeatedly to solve for di1{ }1 , di1
�{ }1 ,  

and di1
��{ }1 .

A flowchart similar to Figure 16 –8, based on Newmark’s equation, is left to your discretion. 
Again, note that the advantage of Wilson’s method is that it can be made unconditionally stable 
by setting Q $ 1.37. Finally, the time step, tD , recommended is approximately 1

10  to 1
20  of the 

shortest natural period nτ  of the finite element assemblage with n degrees of freedom; that is, 
�D 5 τt n / 10. In comparing the Newmark and Wilson methods, we observe little difference in 

the computational effort, because they both require about the same time step. Wilson’s method 
is very similar to Newmark’s, so hand solutions will not be presented. However, we suggest 
that you rework Example 16.1 by Wilson’s method and compare your displacement results 
with the exact solution listed in Table 16 –1.

	16.4 	 Natural Frequencies of a One-Dimensional Bar
Before solving the structural stress dynamics analysis problem, we will first describe how to 
determine the natural frequencies of continuous elements (specifically the bar element). The 
natural frequencies are necessary in a vibration analysis and also are important when choosing 
a proper time step for a structural dynamics analysis (as will be discussed in Section 16.5).

Natural frequencies are determined by solving Eq. (16.2.24) in the absence of a forcing 
function F(t). Therefore, we solve the matrix equation

	 �� 1 5[ ]{ } [ ]{ } 0M d K d 	 (16.4.1)
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The standard solution for {d(t)} is given by the harmonic equation in time

	 5 9 v{ ( )} { }d t d ei t	 (16.4.2)

where d9{ } is the part of the nodal displacement matrix called natural modes that is assumed 
to be independent of time, i is the standard imaginary number given by i 5 21, and v  is a 
natural frequency.

Differentiating Eq. (16.4.2) twice with respect to time, we obtain

	 �� v5 9 2 v{ ( )} { }( )2d t d ei t 	 (16.4.3)

Substitution of Eqs. (16.4.2) and (16.4.3) into Eq. (16.4.1) yields

	 v2 9 1 9 5v vM d e K d ei t i t[ ] { } [ ]{ } 02 	 (16.4.4)

Combining terms in Eq. (16.4.4), we obtain

	 v2 9 5ve K M di t ([ ] [ ]){ } 02 	 (16.4.5)

Because ve i t is not zero, from Eq. (16.4.5) we obtain

	 v2 9 5([ ] [ ]){ } 02K M d 	 (16.4.6)

Equation (16.4.6) is a set of linear homogeneous equations in terms of displacement mode d9{ }.  
Hence, Eq. (16.4.6) has a nontrivial solution if and only if the determinant of the coefficient 
matrix of d9{ } is zero; that is, we must have

	 v2 5| [ ] [ ] | 02K M 	 (16.4.7)

In general, Eq. (16.4.7) is a set of n algebraic equations, where n is the number of degrees of 
freedom associated with the problem.

To illustrate the procedure for determining the natural frequencies, we will solve the fol-
lowing example problem.

Example 16.3

For the bar shown in Figure 16 –10 with length 2L, modulus of elasticity E, mass density ρ, 
and cross-sectional area A, determine the first two natural frequencies.

SOLUTION:
For simplicity, the bar is discretized into two elements each of length L as shown in 
Figure 16 –11. To solve Eq. (16.4.7), we must develop the total stiffness matrix for the bar by 
using Eq. (16.2.11). Either the lumped-mass matrix Eq. (16.2.12) or the consistent-mass matrix 

■■ Figure 16 –10  One-dimensional bar used for natural frequency determination
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Eq. (16.2.23) can be used. In general, using the consistent-mass matrix has resulted in solutions 
that compare more closely to available analytical and experimental results than those found 
using the lumped-mass matrix. However, the longhand calculations are more tedious using the 
consistent-mass matrix than using the lumped-mass matrix because the consistent-mass matrix 
is a full symmetric matrix, whereas the lumped-mass matrix has nonzero terms only along the 
main diagonal. Hence, the lumped-mass matrix will be used in this analysis.

Using Eq. (16.2.11), the stiffness matrices for each element are given by

	
k

AE

L
k

AE

L





















1 2 2 3

[ ] 1 1
1 1

[ ] 1 1
1 1

(1) (2)5
2

2
5

2

2

	 (16.4.8)

The usual direct stiffness method for assembling the element matrices, Eqs. (16.4.8), yields 
the global stiffness matrix for the whole bar as

	


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











K
AE

L
5

2

2 2

2

[ ]
1 1 0
1 2 1
0 1 1

	 (16.4.9)

Using Eq. (16.2.12), the mass matrices for each element are given by

	 



















r r
5 5m

AL
m

AL

1 2 2 3

[ ]
2

1 0
0 1

[ ]
2

1 0
0 1

(1) (2)
	 (16.4.10)

The mass matrices for each element are assembled in the same manner as for the stiffness 
matrices. Therefore, by assembling Eqs. (16.4.10), we obtain the global mass matrix as

	

















r
5M

AL
[ ]

2

1 0 0
0 2 0
0 0 1

	 (16.4.11)

We observe from the resulting global mass matrix that there are two mass contributions at 
node 2 because node 2 is common to both elements.

Substituting the global stiffness matrix Eq. (16.4.9) and the global mass matrix Eq. 
(16.4.11) into Eq. (16.4.6), and using the boundary condition u 5 01  (or now d 59 01 ) to 
reduce the set of equations in the usual manner, we obtain
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	 (16.4.12)

■■ Figure 16 –11  Discretized bar of Figure 16 –10
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To obtain a solution to the set of homogeneous equations in Eq. (16.4.12), we set the deter-
minant of the coefficient matrix equal to zero as indicated by Eq. (16.4.7). We then have

	


















l

r2

2
2 5

AE

L

AL2 1
1 1 2

2 0
0 1

0	 (16.4.13)

where l v5 2 has been used in Eq. (16.4.13). Dividing Eq. (16.4.13) by ρAL and letting 
m r5 E L/ ( )2 , we obtain

	
m l m

m m
l

2 2

2 2
5

2

2

0	 (16.4.14)

Evaluating the determinant in Eq. (16.4.14), we obtain

	 l m m5 62 2	

or	 l m l m5 50.60 3.411 2 	 (16.4.15)

For comparison, the exact solution is given by l m5 0.616 , whereas the consistent-mass 
approach yields l m5 0.648 . Therefore, for bar elements, the lumped-mass approach can 
yield results as good as, or even better than, the results for the consistent-mass approach. 
However, the consistent-mass approach can be mathematically proved to yield an upper 
bound on the frequencies, whereas the lumped-mass approach yields results that can be 
below or above the exact frequencies with no mathematical proof of boundedness. From 
Eqs. (16.4.15), the first and second natural frequencies are given by

	 v l m v l m5 5 5 50.77 1.851 1 2 2 	

Letting 5E 210 GPa, r 5 7850 kg/m3, and 5L 2.5 m, we obtain

	 m r5 5 3 5 3 2E L/ ( ) (210 10 ) / [(7850)(2.5) ] 4.28 10 s2 9 2 6 2	

Therefore, we obtain the natural circular frequencies as

	 v v5 3 5 31.59 10 rad/s 3.83 10 rad/s1
3

2
3 	 (16.4.16)

or in hertz (1/s) units

	 v p5 5f / 2 253 Hz, and so on1 1 	

In conclusion, note that for a bar discretized such that two nodes are free to displace, there 
are two natural modes and two frequencies. When a system vibrates with a given natural 
frequency iv , that unique shape with arbitrary amplitude corresponding to v i is called the 
mode. In general, for an n-degrees-of-freedom discrete system, there are n natural modes 
and frequencies. A continuous system actually has an infinite number of natural modes and 
frequencies. When the system is discretized, only n degrees of freedom are created. The 
lowest modes and frequencies are approximated most often; the higher frequencies are 
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damped out more rapidly and are usually of less importance. A rule of thumb is to use two 
times as many elements as the number of frequencies desired.

Substituting l1 from Eqs. (16.4.15) into Eq. (16.4.12) and simplifying, the first modal 
equations are given by

	
d d

d d

1.4 0

0.7 0

2
(1)

3
(1)

2
(1)

3
(1)

m m

m m

9 2 9 5

2 9 1 9 5
	 (16.4.17)

It is customary to specify the value of one of the natural modes d9{ } for a given iω  or iλ . 
Letting d 13

(1)9 5  and solving Eq. (16.4.17), we find d 0.72
(1)9 5 . Similarly, substituting 2λ  

from Eqs. (16.4.15) into Eq. (16.4.12), we obtain the second modal equations. For brevity’s 
sake, these equations are not presented here. Now letting d 13

(2)9 5  results in d 0.72
(2)9 5 2 .  

The modal response for the first and second natural frequencies of longitudinal vibration 
are plotted in Figure 16 –12. The first mode means that the bar is completely in tension or 
compression, depending on the excitation direction. The second mode means the bar is in 
compression and tension or in tension and compression.

■■ Figure 16 –12  First and second modes of longitudinal vibration for the cantilever bar of 
Figure 16 –10

	16.5 	 Time-Dependent One-Dimensional Bar Analysis

Example 16.4

To illustrate the finite element solution of a time-dependent problem, we will solve the 
problem of the one-dimensional bar shown in Figure 16 –13(a) subjected to the force shown 
in Figure 16 –13(b). We will assume the boundary condition 5u 01  and the initial condi-
tions 5d{ } 00  and � 5d{ } 00 . For later numerical computation purposes, we let parameters 
r 5 7850 kg / m3, 5A 1 cm2, 5E 210 GPa, and 5L 2.5 m. These parameters are the same 
values as used in Section 16.4.
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SOLUTION:
Because the bar is discretized into two elements of equal length, the global stiffness and 
mass matrices determined in Section 16.4 and given by Eqs. (16.4.9) and (16.4.11) are 
applicable. We will again use the lumped-mass matrix because of its resulting computational 
simplicity. Figure 16 –14 shows the discretized bar and the associated lumped masses.

For illustration of the numerical time integration scheme, we will use the central dif-
ference method because it is easier to apply for longhand computations (and without loss 
of generality).

We next select the time step to be used in the integration process. It has been mathe-
matically shown that the time step must be less than or equal to 2 divided by the highest 
natural frequency when the central difference method is used [7]; that is, t vD # 2 / max. 
However, for practical results, we must use a time step of less than or equal to three-fourths 
of this value; that is,

	 



v

D #t
3

4

2

max
	 (16.5.1)

This time step ensures stability of the integration method. This criterion for selecting a 
time step demonstrates the usefulness of determining the natural frequencies of vibration, 
as previously described in Section 16.4, before performing the dynamic stress analysis. An 
alternative guide (used only for a bar) for choosing the approximate time step is

	 t
L

cx
D 5 	 (16.5.2)

where L is the element length, and c Ex x r5 /  is called the longitudinal wave velocity. 
Evaluating the time step by using both criteria, Eqs. (16.5.1) and (16.5.2), from Eqs. (16.4.16) 
for v, we obtain

	
v

D 5 5
3

5 3 2t




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3
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2 1.5

3.8 10
0.40 10 s

max
3

3 	 (16.5.3)

■■ Figure 16 –13  (a) Bar subjected to a time-dependent force and (b) the forcing function 
applied to the end of the bar

5000 N

■■ Figure 16 –14  Discretized bar with lumped masses
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or 	 D 5 5
3

5 3 2t
L

cx

100

2.1 10 / 7850
0.48 10 s

11
3 	 (16.5.4)

Guided by the maximum time steps calculated in Eqs. (16.5.3) and (16.5.4), we choose 
t 0.25 10 s3D 5 3 2  as a convenient time step for the computations.

Substituting the global stiffness and mass matrices, Eqs. (16.4.9) and (16.4.11), into 
the global dynamic Eq. (16.2.24), we obtain
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where R1 denotes the unknown reaction at node 1. Using the procedure for solution outlined 
in Section 16.3 and in the flowchart of Figure 16 –6, we begin as follows:

Step 1
Given: u 5 01  because of the fixed support at node 1, and all nodal displacements and veloc-

ities are zero at time t 5 0, that is, �d{ } 00 5  and d 5{ } 00 . Also, assume ��u 5 01  at all times.

Step 2
Solve for ��d{ }0  using Eq. (16.3.5) as
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where Eq. (16.5.6) accounts for the conditions u 5 01  and ��u 5 01 . Simplifying Eq. (16.5.6), 
we obtain
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where the numerical values for r, A, and L have been substituted into the final numerical 
result in Eq. (16.5.7), and
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has been used in Eq. (16.5.6). The computational advantage of using the lumped-mass matrix 
for longhand calculations is now evident. The inverse of a diagonal matrix, such as the 
lumped-mass matrix, is obtained simply by inverting the diagonal elements of the matrix.

Step 3
Using Eq. (16.3.8), we solve for d2{ }1  as

	 � ��d d t d
t

d5 2 D 1
D

2{ } { } ( ){ }
( )

2
{ }1 0 0

2

0 	 (16.5.9)
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Substituting the initial conditions on �d{ }0  and d{ }0  from step 1 and Eq. (16.5.7) for the initial 
acceleration ��d{ }0  from step 2 into Eq. (16.5.9), we obtain

	 5 2 3 1
3

2
2

2

d








{ } 0 (0.25 10 )(0)
(0.25 10 )

2
(5095)

0
1

1
3

3 2

	

or, on simplification,

	 5
3

2

2

u

u
























0

1.59 10
m

2

3
1

4
	 (16.5.10)

Step 4
On premultiplying Eq. (16.3.7) by M 2[ ] 1, we now solve for d{ }1  by

	 5 D 1 2 D 22
2d M t F M t K d M d{ } [ ] {( ) { } [2[ ] ( ) [ ]]{ } [ ]{ }}1

1 2
0

2
0 1 	 (16.5.11)

Substituting the numerical values for r, A, L, and E and the results of Eq. (16.5.10) into 
Eq. (16.5.11), we obtain
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
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
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
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
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0
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Simplifying, we obtain

	 5
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2
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
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
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
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
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Finally, the nodal displacements at time t 5 3 20.25 10 s3  become

	 5
3

5 3
2

2
u

u
t















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

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3
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3
3 	 (16.5.12)

Step 5
With d{ }0  initially given and d{ }1  determined from step 4, we use Eq. (16.3.7) to obtain

	

5 D 1 2 D 2
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Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



16  |  Structural Dynamics and Time-Dependent Heat Transfer788

	

3
3

2

5
3

1
3

3

2

2

2

2





















































































0

1.59 10

1.9625

2
2 0
0 1

0
0

2

1.9625

0

0 1

0

0.3125 10
0.083 10

0.2286 10

4

1
2

3

3

3

Simplifying, we obtain the nodal displacements at time 0.50 10 s35 3 2t  as

	 5
3

3
5 3
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2
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u

u
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


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







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3
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3
3 	 (16.5.13)

Step 6
Solve for the nodal accelerations ��d{ }1  again using Eq. (16.3.5) as 
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2
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Simplifying, we then obtain the nodal accelerations at time 0.25 10 s35 3 2t  as
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u

u
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
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2 3 	 (16.5.14)

The reaction R1 could be found by using the results of Eqs. (16.5.12) and (16.5.14) in 
Eq. (16.5.5).

Step 7
Using Eq. (16.5.13) from step 5 and the boundary condition for d{ }0   given in step 1, we 
obtain �d{ }1  as
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Simplifying, we obtain
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Step 8
We now use steps 5 through 7 repeatedly to obtain the displacement, acceleration, and 
velocity for all other time steps. For simplicity, we calculate the acceleration only.

Repeating step 6 with t 0.50 10 s35 3 2 , we obtain the nodal accelerations as
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On simplifying, the nodal accelerations at t 0.50 10 s35 3 2  are
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(16.5.15)

	16.6 	B eam Element Mass Matrices and Natural 
Frequencies

We now consider the lumped- and consistent-mass matrices appropriate for time-dependent 
beam analysis. The development of the element equations follows the same general steps as 
used in Section 16.2 for the bar element.

The beam element with the associated nodal degrees of freedom (transverse displacement 
and rotation) is shown in Figure 16 –15.

The basic element equations are given by the general form, Eq. (16.2.10), with the 
appropriate nodal force, stiffness, and mass matrices for a beam element. The stiffness matrix 
for the beam element is that given by Eq. (4.1.14). A lumped-mass matrix is obtained as

	

f f

r
5



















v v

m
AL

[ ]
2

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

1 1 2 2

	 (16.6.1)

where one-half of the total beam mass has been lumped at each node, corresponding to the 
translational degrees of freedom. In the lumped mass approach, the inertial effect associ-
ated with possible rotational degrees of freedom has been assumed to be zero in obtaining 
Eq. (16.6.1), although a value may be assigned to these rotational degrees of freedom by 
calculating the mass moment of inertia of a fraction of the beam segment about the nodal 
points. For a uniform beam we could then calculate the mass moment of inertia of half of the 
beam segment about each end node using basic dynamics as

	 r5I AL L
1

3
( / 2)( / 2)2	

■■ Figure 16 –15  Beam element with nodal degrees of freedom

v2v1
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Again, the lumped-mass matrix given by Eq. (16.6.1) is a diagonal matrix, making matrix 
numerical calculations easier to perform than when using the consistent-mass matrix. The 
consistent-mass matrix can be obtained by applying the general Eq. (16.2.19) for the beam 
element, where the shape functions are now given by Eqs. (4.1.7). Therefore,

	 ∫∫∫m N N dVT

V

r5[ ] [ ] [ ] 	 (16.6.2)

	 m
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N N N N dA dx
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∫∫∫
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





[ ] [ ]
0
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1 2 3 4r5 	 (16.6.3)

with
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1
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2 3
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3 3
3 2

4 3
3 2 2

	 (16.6.4)

On substituting the shape function Eqs. (16.6.4) into Eq. (16.6.3) and performing the integra-
tion, the consistent-mass matrix becomes

	
r

5

2

2

2

2 2 2





















m
AL

L L

L L L L
L L

L L L L

[ ]
420

156 22 54 13

22 4 13 3
54 13 156 22

13 3 22 4

2 2

2 2

	 (16.6.5)

Having obtained the mass matrix for the beam element, we could proceed to formulate the 
global stiffness and mass matrices and equations of the form given by Eq. (16.2.24) to solve 
the problem of a beam subjected to a time-dependent load. We will not illustrate the procedure 
for solution here because it is tedious and similar to that used to solve the one-dimensional bar 
problem in Section 16.5. However, a computer program can be used for the analysis of beams 
and frames subjected to time-dependent forces. Section 16.7 provides descriptions of plane 
frame and other element mass matrices, and Section 16.9 describes some computer program 
results for dynamics analysis of bars, beams, and frames.

To clarify the procedure for beam analysis, we will now determine the natural frequencies 
of a beam.

Example 16.5

We now consider the determination of the natural frequencies of vibration for a beam 
fixed at both ends as shown in Figure 16 –16. The beam has mass density r, modulus 
of elasticity E, cross-sectional area A, area moment of inertia I, and length 2L. For 
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simplicity of the longhand calculations, the beam is discretized into (a) two beam ele-
ments of length L (Figure 16 –16(a)) and then (b) three beam elements of length L each 
(Figure 16 –16(b)).

■■ Figure 16 –16  Beam for determination of natural frequencies

1 2 3 4

L L L

(a) (b)

SOLUTION:
(a) Two-Element Solution

We can obtain the natural frequencies by using the general Eq. (16.4.7). First, we 
assemble the global stiffness and mass matrices (using the boundary conditions v 5 01 , 
f 5 01 , v 5 03 , and f 5 03  to reduce the matrices) as

	

f

r
5 5





















v

K
EI

L L
M

AL
[ ]

24 0

0 8
[ ]

2
2 0
0 0

2 2

3 2

	 (16.6.6)

where Eq. (4.1.14) has been used to obtain each element stiffness matrix and Eq. (16.6.1) 
has been used to calculate the lumped-mass matrix. On substituting Eqs. (16.6.6) into Eq. 
(16.4.7), we obtain

	 v r2 5




















EI

L L
AL

24 0

0 8
1 0
0 0

0
3 2

2 	 (16.6.7)

Dividing Eq. (16.6.7) by ALr  and simplifying, we obtain

	 v
r

5
EI

AL

242
4

	

or	 v
r

5




L

EI

A

4.90
2

1/2

	 (16.6.8)

The exact solution for the first natural frequency, from simple beam theory, is given by 
References [1] and [6]. It is

	 v
r

5




L

EI

A

5.59
2

1/2

	 (16.6.9)

(Here L 5 half the beam length.)

The large discrepancy between the exact solution and the finite element solution is assumed 
to be accounted for by the coarseness of the finite element model. In Example 16.6, we show 
for a clamped-free beam that as the number of degrees of freedom increases, convergence 
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to the exact solution results. Furthermore, if we had used the consistent-mass matrix for 
the beam [Eq. (16.6.5)], the results would have been more accurate than with the lumped-
mass matrix as consistent-mass matrices yield more accurate results for flexural elements 
such as beams.
(b) Three-Element Solution:

Using Eq. (16.6.1), we calculate each element mass matrix as follows:

	

v v v v
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

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

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	 (16.6.10)

Knowing that w w5 5 5 5v v 01 1 4 4 , we obtain the global mass matrix as
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	 (16.6.11)

Using Eq. (4.1.14), we obtain each element stiffness matrix as
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
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(16.6.12)
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Using Eq. (16.6.12), we assemble the global stiffness matrix as
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Using the general Eq. (16.4.7), we obtain the frequency equation as
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(16.6.14)

Simplifying Eq. (16.6.14), we have
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	 (16.6.15)

where ALb r5
Upon evaluating the four-by-four determinant in Eq. (16.6.15), we obtain
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	 (16.6.16)

Dividing Eq. (16.6.16) by 
E I

L

4 2 3

2
, we obtain two roots for v b1

2  as

	
EI

L

EI

L
v b v b5

2
5

5.817254 29.817254
1
2

3 1
2

3
	 (16.6.17)
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Ignoring the negative root as it is not physically possible and solving explicitly for v 1, 
we have

	
EI

L
v

b
5

29.817254
1
2

3
	

or	
EI

L L

EI

A
v

b r
5 5

29.817254 5.46
1 3 2

	 (16.6.18)

In summary, comparing Eqs (16.6.8) and (16.6.18) with the exact solution, Eq. (16.6.9), for 
the first natural frequency, we have
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5

	 (16.6.19)

We can observe that with just three elements the accuracy has significantly increased.

Example 16.6

Determine the first natural frequency of vibration of the cantilever beam shown in 
Figure 16 –17 with the following data:

■■ Figure 16 –17  Fixed-free beam (two-element model, lumped-mass matrix)

375 mm

750 mm

Length of the beam:       5L 750 mm
Modulus of elasticity:  5 3E 210 10 Pa9

Moment of inertia:            5 3I 3 10 mm4 4

Cross-sectional area:       5 3 2A 6 10 m2 2

Mass density:                  r 5 7800 kg/m3

Poisson’s ratio:                 5ν 0.3

SOLUTION:
The finite element longhand solution result for the first natural frequency is obtained sim-
ilarly to that of Example 16.5 as
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The exact solution according to beam theory [1] is
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	 (16.6.20)

According to vibration theory for a clamped-free beam [1], we relate the second and third 
natural frequencies to the first natural frequency by

	
v

v

v

v
5 56.2669 17.5475

2

1

3

1
	

Figure 16 –18 shows the first, second, and third mode shapes corresponding to the first three 
natural frequencies for the cantilever beam of Example 16.6 as obtained from a computer 
program. Note that each mode shape has one fewer node where a node is a point of zero 
displacement. That is, the first mode has all the elements of the beam of the same sign 
[Figure 16 –18(a)], the second mode has one sign change and at some point along the beam 
the displacement is zero [Figure 16 –18(b)], and the third mode has two sign changes and at 
two points along the beam the displacement is zero [Figure 16 –18(c)].

Table 16 –3 shows the computer solution compared with the exact solution.

■■ Figure 16 –18  First, second, and third mode shapes of flexural vibration for a cantilever beam
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	16.7 	 Truss, Plane Frame, Plane Stress, Plane Strain, 
Axisymmetric, and Solid Element Mass Matrices

The dynamic analysis of the truss and that of the plane frame are performed by extending the 
concepts presented in Sections 16.2 and 16.6 to the truss and plane frame, as has previously 
been done for the static analysis of trusses and frames.

Truss Element
The truss analysis requires the same transformation of the mass matrix from local to global 
coordinates as in Eq. (3.4.22) for the stiffness matrix; that is, the global mass matrix for a truss 
element is given by

	 m T m TT5 9[ ] [ ] [ ][ ]	 (16.7.1)

We are now dealing with motion in two or three dimensions. Therefore, we must refor-
mulate a bar element mass matrix with both axial and transverse inertial properties because 
mass is included in both the global x and y directions in plane truss analysis (Figure 16 –19). 
Considering two-dimensional motion, we express both local axial displacement u and transverse 
displacement v for the element in terms of the local axial and transverse nodal displacements as

 Table 16 –3  Finite element computer solution compared to exact solution for Example 16.6

vv (rad/s)1 vv (rad/s)2

Exact solution from beam theory 228 1434

Finite element solution

  Using 2 elements 205 1286

  Using 6 elements 226 1372

  Using 10 elements 227.5 1410

  Using 30 elements 228.5 1430

  Using 60 elements 228.5 1432

■■ Figure 16 –19  Truss element arbitrarily oriented in x – y plane showing nodal degrees of 
freedom

v1

v2

u2

u1

u ′1

u ′2

x ′
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	 (16.7.2)

In general, N dc 59 9[ ] [ ]{ }; therefore, the shape function matrix from Eq. (16.7.2) is

	








N

L
L x x

L x x
5

2 9 9

2 9 9
[ ]

1 0 0
0 0

	 (16.7.3)

We can then substitute Eq. (16.7.3) into the general expression given by Eq. (16.2.19) to eval-
uate the local truss element consistent-mass matrix as
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m
ALr

9 5[ ]
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0 1 0 2

	 (16.7.4)

The truss element lumped-mass matrix for two-dimensional motion is obtained by simply 
lumping mass at each node and remembering that mass is the same in both the x9 and y9 direc-
tions. The local truss element lumped-mass matrix is then
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

m
ALr
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	 (16.7.5)

Plane Frame Element
The plane frame analysis requires first expanding and then combining the bar and beam mass 
matrices to obtain the local mass matrix. Because we recall there are six total degrees of free-
dom associated with a plane frame element (Figure 16 –20), the bar and beam mass matrices 
are expanded to order 6 × 6 and superimposed.

■■ Figure 16 –20  Frame element arbitrarily oriented in local coordinate system showing nodal 
degrees of freedom

u ′1

v ′1

v ′2
u ′2

x ′

′

′
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On combining the local axes consistent-mass matrices for the bar and beam from Eqs. (16.2.23) 
and (16.6.5), we obtain
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On combining the lumped-mass matrices Eqs. (16.2.12) and (16.6.1) for the bar and beam, 
respectively, the resulting local axes plane frame lumped-mass matrix is

	

f f
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	 (16.7.7)

The global mass matrix [m] for a plane frame element arbitrarily oriented in x – y coordinates 
is transformed according to Eq. (16.7.1), where the transformation matrix [T] is now given by 
Eq. (5.1.10) and either Eq. (16.7.6) for consistent-mass or (16.7.7) for lumped-mass matrices.

Because a longhand solution of the time-dependent plane frame problem is quite lengthy, 
only a computer program solution will be presented in Section 16.9.

Plane Stress/Strain Element
The plane stress, plane strain, constant-strain triangle element (Figure 16 –21) consistent-mass 
matrix is obtained by using the shape functions from Eq. (6.2.18) and the shape function matrix 
given by substituting
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■■ Figure 16 –21  CST element with nodal degrees of freedom
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into Eq. (16.2.19) to obtain

	 ∫m N N dVT
V

r5[ ] [ ] [ ] 	 (16.7.8)

Letting 5dV tdA and noting that 5∫ N d A A
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61
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the CST global consistent-mass matrix as

	
r

5

























m
t A

[ ]
12

2 0 1 0 1 0
2 0 1 0 1

2 0 1 0
2 0 1

2 0

Symmetry 2

	 (16.7.9)

For the isoparametric quadrilateral (Q4) element for plane stress and plane strain consid-
ered in Chapter 10, we use the shape functions given by Eq. (10.2.5) with the shape function 
matrix given in Eq. (10.2.4) substituted into Eq. (16.7.10). This yields the quadrilateral element 
consistent-mass matrix as

	 m t N N J ds dtT∫∫[ ] [ ] [ ] | [ ] |
1

1

1

1
r5

22
	 (16.7.10)

The integral in Eq. (16.7.10) is evaluated best by numerical integration as described in 
Section 10.4.

Axisymmetric Element
The axisymmetric triangular element (considered in Chapter 9 and shown in Figure 16 –22) 
consistent-mass matrix is given by

	 m N N dV N N r dA
V

T
A

T∫ ∫[ ] [ ] [ ] [ ] [ ]2r r p5 5 	 (16.7.11)

Since 5 1 1r N r N r N r1 1 2 2 3 3, we have

	 pr5 1 1∫m N r N r N r N N dA
A

T[ ] 2 ( )[ ] [ ]1 1 2 2 3 3 	 (16.7.12)

■■ Figure 16 –22  Axisymmetric triangular element showing nodal degrees of freedom
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Noting that
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we obtain
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(16.7.14)

where

	 5
1 1

r
r r r

3
1 2 3

	

Tetrahedral Solid Element
Finally, the tetrahedral solid element (considered in Chapter 11) consistent-mass matrix is 
obtained by substituting the shape function matrix Eq. (11.2.9) with shape functions defined 
in Eq. (11.2.10) into Eq. (16.2.19) and performing the integration to obtain
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	 (16.7.15)
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	16.8 	 Time-Dependent Heat Transfer
In this section, we consider the time-dependent heat transfer problem in one dimension only. 
The basic differential equation for time-dependent heat transfer in one dimension was given 
previously by Eq. (13.1.7) with the boundary conditions given by Eqs. (13.1.10) and (13.1.11).

The finite element formulation of the equations can be obtained by minimization of the 
following functional:
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	 (16.8.1)

Equation (16.8.1) is similar to Eq. (13.4.10) with definitions given by Eq. (13.4.11) except that 
the Q term is now replaced by

	 Q c Tr2 �	 (16.8.2)

where, again, c is the specific heat of the material, and the dot over the variable T denotes 
differentiation with respect to time. Again, Eq. (13.4.22) obtained in Section 13.4 for the con-
ductivity or stiffness matrix and Eqs. (13.4.23) through (13.4.25) for the force matrix terms 
are applicable here.

The term given by Eq. (16.8.2) yields an additional contribution to the basic element 
equations previously obtained for the time-independent problem as follows:

	 �r5 2 2∫∫∫Ω T Q c T dVQ

V

( ) 	 (16.8.3)

Again, the temperature function is given by

	 T N t5{ } [ ]{ }	 (16.8.4)

where [N ] is the shape function matrix given by Eq. (13.4.3) or Eqs. (16.2.3) for the simple 
one-dimensional element, and {t} is the nodal temperature matrix. Substituting Eq. (16.8.4) 
into Eq. (16.8.3) and differentiating with respect to time where indicated yields

	 �r5 2 2∫∫∫Ω N t Q c N t N t dVQ

V

([ ]{ } [ ]{ }[ ]{ }) 	 (16.8.5)

where the fact that [N ] is a function only of the coordinate system has been taken into account. 
Equation (16.8.5) must be minimized with respect to the nodal temperatures as follows:

	 �r5 2 1∫∫∫ ∫∫∫
Ω�

� t
N Q dV c N N dV t

Q T

V

T

V
{ }

[ ] [ ] [ ] { }	 (16.8.6)

where we have assumed that �t{ } remains constant during the differentiation with respect to 
{t}. Equation (16.8.6) results in the additional time-dependent term added to Eq. (13.4.18). 
Hence, using previous definitions for the stiffness and force matrices, we obtain the element 
equations as

	 f k t m t5 1 �{ } [ ]{ } [ ]{ }	 (16.8.7)
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where now	 r5 ∫∫∫m c N N dVT

V

[ ] [ ] [ ] 	 (16.8.8)

For an element with constant cross-sectional area A, the differential volume is 5dV Adx . 
Substituting the one-dimensional shape function matrix Eq. (13.4.3) into Eq. (16.8.8) yields
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Equation (16.8.9) is analogous to the consistent-mass matrix Eq. (16.2.23). The lumped-mass 
matrix for the heat conduction problem is then
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c ALr
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2
1 0
0 1

	 (16.8.10)

which is analogous to Eq. (16.2.12) for the one-dimensional stress element.
The time-dependent heat-transfer problem can now be solved in a manner analogous to 

that for the stress analysis problem. We present the numerical time integration scheme.

Numerical Time Integration
The numerical time integration method described here is similar to Newmark’s method used for 
structural dynamics analysis and can be used to solve time-dependent or transient heat-transfer 
problems.

We begin by assuming that two temperature states Ti{ } at time ti and Ti 1{ }1  at time ti 1 1 
are related by

	 T T T T ti i i ib b5 1 2 1 D1 1
� �{ } { } [(1 ){ } { }]( )1 1 	 (16.8.11)

Equation (16.8.11) is known as the generalized trapezoid rule. Much like Newmark’s 
method for numerical time integration of the second-order equations of structural dynamics, 
Eq. (16.8.11) includes a parameter b  that is chosen by the user.

Next we express Eq. (16.8.7) in global form as

	 F K T M T5 1 �{ } [ ]{ } [ ]{ }	 (16.8.12)

We now write Eq. (16.8.12) for time ti and then for time ti 1 1. We then multiply the first of 
these two equations by b21  and the second by b  to obtain

	 K T M T Fi i ib b2 1 5 2�(1 )([ ]{ } [ ]{ }) (1 ){ }	 (16.8.13a)

	 K T M T Fi i ib b1 51 1 1
�([ ]{ } [ ]{ }) { }1 1 1 	 (16.8.13b)
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Next we add Eqs. (16.8.13a and b) together to obtain

	 +M T T K T T

F F
i i i i

i i

b b b b

b b

2 1 1 2 1

5 2 1

1

1

� �[ ][(1 ){ } { }] [ ][(1 ){ } { }]

(1 ){ } { }
1 1

1

	 (16.8.14)

Now, using Eq. (16.8.11), we can eliminate the time derivative terms from Eq. (16.8.14) to write

	 b b b b
2

D
1 2 1 5 2 1

1
1 1

M T T

t
K T T F Fi i

i i i i
[ ]({ } { })

[ ][(1 ){ } { }] (1 ){ } { }1
1 1 	 (16.8.15)

Rewriting Eq. (16.8.15) by grouping the Ti 1{ }1  terms on the left side, we have

	













t
M K T

t
M K T F F

i

i i i

b

b b b

D
1

5
D

2 2 1 2 1

1

1

1
[ ] [ ] { }

1
[ ] (1 )[ ] { } (1 ){ } { }

1

1

	 (16.8.16)

The time integration to solve for [T ] begins as follows. Given a known initial temperature T{ }0  
at time t 5 0 and a time step tD , we solve Eq. (16.8.16) for T{ }1  at t t5 D . Then, using T{ }1 , 
we determine T{ }2  at t t5 D2( ), and so on. For a constant tD , the left-side coefficient of Ti 1{ }1  
need be evaluated only one time (assuming [M ] and [K ] do not vary with time). The matrix 
Eq. (16.8.16) can then be solved in the usual manner, such as by Gauss elimination. For a 
one-dimensional heat-transfer analysis, element [k] is given by Eqs. (13.4.22) and (13.4.28), 
whereas {ƒ} is given by Eqs. (13.4.26) and (13.4.29).

It has been shown that depending on the value of b , the time step tD  may have an upper 
limit for the numerical analysis to be stable. If 1

2b , , the largest tD  for stability as shown in 
Reference [12] is

	
b l

D 5
2

t
2

(1 2 ) max
	 (16.8.17)

where lmax is the largest eigenvalue of

	 K M Tl2 9 5([ ] [ ]){ } 0	 (16.8.18)

in which, as in Eq. (16.4.2), we have

	 T t T ei t5 9 l{ ( )} { } 	 (16.8.19)

with T9{ } representing the natural modes. If 1
2b $ , the numerical analysis is unconditionally 

stable; that is, stability of solution (but not accuracy) is guaranteed for tD  greater than that given 
by Eq. (16.8.17), or as tD  becomes indefinitely large. Various numerical integration methods 
result, depending on specific values of b :

b 5 0: �Forward difference, or Euler [3], which is said to be conditionally stable (that is, tD  
must be no greater than that given by Eq. (16.8.17) to obtain a stable solution).

b 5 1
2: Crank-Nicolson, or trapezoid, rule, which is unconditionally stable.

b 5 2
3: Galerkin, which is unconditionally stable.

b 5 1: Backward difference, which is unconditionally stable.
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If b 5 0, the numerical integration method is called explicit; that is, we can solve for 
Ti 1{ }1  directly at time tD  knowing only previous information at t Ti5 { }. If b . 0, the method 

is called implicit. If a diagonal mass-type matrix [M ] exists and b 5 0, the computational effort 
for each time step is small (see Example 16.4, where a lumped-mass matrix was used), but so 
must be tD . The choice of b . 1

2  is often used. However, if b 5 1
2 and sharp transients exist, 

the method generates spurious oscillations in the solution. Using 1
2b . , along with smaller 

tD  [12], is probably better. Example 16.7 illustrates the solution of a one-dimensional time-
dependent heat-transfer problem using the numerical time integration scheme [Eq. (16.8.16)].

Example 16.7

A circular fin (Figure 16 –23) is made of pure copper with a thermal conductivity of 
Kxx 400 W/(m C)5 ? 8 , h 150 W/(m C)25 ? 8 , mass density 8900 kg/m3r 5 , and spe-
cific heat c 375 J/(kg C) (1 J 1 W s)5 ? 8 5 ? . The initial temperature of the fin is 825 C. 
The fin length is 2 cm, and the diameter is 0.4 cm. The right tip of the fin is insulated. The 
base of the fin is then suddenly increased to a temperature of 885 C and maintained at this 
temperature. Use the consistent form of the capacitance matrix, a time step of 0.1 s, and 
b 5 2

3. Use two elements of equal length. Determine the temperature distribution up to 3 s.

■■ Figure 16 –23  Rod subjected to time-dependent temperature

SOLUTION:
Using Eq. (13.4.22), the stiffness matrix is

	

p p

5 5
2

2
1

5 5
2

2
1









































k k
AK

L

hPL

k k

xx

1 2 2 3

[ ] [ ] 1 1
1 1 6

2 1
1 2

[ ] [ ]
(0.004) (400)

4 (0.01)
1 1
1 1

150(2 )(0.002)(0.01)

6
2 1
1 2

(1) (2)

(1) (2)
2

	

(16.8.20)

Assembling the element stiffness matrices, Eq. (16.8.20), we obtain the global stiffness 
matrix as

	
K



















1 2 3

[ ]

0.50894 0.49951 0

0.49951 1.01788 0.49951

0 0.49951 0.50894

W

C
5

2

2 2

2
8

	 (16.8.21)
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Using Eq. (13.4.25), we obtain each element force matrix as

	

p
5 5 5

8

5 5

` 























f f
hT PL

f f

h h

h h

{ } { }
2

1
1

(150)(25 C)(2 )(0.002)(0.01)

2
1
1

{ } { }
0.23561
0.23561

(1) (2)

(1) (2)

	

(16.8.22)

Using Eq. (16.8.22), we find that the assembled global force matrix is

	 F












{ }

0.23561
0.47122
0.23561

W5 	 (16.8.23)

Next using Eq. (16.8.9), we obtain each element mass (capacitance) matrix as

	

r

p

5

5 5

5 ? 8































m
c AL

m m

[ ]
6

2 1
1 2

[ ] [ ]
(375)(8900)

(0.004)
4

(0.01)

6
2 1
1 2

0.06990 2 1
1 2

W s / C

(1) (2)

2

	

(16.8.24)

Using Eq. (16.8.24), the assembled capacitance matrix is

	
M

















1 2 3

[ ]
0.13980 0.06990 0
0.06990 0.27960 0.06990
0 0.06990 0.13980

W s

C
5

?

8

	 (16.8.25)

Using Eq. (16.8.16) and Eqs. (16.8.21) and (16.8.25), we obtain

	
t

M K





















1
[ ] [ ]

1.7374 0.36603 0
0.36603 3.4747 0.36603
0 0.36603 1.7374

W

C
b

D
1 5

8
	 (16.8.26)

and	
t

M K





















1
[ ] (1 )[ ]

1.2280 0.8655 0
0.8655 2.457 0.8655
0 0.8655 1.2280

W

C
b

D
2 2 5

8
	 (16.8.27)

where 2
3b 5  and t 0.1 sD 5  have been used to obtain Eqs. (16.8.26) and (16.8.27). For the 

first time step, t 0.1 s5 , we then use Eqs. (16.8.23), (16.8.27), and (16.8.26) in Eq. (16.8.16) 
to obtain
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(16.8.28)

In Eq. (16.8.28), we should note that because F Fi i5 1{ } { }1  for all time, the sum of the 
terms is F F Fi i ib b2 1 51(1 ){ } { } { }1  for all time. This is the column matrix on the right 
side of Eq. (16.8.28). We now solve Eq. (16.8.28) in the usual manner by partitioning the 
second and third equations of Eq. (16.8.28) from the first equation and solving the second 
and third equations simultaneously for t2 and t3. The results are

	 5 8 5 8t t18.534 C 26.371 C2 3 	

At time t 0.2 s5 , Eq. (16.8.28) becomes
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(16.8.29)

Solving Eq. (16.8.29) for t2 and t3, we obtain

	 5 8 5 8t t29.732 C 21.752 C2 3 	

The results through a time of 3 s are tabulated in Table 16 –4 and plotted in Figure 16 –24.

 Table 16 –4  Nodal temperatures at various times for Example 16.7

Temperature of Node Numbers 8( C)
Time (s) 1 2 3

0.1 85 18.534 26.371

0.2 85 29.732 21.752

0.3 85 36.404 22.662

0.4 85 41.032 25.655

0.5 85 44.665 29.312

0.6 85 47.749 33.059

0.7 85 50.482 36.669

0.8 85 52.956 40.062

0.9 85 55.218 43.218

1.0 85 57.296 46.139
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Temperature of Node Numbers 8( C)
Time (s) 1 2 3

1.1 85 59.208 48.837

1.2 85 60.969 51.327

1.3 85 62.593 53.623

1.4 85 64.089 55.741

1.5 85 65.469 57.693

1.6 85 66.742 59.493

1.7 85 67.915 61.152

1.8 85 68.996 62.683

1.9 85 69.993 64.094

2.0 85 70.912 65.395

2.1 85 71.760 66.594

2.2 85 72.542 67.700

2.3 85 73.262 68.720

2.4 85 73.926 69.660

2.5 85 74.539 70.527

2.6 85 75.104 71.326

2.7 85 75.624 72.063

2.8 85 76.104 72.742

2.9 85 76.547 73.368

3.0 85 76.955 73.946

■■ Figure 16 –24  Temperature as a function of time for nodes 2 and 3 of Example 16.7
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	16.9 	 Computer Program Example Solutions for Structural 
Dynamics

In this section, we report some results of structural dynamics from a computer program. We 
report the results of the natural frequencies of a fixed-fixed beam using the plane stress element 
in Autodesk [15] and compare how many elements of this type are necessary to obtain correct 
results. We also report the results of three structural dynamics problems: a bar, a beam, and a 
frame subjected to time-dependent loadings.

Finally, we show two additional models, one of a time-dependent three-dimensional gantry 
crane made of beam elements and subjected to an impact loading, and the other of a cab frame 
that travels along the underside of a crane beam.

Figure 16 –25 shows a fixed-fixed steel beam used for natural frequency determination 
using plane stress elements. Table 16 –5 shows the results of the first five natural frequencies 
using 100 elements and then using 1000 elements. Comparisons to the analytical solutions 
from beam theory are shown. We observe that it takes a large number of plane stress elements 
to accurately predict the natural frequencies whereas it only took a few beam elements to 
accurately predict natural frequencies (see Example 16.6 and Table 16 –3).

Figure 16 –26 shows a steel bar subjected to a time-dependent forcing function. Using two 
elements in the model, the nodal displacements at nodes 2 and 3 are presented in Table 16 –6. 
A time step of integration of 0.00025 s was used. This time step is based on that recommended 
by Eq. (16.5.1) and determined in Example 16.4, as the bar has the same properties as that of 
Example 16.4.

Figure 16 –27 shows a plot of the axial displacement of the free end node 3 versus time up 
to 0.01 s. Notice the oscillatory motion due to damping being neglected.

■■ Figure 16 –25  Fixed-fixed beam for natural frequency determination modeled using plane 
stress element

2.54 cm
2.5 m

2.54 cm

 Table 16 –5  Results for first five frequencies using 100 and 1000 elements and exact solution

vv (rad/s) Analytical 100 Elements 1000 Elements

1 130.8 130.7 130.6

2 360.8 359.8 359.7

3 707.3 704.7 704.1

4 1169.2 1163.3 1161.6

5 1746.6 1734.5 1731.0
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■■ Figure 16 –26  Bar subjected to forcing function shown

 F(t), N

5000

2.5 m 2.5 m

 Table 16 –6  Displacement (mm) time history, nodes 2 and 3 of Figure 16 –26

*NODE NUMBER* − (COMPONENT NUMBER)

TIME 2−(1) 3−(1)

0.00025 112.0E−06 156.4E−05

0.00050 116.8E−05 118.6E−04

0.00075 5.5E−03 35.63E−03

0.00100 16.5E−03 75.36E−03

0.00125 37.6E−03 123.8E−03

0.00150 68.6E−03 163.6E−03

0.00175 103.1E−03 181.4E−03

0.00200 129.8E−03 171.5E−03

0.00225 135.9E−03 147.1E−03

0.00250 114.3E−03 111.4E−03

0.00275 67.8E−03 72.7E−03

0.00300 8.3E−03 29.0E−03

0.00325 −48.4E−03 −24.0E−03

0.00350 −89.9E−03 −85.2E−03

0.00375 −111.2E−03 −144.6E−03

0.00400 −115.1E−03 −185.9E−03

0.00425 −107.5E−03 −194.2E−03

0.00450 −92.6E−03 −164.2E−03

0.00475 −70.4E−03 −103.0E−03

0.00500 −38.5E−03 −27.5E−03

0.00525 4.1E−03 43.5E−03

0.00550 52.9E−03 99.6E−03

0.00575 98.2E−03 134.9E−03

0.00600 128.4E−03 152.9E−03

0.00625 134.9E−03 157.1E−03
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*NODE NUMBER* − (COMPONENT NUMBER)

TIME 2−(1) 3−(1)

0.00650 116.4E−03 147.7E−03

0.00675 78.9E−03 121.3E−03

0.00700 32.6E−03 74.9E−03

0.00725 −12.8E−03 10.4E−03

0.00750 −51.2E−03 −61.5E−03

0.00775 −80.8E−03 −128.3E−03

0.00800 −101.9E−03 −171.8E−03

0.00825 113.7E−03 −183.7E−03

0.00850 −113.4E−03 −164.2E−03

0.00875 97.5E−03 −119.2E−03

0.00900 −64.6E−03 −65.9E−03

0.00925 −18.E−03 −8.1E−03

0.00950 0.4335E−03 40.0E−03

0.00975 0.6815E−03 80.0E−03

0.01000 0.8051E−03 127.0E−03

MAXIMUM ABSOLUTE VALUES

MAXIMUM 135.9E−03 194.2E−03

TIME 2.250E−03 4.25E−03

■■ Figure 16 –27  Node 3 displacement versus time for bar of Figure 16 –26
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Table 16 –6 lists the largest maximum absolute displacement of 0.1942 mm at 
time of 0.00425 s. For comparison, the maximum static deflection from d 5 PL AE( /
5 3 3 3 52(5000 N)(5 m)/(6.45 10 210 10 ) 0.1857 mm)4 9 .

Figure 16 –28 shows a fixed-fixed beam subjected to a forcing function. Here 5E 45 GPa,  
41 10 m6 45 3 2I , mass density of 31065 10 kg/m3 3 and a time step of integration of 0.001 s 

were used for the beam. The natural frequencies are shown in Table 16 –7.
Table 16 –7 lists the first six natural frequencies for the fixed-fixed beam. The natural 

frequencies 1, 2, 3, and 6 are flexural modes, while mode 5 is an axial mode. These modes are 
seen by looking at the modes from a frequency analysis. The undamped response of the center 
node 3 is shown in Figure 16 –29 along with a damped response subsequently described. The 
maximum displacement under the load (at node 3) compares with the solution in Reference 
[14]. This maximum displacement is at node 3 at a time of 0.086 s with a value of 31 mm. The 
static deflection for the beam with a concentrated load at mid-span is 15.9 mm as obtained 
from the classical solution of y PL EI5 / 1923 . The undamped time-dependent response oscil-
lates about zero deflection after the load is removed while the damped response oscillates in a 
damped manner approaching zero deflection.

A time step of 0.002 was used in the fixed-fixed beam as it meets the recommended 
time step as suggested in Section 16.3. That is, /10 to /20D ,t T Tn n  is recommended to 
provide accurate results for Wilson’s direct integration scheme as used in the Autodesk pro-
gram. From the frequency analysis (see the output in Table 16 –7), the circular frequency 
v 5 170.94  or the natural frequency is 27.2 cycles/s4 4v5 5f  or hertz (Hz). Now we use 
D 5 5 5 5t T fn / 20 1 / (20 ) 1 / [20(27.2)] 0.002 s4 . Therefore, D 5t 0.002 s is acceptable. 
Using a time step greater than Tn /10 may result in loss of accuracy as some of the higher 
mode response contributions to the solution may be missed. Oftentimes a cut-off period or 

■■ Figure 16 –28  Fixed-fixed beam subjected to forcing function

50,000 N

1.25 m1.25 m1.25 m1.25 m

 Table 16 –7  Natural frequencies and displacement 
time history (nodes 2 and 3 Figure 16 –28)

Frequencies = mode 
number

6 circular frequency  
(rad/sec)

1 3.9139E+01

2 1.0398E+01

3 1.3267E+02

4 1.7093E+02

5 2.4514E+02

6 3.2029E+02
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frequency is used to decide what largest natural frequency to use in the analysis. In many 
applications only a few lower modes contribute significantly to the response. The higher 
modes are then not necessary. The highest frequency used in the analysis is called the cut-off 
frequency. For machinery parts, the cut-off frequency is often taken as high as 250 Hz. In the 
fixed-fixed beam, we have selected a cut-off frequency of f 31.44 Hz6 5  in determining the 
time step of integration. This frequency is the highest flexural mode frequency computed for 
the four-element beam model.

Damping
Damping is considered in the fixed-fixed beam example. Computer programs, such as Autodesk 
and ANSYS, allow you to consider damping using Rayleigh damping in the direct integration 
method. For Rayleigh damping, the damping matrix is

	 a b5 1C M K[ ] [ ] [ ]	 (16.9.1)

where the constants a and b  are calculated from the system equations

	 a bv v1 5 zi i i22 	 (16.9.2)

where iv  are circular natural frequencies obtained through modal analysis, and iz  are damping 
ratios specified by the analyst. For instance, assuming we assign damping ratios z1 and z2, from 
the above Eq. (16.9.2), we can show that a and b  are

■■ Figure 16 –29  Undamped and damped response of center node 3 for fixed-fixed beam of 
Figure 16 –28
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	 a
v v

v v
v v b

v v
v v5

2
z 2 z 5

2
z 2 z

2
( )

2
( )

1 2

2
2

1
2 2 1 1 2

2
2

1
2 2 2 1 1 	 (16.9.3)

For b 5 0, C Ma5[ ] [ ] and the higher modes are only slightly damped, while for a 5 0, 
C Kb5[ ] [ ] and higher modes are heavily damped. To obtain a and b , we then necessarily 
run the modal analysis program first to obtain the frequencies. For instance, in the fixed-fixed 
beam, the first two different frequencies are v 5 45.23 rad/s1  and v 5 120.16 rad/s3  (v 2 is the 
same as v 3, so use v 3). Now assume light damping ζ #( 0.05). Therefore, let ζ ζ5 5 0.051 2 .  
Using these v  s and ζ s, in Eqs. (16.9.3), we obtain a 5 3.286 and b 5 0.000605. These values 
were used for a and b  in the damped response for the fixed-fixed beam to include 5% damping 
ζ 5( 0.05).

Figure 16 –30(a) shows a plane frame consisting of six rigidly connected prismatic members 
with dynamic forces F(t) and 2F(t) applied in the x direction at joints 6 and 4, respectively. The 

■■ Figure 16 –30  (a) Six-member plane frame; (b) dynamic load
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■■ Figure 16 –31  Displaced frame with worst stress (psi) (1 psi = 6.895 kPa) at time 0.035 s

time variation of F(t) is shown in Figure 16 –30 (b). The results are for steel with cross-sectional 
area of 0.01935 m2, moment of inertia of 3 20.4162 10 m3 4, 5L 1.25 m, and 50,000 N1 5F .  
Figure 16 –31 shows the displaced frame for the worst stress at time of 0.035 s. The largest x 
displacement of node 6 for the time of 0.035 s is 3.94 mm. This value compares closely with 
the solution in Reference [16].

Finally, Figures 16 –32(a) and 16 –33(a) show models of a gantry crane and a cab frame 
subjected to dynamic loading functions [Figures 16 –32(b) and (16 –33(b)]. For details of these 
design solutions consult [17–18].
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■■ Figure 16 –32  (a) Gantry crane model composed of 73 beam elements and (b) the time-
dependent trapezoidal loading function applied to the top edge of the crane [17]
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■■ Figure 16 –33  (a) Finite element model of a cab with 8 plate elements (upper right 
triangular elements) and 15 beam elements and (b) the time-dependent trapezoidal loading 
applied to node 10 [18]
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Summary Equations

Equation of motion for spring-mass system:

	 mx kx F t1 5�� ( )	 (16.1.2)

Natural circular frequency:

	
k

m
v 52 	 (16.1.3)

Period of vibration:

	 t
p

v
5

2
	 (16.1.5)

Stiffness matrix for bar:

	
5

2

2











u u

k
AE

L
[ ] 1 1

1 1

1 2

	 (16.2.11)

Lumped-mass matrix for bar:

	 r
5











u u

m
AL

[ ]
2

1 0
0 1

1 2

	 (16.2.12)

Consistent-mass matrix for bar:

	








m

ALr
5[ ]

6
2 1
1 2

	 (16.2.23)

Global equations of motion:

	 F t K d M d5 1 ��{ ( )} [ ]{ } [ ]{ }	 (16.2.24)

Central difference numerical integration equations for velocity and acceleration:

	 d
d d

t
i

i i
5

2

D

1 2�{ }
{ } { }

2
1 1 	 (16.3.1)

	 d
d d

t
i

i i
5

2

D

1 2��
� �

{ }
{ } { }

2
1 1 	 (16.3.2)

For a flowchart for the central difference method, see Figure 16 –6.

Newmark’s equations for numerical integration:

	 � � �� ��g g5 1 D 2 11 1d d t d di i i i{ } { } ( )[(1 ){ } { }]1 1 	 (16.3.9)

	 � �� ��b b5 1 D 1 D 2 11 1d d t d t d di i i i i{ } { } ( ){ } ( ) [( ){ } { }]1
2 1

2 1 	 (16.3.10)

For a flowchart of Newmark’s method, see Figure 16 –8.
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Wilson’s equations for numerical integration:

	 d d
t

d di i i i5 1
QD

11 1
� � �� ��{ } { }

2
({ } { })1 1 	 (16.3.15)

	 � �� ��5 1 QD 1
Q D

11 1d d t d
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d di i i i i{ } { } { }
( )

6
({ } 2{ })1

2 2

1 	 (16.3.16)

Determinant to determine natural frequencies:

	 K Mv2 5| [ ] | 02 	 (16.4.7)

Time step recommended using central difference method:
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	 (16.5.1)

Beam element lumped mass matrix:
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	 (16.6.1)

Beam element consistent mass matrix:

	

f f
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	 (16.6.5)

First natural frequency for beam based on classical beam theory solution:

Fixed-fixed beam:

	

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
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A
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5
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2
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	 (16.6.9)

Fixed-free beam:

	

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	 (16.6.20)

Truss element consistent-mass matrix:

	

9 9 9 9
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	 (16.7.4)
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Truss element lumped-mass matrix:
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	 (16.7.5)

Plane frame consistent element mass matrix:
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	 (16.7.6)

Plane frame lumped-mass matrix:
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	 (16.7.7)

Constant strain triangle consistent-mass matrix:
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Axisymmetric element consistent mass matrix:
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(16.7.14)

where	 5
1 1

r
r r r

3
1 2 3

	

Tetrahedral solid element consistent-mass matrix:
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	 (16.7.15)

One-dimensional bar element consistent-mass matrix for heat transfer:
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One-dimensional bar element lumped-mass matrix for heat transfer:
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c AL 
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2
1 0
0 1

1 2
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	 (16.8.10)

Global form of time-dependent heat transfer equation:

	 F K T M T5 1 �{ } [ ]{ } [ ][ ]	 (16.8.12)

Upper limit time step for numerical analysis to be stable for heat transfer problem:

	
b l

D 5
2

t
2

(1 2 ) max
	 (16.8.17)
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Problems

	 16.1		  Determine the consistent-mass matrix for the one-dimensional bar discretized into 
two elements as shown in Figure P16 –1. Let the bar have modulus of elasticity E, 
mass density r, and cross-sectional area A.

■■ Figure P16 –1 ■■ Figure P16 –2

■■ Figure P16 –3 ■■ Figure P16 –4

1.5 m

■■ Figure P16 –5

N

500

250

	 16.2		  For the one-dimensional bar discretized into three elements as shown in Figure 
P16 –2, determine the lumped- and consistent-mass matrices. Let the bar properties 
be E, r, and A throughout the bar.

	 16.3		  For the one-dimensional bar shown in Figure P16 –3, determine the natural frequen-
cies of vibration, v ’s, using two elements of equal length. Use the consistent-mass 
approach. Let the bar have modulus of elasticity E, mass density r, and cross-
sectional area A. Compare your answers to those obtained using a lumped-mass 
matrix in Example 16.3.

	 16.4		  For the one-dimensional bar shown in Figure P16 –4, determine the natural frequen-
cies of longitudinal vibration using first two and then three elements of equal length. 
Let the bar have 5E 210 GPa, r 5 7800 kg/m3, 5A 6 cm2, and 5L 1.5 m.

	 16.5		  For the spring-mass system shown in Figure P16 –5, determine the mass displace-
ment, velocity, and acceleration for five time steps using the central difference 
method. Let 5k 30 kN/m and 5m 30 kg. Use a time step of t 0.03 sD 5 . You 
might want to write a computer program to solve this problem.
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	 16.6		  For the spring-mass system shown in Figure P16 –6, determine the mass displace-
ment, velocity, and acceleration for five time steps using (a) the central difference 
method, (b) Newmark’s time integration method, and (c) Wilson’s method. Let 

5k 18 kN/m and 5m 30 kg.

■■ Figure P16 –6

N

100

■■ Figure P16 –7

5

N

■■ Figure P16 –8

N

10,000

	 16.7		  For the bar shown in Figure P16 –7, determine the nodal displacements, velocities, 
and accelerations for five time steps using two finite elements. Let 5E 210 GPa,  
r 5 7800 kg/m3, 5A 6 cm2, and 5L 2.5 m. Use D 5 3 2t 2.5 10 s4

	 16.8		  For the bar shown in Figure P16 –8, determine the nodal displacements, velocities, 
and accelerations for five time steps using two finite elements. For simplicity of 
calculations, let 5E 6.25 GPa, r 5 10 kg/m7 3, 5A 6 cm2, and 5L 2.5 m. Use 
Newmark’s method and Wilson’s method. Use D 5t 0.05 s.
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	 16.9,		  Rework Problems 16.7 and 16.8 using a computer program.
	16.10	 	  
	16.11		  For the beams shown in Figure P16 –11, determine the natural frequencies using first 

two and then three elements. Let E, r, I, and A be constant for the beams.

	16.12	 	 Rework Problem 16.11 using a computer program with 5E 210 GPa , 
r 5 7800 kg/m3, 5A 6.5 cm2, 5L 2.5 m, and 5I 3.5 cm4.

	16.13,		  For the beams in Figures P16 –13 and P16 –14 subjected to the forcing functions 
shown, determine the maximum deflections, velocities, and accelerations. Use a 
computer program. Use a 5 3.00, b 5 0.001, D 5t 0.002 s.

■■ Figure P16 –11

■■ Figure P16 –13

E = 200 GPa,    = 0.3
100

r = 7800 kg/m3

■■ Figure P16 –14

r = 7800 kg/m3

F (t), kN

–
–

16.14		  
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■■ Figure P16 –16

r = 7800 kg/m3

0

■■ Figure P16 –15

2.5 kPa

750 Pa

5 kPa

5 kPa

3 m

50

F(t), kN
3 m

3 m

10 m
(Bays on 8 m centers)

For elements 1 and 9,
A  8 310 3 m2, I  10 4 m4

For elements 2, 3, 7 and 8,
A  3.5 310 3 m2, I  4 3

3

10 5 m4 

For elements 4, 5, and 6,
A  9 310 3 m2, I  3.2 10 4

For all elements,
E  210 GPa

	16.15,		  For the rigid frames in Figures P16 –15 and P16 –16 subjected to the forcing functions 
shown, determine the maximum displacements, velocities, and accelerations. Use a 
computer program. Use a 5 3.00, b 5 0.001, tD 5 0.002 s.

16.16		  

	16.17		  For the rigid frame shown, a motor is located on the horizontal member at its center. 
The motor imparts a driving frequency of 2000 rpm (33.4 Hz) to the structure. Deter-
mine the first 3 natural frequencies and animate the associated modes of vibration on 
your computer. Is this driving frequency acceptable? Then run a structural dynamics 
analysis using F(t) shown. Use E 5 200 GPa, A 5 387 cm2, 2.1 10 m3

4 4I 5 3 2 , 
5 3 2S 1.64 10 m3

3 3, t 0.001 sD 5 , 3.00a 5 , and 0.001b 5 .
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16  |  Structural Dynamics and Time-Dependent Heat Transfer826

	16.18		  A marble slab with 2W/(m C)5 ? 8k ,  r 5 2500 kg/m3, and c W5 ? ? 8800 s/(kg C) 
is 2 cm thick and at an initial uniform temperature of Ti 5 8200 C. The left surface 
is suddenly lowered to 80 C and is maintained at that temperature while the other 
surface is kept insulated. Determine the temperature distribution in the slab for 40 s. 
Use b 5 2

3 and a time step of 8 s.
	16.19		  A circular fin is made of pure copper with a thermal conductivity of 

400 W/(m C)5 ? 8k , h W5 ? 8150 /(m C)2 , mass density r 5 8900 kg/m3, and 
specific heat c kg5 ? 8375 J/( C). The initial temperature of the fin is 825 C. The fin 
length is 2 cm and the diameter is 0.4 cm. The right tip of the fin is insulated. See 
Figure P16 –19. The base of the fin is then suddenly increased to a temperature of 

885 C and maintained at this temperature. Use the lumped form of the capacitance 
matrix, a time step of 0.1 s, and b 5 2

3. Use two elements of equal length. Determine 
the temperature distribution up to 3 s. Compare your results with Example 16.7, 
which used the consistent form of the capacitance matrix.

■■ Figure P16 –17

2
25,000 N

3

1 4

31

2

6 m

6 m

25,000

0.25
t, s

F(t) N

■■ Figure P16 –19

	16.20,		  Rework Problems 16.18 and 16.19 using a computer program.
16.21		  
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Matrix Algebra

Introduction
In this appendix, we provide an introduction to matrix algebra. We will consider the concepts 
relevant to the finite element method to provide an adequate background for the matrix algebra 
concepts used in this text.

	 A.1 	 Definition of a Matrix
A matrix is an m n3  array of numbers arranged in m rows and n columns. The matrix is 
then described as being of order m n3 . Equation (A.1.1) illustrates a matrix with m rows and 
n columns.

	























a

a a a a a

a a a a a

a a a a a

a a a a a

n

n

n

m m m m mn

5

�
�
�

� � � � �
�

[ ]

11 12 13 14 1

21 22 23 24 2

31 32 33 34 3

1 2 3 4

	 (A.1.1)

If m n°  in matrix Eq. (A.1.1), the matrix is called rectangular. If m 5 1 and n . 1, the 
elements of Eq. (A.1.1) form a single row called a row matrix. If m . 1 and n 5 1, the ele-
ments form a single column called a column matrix. If m n5 , the array is called a square 
matrix. Row matrices and rectangular matrices are denoted by using brackets [ ], and column 
matrices are denoted by using braces {}. For simplicity, matrices (row, column, or rectangular) 
are often denoted by using a line under a variable instead of surrounding it with brackets or 
braces. The order of the matrix should then be apparent from the context of its use. The force 
and displacement matrices used in structural analysis are column matrices, whereas the stiff-
ness matrix is a square matrix.

To identify an element of matrix [a], we represent the element by aij, where the subscripts 
i and j indicate the row number and the column number, respectively, of [a]. Hence, alternative 
notations for a matrix are given by

	 a aij5[ ] [ ]	 (A.1.2)

A P P E N D I X

A
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Numerical examples of special types of matrices are given by Eqs. (A.1.3) through (A.1.6). 
A rectangular matrix [a] is given by

	
















a 5[ ]
2 1
3 4
5 4

	 (A.1.3)

where [a] has three rows and two columns. In matrix [a] of Eq. (A.1.1), if m 5 1, a row matrix 
results, such as

	 a 5 2[ ] [2 3 4 1]	 (A.1.4)

If n 5 1 in Eq. (A.1.1), a column matrix results, such as

	








a 5[ ]
2
3

	 (A.1.5)

If m n5  in Eq. (A.1.1), a square matrix results, such as

	








a 5

2

2
[ ]

2 1
3 2

	 (A.1.6)

Matrices and matrix notation are often used to express algebraic equations in compact 
form and are frequently used in the finite element formulation of equations. Matrix notation is 
also used to simplify the solution of a problem.

	 A.2 	 Matrix Operations
We will now present some common matrix operations that will be used in this text.

Multiplication of a Matrix by a Scalar
If we have a scalar k and a matrix [c], then the product a k c5[ ] [ ] is given by

	 a k cij ij5[ ] [ ]	 (A.2.1)

—that is, every element of the matrix [c] is multiplied by the scalar k. As a numerical example, 
consider

	








c k5 5[ ]

1 2
3 1

4	

The product a k c5[ ] [ ] is

	


















a 5 5[ ] 4

1 2
3 1

4 8
12 4

	

Note that if [c] is of order m n3 , then [a] is also of order m n3 .
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Addition of Matrices
Matrices of the same order can be added together by summing corresponding elements of 
the matrices. Subtraction is performed in a similar manner. Matrices of unlike order cannot 
be added or subtracted. Matrices of the same order can be added (or subtracted) in any order 
(the commutative law for addition applies). That is,

	 c a b b a5 1 5 1[ ] [ ] [ ] [ ] [ ]	 (A.2.2)

or, in subscript (index) notation, we have

	 c a b b aij ij ij ij ij5 1 5 1[ ] [ ] [ ] [ ] [ ]	 (A.2.3)

As a numerical example, let

	


















a b5

2

2
5[ ]

1 2
3 2

[ ]
1 2
3 1

	

The sum a b c1 5[ ] [ ] [ ] is given by

	




























c 5

2

2
1 5[ ]

1 2
3 2

1 2
3 1

0 4
0 3

	

Again, remember that the matrices [a], [b], and [c] must all be of the same order. For instance, 
a 32 2 matrix cannot be added to a 33 3 matrix.

Multiplication of Matrices
For two matrices [a] and [b] to be multiplied in the order shown in Eq. (A.2.4), the number of 
columns in [a] must equal the number of rows in [b]. For example, consider

	 c a b5[ ] [ ][ ]	 (A.2.4)

If [a] is an m n3  matrix, then [b] must have n rows. Using subscript notation, we can write 
the product of matrices [a] and [b] as

	 ∑c a bij
e

n

ie ej5
5

[ ]
1

	 (A.2.5)

where n is the total number of columns in [a] or of rows in [b]. For matrix [a] of order 32 2 
and matrix [b] of order 32 2, after multiplying the two matrices, we have

	












c
a b a b a b a b

a b a b a b a b
ij 5

1 1

1 1
[ ] 11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22
	 (A.2.6)

For example, let

	


















a b5 5

2
[ ]

2 1
3 2

[ ]
1 1
2 0
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The product [a][b] is then

	




















a b 5

1 2 1

1 2 1
5

2

2
[ ][ ]

2(1) 1(2) 2( 1) 1(0)

3(1) 2(2) 3( 1) 2(0)
4 2
7 3

	

In general, matrix multiplication is not commutative; that is,

	 a b b a?[ ][ ] [ ][ ]	 (A.2.7)

The validity of the product of two matrices [a] and [b] is commonly illustrated by

	
a b c

i e e j i j

[ ] [ ] [ ]

( ) ( ) ( )

5

3 3 3
	 (A.2.8)

where the product matrix [c] will be of order i j3 ; that is, it will have the same number of rows 
as matrix [a] and the same number of columns as matrix [b].

Transpose of a Matrix
Any matrix, whether a row, column, or rectangular matrix, can be transposed. This operation is 
frequently used in finite element equation formulations. The transpose of a matrix [a] is com-
monly denoted by [ ]a T . The superscript T is used to denote the transpose of a matrix throughout 
this text. The transpose of a matrix is obtained by interchanging rows and columns; that is, the 
first row becomes the first column, the second row becomes the second column, and so on. 
For the transpose of matrix [a],

	 5[ ] [ ]a aij ji
T 	 (A.2.9)

For example, if we let

	
















a 5[ ]
2 1
3 2
4 5

	

then	 5[ ]
2 3 4
1 2 5









a T 	

where we have interchanged the rows and columns of [a] to obtain its transpose.
Another important relationship that involves the transpose is

	 5([ ][ ]) [ ] [ ]a b b aT T T 	 (A.2.10)

That is, the transpose of the product of matrices [a] and [b] is equal to the transpose of the latter 
matrix [b] multiplied by the transpose of matrix [a] in that order, provided the order of the 
initial matrices continues to satisfy the rule for matrix multiplication, Eq. (A.2.8). In general, 
this property holds for any number of matrices; that is,

	 . . . . . .([ ][ ][ ] [ ]) [ ] [ ] [ ] [ ]a b c k k c b aT T T T T5 	 (A.2.11)

Note that the transpose of a column matrix is a row matrix.
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As a numerical example of the use of Eq. (A.2.10), let

	


















a b5 5[ ]
1 2
3 4

[ ]
5
6

	

First,	 a b[ ][ ]
1 2
3 4

5
6

17
39

5 5

























	

Then,	 a b T([ ][ ]) [17 39]5 	 (A.2.12)

Because b T[ ]  and a T[ ]  can be multiplied according to the rule for matrix multiplication, we have

	 5 5[ ] [ ] [5 6]
1 3
2 4

[17 39]








b aT T 	 (A.2.13)

Hence, on comparing Eqs. (A.2.12) and (A.2.13), we have shown (for this case) the validity of 
Eq. (A.2.10). A simple proof of the general validity of Eq. (A.2.10) is left to your discretion.

Symmetric Matrices
If a square matrix is equal to its transpose, it is called a symmetric matrix; that is, if

	 a a T5[ ] [ ] 	

then [a] is a symmetric matrix. As an example,

	

















a 5[ ]
3 1 2
1 4 0
2 0 3

	 (A.2.14)

is a symmetric matrix because each element aij equals aji for i j° . In Eq. (A.2.14), note that 
the main diagonal running from the upper left corner to the lower right corner is the line of 
symmetry of the symmetric matrix [a]. Remember that only a square matrix can be symmetric.

Unit Matrix
The unit (or identity) matrix [I ] is such that

	 a I I a a5 5[ ][ ] [ ][ ] [ ]	 (A.2.15)

The unit matrix acts in the same way that the number one acts in conventional multiplication. 
The unit matrix is always a square matrix of any possible order with each element of the main 
diagonal equal to one and all other elements equal to zero. For example, the 33 3 unit matrix 
is given by

	

















I 5[ ]
1 0 0
0 1 0
0 0 1
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Inverse of a Matrix
The inverse of a matrix is a matrix such that

	 a a a a I[ ] [ ] [ ][ ] [ ]1 15 52 2 	 (A.2.16)

where the superscript, −1, denotes the inverse of [a] as a 2[ ] 1. Section A.3 provides more infor-
mation regarding the properties of the inverse of a matrix and gives a method for determining it.

Orthogonal Matrix
A matrix [T] is an orthogonal matrix if

	 T T T T IT T[ ] [ ] [ ][ ] [ ]5 5 	 (A.2.17)

Hence, for an orthogonal matrix, we have

	 T T T[ ] [ ]1 52 	 (A.2.18)

An orthogonal matrix frequently used is the transformation or rotation matrix [T]. In 
two-dimensional space, the transformation matrix relates components of a vector in one coor-
dinate system to components in another system. For instance, the displacement (and force as 
well) vector components of d expressed in the x – y system are related to those in the x y–9 9 
system (Figure A–1 and Section 3.3) by

	 9 5{ } [ ]{ }d T d 	 (A.2.19)

or	
































d

d

d

d
x

y

x

y

cos sin

sin cos

9

9

u u

u u
5

2
	 (A.2.20)

where [T] is the square matrix on the right side of Eq. (A.2.20).
Another use of an orthogonal matrix is to change from the local stiffness matrix to a global 

stiffness matrix for an element. That is, given a local stiffness matrix k[ ]9  for an element, if the 
element is arbitrarily oriented in the x – y plane, then

	 5 9 5 92[ ] [ ] [ ][ ] [ ] [ ][ ]1k T k T T k TT 	 (A.2.21)

■■ Figure A–1  Components of a vector in x y9 92  and x – y coordinates

y ′

d ′x

x ′
d ′y
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Equation (A.2.21) is used throughout this text to express the stiffness matrix [k] in the 
x – y plane.

By further examination of [T], we see that the trigonometric terms in [T] can be interpreted 
as the direction cosines of lines Ox9  and Oy9  with respect to the x – y axes. Thus for Ox9  or dx9 ,  
we have from Eq. (A.2.20)

	 t t u u5[ ] [cos sin ]11 12 	 (A.2.22)

and for Oy9  or dy9 , we have

	 t t u u5 2[ ] [ sin cos ]21 22 	 (A.2.23)

or unit vectors i and j can be represented in terms of unit vectors i9  and j9 [also see Section 3.3 
for proof of Eq. (A.2.24)] as

	
i i j

j i j

cos sin

sin cos

9 u u

9 u u

5 1

5 2 1
	 (A.2.24)

and hence

	 t t t t1 5 1 51 111
2

12
2

21
2

22
2 	 (A.2.25)

and since these vectors (i9  and j9) are orthogonal, by the dot product, we have

	 i j i jt t t t[ ] [ ]11 12 21 221 ? 1 	

or	 t t t t1 5 011 21 12 22 	 (A.2.26)

or we say [T ] is orthogonal and therefore T T T T IT T[ ] [ ] [ ][ ] [ ]5 5  and that the transpose is 
its inverse. That is,

	 5 2[ ] [ ] 1T TT 	 (A.2.27)

Differentiating a Matrix
A matrix is differentiated by differentiating every element in the matrix in the conventional 
manner. For example, if

	

















a

x x x

x x x

x x x

5[ ]

2 3

2

3

3 2

2 4

5

	 (A.2.28)

the derivative d [a]/dx is given by

	 5
[ ]

3 4 3

4 4 1

3 1 5

2

3

4

















d a

dx

x x

x x

x

	 (A.2.29)

Similarly, the partial derivative of a matrix is illustrated as follows:

	
�

�

�

�



































b

x x

x xy xz

xy y yz

xz yz z

x y z

y

z

5 5
[ ]

2

0 0

0 0

2

2

2

	 (A.2.30)
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In structural analysis theory, we sometimes differentiate an expression of the form

	 5
1

2
[ ]

11 12

12 22
























U x y

a a

a a
x
y

	 (A.2.31)

where U might represent the strain energy in a bar. Expression (A.2.31) is known as a quadratic 
form. By matrix multiplication of Eq. (A.2.31), we obtain

	 5 1 1
1

2
( 2 )11

2
12 22

2U a x a xy a y 	 (A.2.32)

Differentiating U now yields

	

5 1

5 1

11 12

12 22

U

x
a x a y

U

y
a x a y

�

�
�

�

	 (A.2.33)

Equation (A.2.33) in matrix form becomes

	

�

�

�

�











































U

x
U

y

a a

a a
x
y

5
11 12

12 22
	 (A.2.34)

A general form of Eq. (A.2.31) is

	 U X a XT5
1

2
{ } [ ]{ }	 (A.2.35)

Then, by comparing Eq. (A.2.31) and (A.2.35), we obtain

	
U

X
a X

i
[ ]{ }

�

�
5 	 (A.2.36)

where Xi denotes x and y. Here Eq. (A.2.36) depends on matrix [a] in Eq. (A.2.35) being 
symmetric.

Integrating a Matrix
Just as in matrix differentiation, to integrate a matrix, we must integrate every element in the 
matrix in the conventional manner. For example, if

	

















a

x x

x x

x

5[ ]

3 4 3

4 4 1

3 1 5

2

3

4
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we obtain the integration of [a] as

	 ∫
















a dx

x x x

x x x

x x x

5[ ]

2 3

2

3

3 2

2 4

5

	

In our finite element formulation of equations, we often integrate an expression of the form

	 { } [ ]{ }∫∫ X A X dx dyT 	 (A.2.37)

where {X} is a column vector. will then yield a scalar. The form { } [ ]{ }X A XT  is also called a 
quadratic form. For example, letting

	

































A X

x

x

x

[ ]
9 2 3
2 8 0
3 0 5

[ ]
1

2

3

5 5 	

we obtain

	

































X A X x x x

x

x

x

x x x x x x x

T 5

5 1 1 1 1

{ } [ ]{ } [ ]
9 2 3
2 8 0
3 0 5

9 4 6 8 5

1 2 3

1

2

3

1
2

1 2 1 3 2
2

3
2

	

which is in quadratic form.

	 A.3 	 Cofactor or Adjoint Method to Determine  
the Inverse of a Matrix

We will now introduce a method for finding the inverse of a matrix. This method is useful for 
longhand determination of the inverse of smaller-order square matrices (preferably of order 

34 4 or less). A matrix [a] must be square for us to determine its inverse.
We must first define the determinant of a matrix. This concept is necessary in determining 

the inverse of a matrix by the cofactor method. A determinant is a scalar expressed by

	 a aij[ ] [ ]5 	 (A.3.1)

where the straight vertical bars, | |, on each side of the matrix denote the determinant. The 
resulting determinant of a matrix will be a single numerical value or scalar.

To evaluate the determinant of [a], we must first determine the cofactors of aij[ ]. The 
cofactors of aij[ ] are given by

	 C dij
i j( 1) [ ]5 2 1 	 (A.3.2)
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where the matrix [d], called the first minor of aij[ ], is matrix [a] with row i and column j 
deleted. The inverse of matrix [a] is then given by

	 52[ ]
[ ]

[ ]
1a

C

a

T

	 (A.3.3)

where [C] is the cofactor matrix and a[ ]  is the determinant of [a]. To illustrate the method 
of cofactors, we will determine the inverse of a matrix [a] given by

	

















a 5

2 2

2[ ]
1 3 2
2 4 2
0 4 1

	 (A.3.4)

Using Eq. (A.3.2), we find that the cofactors of matrix [a] are

	

C

C

C

C

C

C

( 1) 4 2
4 1

12

( 1)
2 2
0 1

2

( 1)
2 4
0 4

8

( 1)
3 2
4 1

11

( 1)
1 2
0 1

1

( 1)
1 3
0 4

4

11
1 1

12
1 2

13
1 3

21
2 1

22
2 2

23
2 3

5 2
2

5 2

5 2 5 2

5 2
2

5

5 2
2

5 2

5 2
2 2

5 2

5 2
2

5

1

1

1

1

1

1

	 (A.3.5)

Where we recall the determinant of a 2 × 2 matrix is general given by

	

5 2

11 12

21 22

11 22 12 21

d d

d d

d d d d

	

Similarly,	 C C C5 2 5 2 5 22 2 231 32 33 	 (A.3.6)

Therefore, from Eqs. (A.3.5) and (A.3.6), we have

	

















C 5

2 2

2 2

2 2 2

[ ]
12 2 8
11 1 4
2 2 2

	 (A.3.7)

The determinant of [a] is then

	 # #5
5

[ ] with any row number (1 )
1

∑a a C i i n
j

n

ij ij 	 (A.3.8)
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or	 ∑a a C i i n
j

n

ji ji[ ] with any column number (1 )
1

# #5
5

	 (A.3.9)

For instance, if we choose the first rows of [a] and [C], then i 5 1 in Eq. (A.3.8), and j is 
summed from 1 to 3 such that

	
5 1 1

5 2 2 1 2 1 2 5 2

[ ]

( 1)( 12) (3)( 2) ( 2)(8) 10

11 11 12 12 13 13a a C a C a C
	

(A.3.10)

Using the definition of the inverse given by Eq. (A.3.3), we have

	 5 5
2

2 2 2

2 2 2

2

2[ ]
[ ]

[ ]

1

10

12 11 2
2 1 2
8 4 2

1

















a
C

a

T

	 (A.3.11)

We can then check that

	

















a a 52[ ][ ]
1 0 0
0 1 0
0 0 1

1 	

The transpose of the cofactor matrix is often defined as the adjoint matrix; that is,

	 5adj [ ] [ ]a C T 	

Therefore, an alternative equation for the inverse of [a] is

	 52[ ]
adj [ ]1a

a

a
	 (A.3.12)

An important property associated with the determinant of a matrix is that if the determinant of 
a matrix is zero—that is, a[ ] 05 —then the matrix is said to be singular. A singular matrix 
does not have an inverse. The stiffness matrices used in the finite element method are singular 
until sufficient boundary conditions (support conditions) are applied. This characteristic of the 
stiffness matrix is further discussed in the text.

	 A.4 	 Inverse of a Matrix by Row Reduction
The inverse of a nonsingular square matrix [a] can be found by the method of row reduction 
(sometimes called the Gauss–Jordan method) by performing identical simultaneous operations 
on the matrix [a] and the identity matrix [I] (of the same order as [a]) such that the matrix [a] 
becomes an identity matrix and the original identity matrix becomes the inverse of [a].

A numerical example will best illustrate the procedure. We begin by converting matrix 
[a] to an upper triangular form by setting all elements below the main diagonal equal to zero, 
starting with the first column and continuing with succeeding columns. We then proceed from 
the last column to the first, setting all elements above the main diagonal equal to zero.

We will invert the following matrix by row reduction.

	
















a 5[ ]
2 2 1
2 1 0
1 1 1

	 (A.4.1)
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To find 2[ ] 1a , we need to find [x] such that a x I5[ ][ ] [ ], where

	

















x

x x x

x x x

x x x

5[ ]
11 12 13

21 22 23

31 32 33

	

That is, solve	 5

2 2 1
2 1 0
1 1 1

[ ]
1 0 0
0 1 0
0 0 1

































x 	

We begin by writing [a] and [I] side by side as

	

















2 2 1 1 0 0
2 1 0 0 1 0
1 1 1 0 0 1

	 (A.4.2)

where the vertical dashed line separates [a] and [I].

	 1.	 Divide the first row of Eq. (A.4.2) by 2.

	



















1 1 0 0

2 1 0 0 1 0
1 1 1 0 0 1

1
2

1
2

	 (A.4.3)

	 2.	 Multiply the first row of Eq. (A.4.3) by 22 and add the result to the second row.

	



















2 2 2

1 1 0 0

0 1 1 1 1 0
1 1 1 0 0 1

1
2

1
2

	 (A.4.4)

	 3.	 Subtract the first row of Eq. (A.4.4) from the third row.

	



















1 1 0 0

0 1 1 1 1 0

1 1 0 1

1
2

1
2

1
2

1
2

2 2 2

2

	 (A.4.5)

	 4.	 Multiply the second row of Eq. (A.4.5) by 21 and the third row by 2.

	



















2

2

1 1 0 0

0 1 1 1 1 0
0 0 1 1 0 2

1
2

1
2

	 (A.4.6)
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	 5.	 Subtract the third row of Eq. (A.4.6) from the second row.

	



















1 1 0 0

0 1 0 2 1 2
0 0 1 1 0 2

1
2

1
2

2 2

2

	 (A.4.7)

	 6.	 Multiply the third row of Eq. (A.4.7) by 21
2 and add the result to the first row.

	

















2

2 2

2

1 1 0 1 0 1
0 1 0 2 1 2
0 0 1 1 0 2

	 (A.4.8)

	 7.	 Subtract the second row of Eq. (A.4.8) from the first row.

	

















2

2 2

2

1 0 0 1 1 1
0 1 0 2 1 2
0 0 1 1 0 2

	 (A.4.9)

The replacement of [a] by the inverse matrix is now complete. The inverse of [a] is then the 
right side of Eq. (A.4.9); that is,

	
















a 5

2

2 2

2

2[ ]
1 1 1
2 1 2
1 0 2

1 	 (A.4.10)

For additional information regarding matrix algebra, consult References [1] and [2].

	 A.5 	 Properties of Stiffness Matrices
Stiffness matrix [k] is defined in Chapter 2 as relating nodal forces to nodal displacements. 
The stiffness matrix is also seen (for instance) in the strain energy expressions for springs, 
Eq. (2.6.20), for bars, Eq. (3.10.28b) and for beams, Eq. (4.7.21). The matrix has the properties 
of being square and symmetric, as defined in Sections A.1 and A.2, for nearly all applications 
in this textbook except for the mass transport problem in Section 13.9.

In the strain energy expression, we see [k] in the quadratic form

	 5
1

2
{ } [ ]{ }U d k dT 	 (A.5.1)

For most structures, the stiffness matrix is a positive definite matrix. That means if arbi-
trary displacement vectors are chosen, and we calculate U, the result is a positive value. The 
exception to this is the trivial case where the displacement vector {d} is set to zero. Therefore, 
for any arbitrary displacements of a multi-degree-of-freedom system from its undeformed 
configuration, the strain energy is positive.
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The exception to [k] being positive definite is when a system has rigid-body degrees 
of freedom. Then the displacement is taken as a rigid-body mode. In this case, [k] is called 
a positive semidefinite matrix. The strain energy U then can be zero for rigid-body modes 
or greater than zero when we have deformable modes. When [k] is positive semidefinite, 

k k[ ] det([ ]) 05 5 . Recall, from Section A.3, a matrix whose determinant is zero is called 
a singular matrix. To physically remove the singularity in a system in static equilibrium, 
sufficient boundary conditions must be applied. This concept is further described in Chapter 2.

For instance, consider a bar with no supports as shown in Figure A–2. If the bar is discret-
ized into two elements and the 3 × 3 stiffness matrix of the bar is determined as described in 
Chapter 2 and as shown by Eq. (A.5.2), the determinant of this stiffness matrix, Eq. (A.5.3), is 
zero. Now if we fix one end of the bar, making u 5 01 , the reduced 2 × 2 stiffness matrix has 
a nonzero determinant. (Also see Problem A.12.)

	

















k
AE

L
5

2

2 2

2

[ ]
1 1 0
1 2 1
0 1 1

	 (A.5.2)

Now the determinant of [k] is

	

1 1 0
1 2 1
0 1 1

1 2 1
1 1

( 1)
1 1
0 1

0

2 1 1 0

2

2 2

2

5
2

2
2 2

2 2
1

5 2 2 5

	 (A.5.3)
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Problems

	 Solve Problems A.1 through A.6 using matrices [A], [B], [C], [D], and {E} given by

	

5 5 5
2

5 5

[ ]
4 0
1 8

[ ]
2 0
2 4

[ ]
3 2 0

1 0 2

[ ]
5 2 1
2 10 0
1 0 5

{ }
3
2
1





























































A B C

D E

	

	 (Write “nonsense” if the operation cannot be performed.)

■■ Figure A–2  Two-element bar

A, ELL1 2 3
x

u1 u2 u3
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	 A.1		  (a)  [A] 1 [B]		  (b)  [A] 1 [C]
			   (c)  [ ][ ]A C T 		  (d)  [D]{E}
			   (e)  [D][C]		  (f)  [C][D]

	 A.2		  Determine A 2[ ] 1 by the cofactor method.

	 A.3		  Determine D 2[ ] 1 by the cofactor method.

	 A.4		  Determine C 2[ ] 1.

	 A.5		  Determine B 2[ ] 1 by row reduction.

	 A.6		  Determine D 2[ ] 1 by row reduction.

	 A.7		  Show that 5([ ][ ]) [ ] [ ]A B B AT T T  by using

	 5 5[ ] [ ]
11 12

21 22

11 12 13

21 22 23

























A
a a

a a
B

b b b

b b b
	

	 A.8		  Find 2[ ] 1T  given that

	








T

u u

u u
5

2
[ ]

cos sin
sin cos

	

			   and show that 52[ ] [ ]1T T T  and hence that [T] is an orthogonal matrix.

	 A.9		  Given the matrices

	




















X

x y

x
A

a b
b c

5 5[ ]
1

[ ] 	

			   show that the triple matrix product X A XT[ ] [ ][ ] is symmetric.

	 A.10		  Evaluate the following integral in explicit form:

	 5[ ] [ ] [ ]
0∫k B E B dxTL

	

		  	 where			   





B
L L

5 2[ ]
1 1

			   and E is the modulus of elasticity.
			   [Note: This is the step needed to obtain Eq. (10.1.16) from Eq. (10.1.15).]

	 A.11		  The following integral represents the strain energy in a bar of length L and cross-
sectional area A:

	 ∫U
A

d B D B d dxT
L

T5
2

{ } [ ] [ ][ ]{ }
0
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		  	 where		

















d
u

u
B

L L
D E{ } [ ]

1 1
[ ]1

2
5 5 2 5 	

		  	 and E is the modulus of elasticity.
			   Show that dU/d{d} yields [k]{d}, where [k] is the bar stiffness matrix given by

	








k

AE

L
5

2

2
[ ] 1 1

1 1
	

	 A.12		  A two-element bar as shown in Figure PA–12 with element lengths L, cross-sectional 
area A, and Young’s modulus E can be shown to have a stiffness matrix of

	

















k
AE

L
5

2

2 2

2

[ ]
1 1 0
1 2 1
0 1 1

	

	 		  Show that the det k 5([ ]) 0 and hence that [k] is positive semidefinite and the matrix 
is also singular. Now fix the left end (set u 5 01 ) and show that the reduced [k] is

	








k

AE

L
5

2

2
[ ] 2 1

1 1
	

			   and that the det ([k]) is no longer 0.

■■ Figure PA–12

LL1 2 3
x

u1 u2 u3
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Methods for Solution 
of Simultaneous Linear 
Equations

Introduction
Many problems in engineering and mathematical physics require the solution of a system of 
simultaneous linear algebraic equations. Stress analysis, heat transfer, and vibration analy-
sis are engineering problems for which the finite element formulation for solution typically 
involves the solving of simultaneous linear equations. This appendix introduces methods appli-
cable to both longhand and computer solutions of simultaneous linear equations. Many meth-
ods are available for the solution of equations; for brevity’s sake, we will discuss only some 
of the more common methods.

	 B.1 	 General Form of the Equations
In general, the set of equations will have the form

	

�
�

� � � �

�

a x a x a x c

a x a x a x c

a x a x a x c

n n

n n

n n nn n n

1 1 1 5

1 1 1 5

1 1 1 5

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

	 (B.1.1)

where the aij s are the coefficients of the unknown x j s, and the ci s are the known right-side 
terms. In the structural analysis problem, the aij s are the stiffness coefficients kij s, the x j s are 
the unknown nodal displacements di s, and the ci s are the known nodal forces Fi s.

If the c s are not all zero, the set of equations is nonhomogeneous, and all equations must 
be independent to yield a unique solution. Stress analysis problems typically involve solving 
sets of nonhomogeneous equations.

If the c s are all zero, the set of equations is homogeneous, and nontrivial solutions exist 
only if all equations are not independent. Buckling and vibration problems typically involve 
homogeneous sets of equations.

A P P E N D I X

B
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	 B.2 	 Uniqueness, Nonuniqueness, and Nonexistence 
of Solution

To solve a system of simultaneous linear equations means to determine a unique set of values 
(if they exist) for the unknowns that satisfy every equation of the set simultaneously. A unique 
solution exists if and only if the determinant of the square coefficient matrix is not equal to 
zero. (All of the engineering problems considered in this text result in square coefficient matri-
ces.) The problems in this text usually result in a system of equations that has a unique solution. 
Here we will briefly illustrate the concepts of uniqueness, nonuniqueness, and nonexistence of 
solution for systems of equations.

Uniqueness of Solution

	
x x

x x

1 5

1 5

2 1 6

1 4 17
1 2

1 2
	 (B.2.1)

For Eqs. (B.2.1), the determinant of the coefficient matrix is not zero, and a unique solution 
exists, as shown by the single common point of intersection of the two Eqs. (B.2.1) in 
Figure B –1.

Nonuniqueness of Solution

	
x x

x x

2 1 6

4 2 12
1 2

1 2

1 5

1 5
	 (B.2.2)

For Eqs. (B.2.2), the determinant of the coefficient matrix is zero; that is,

	 5
2 1
4 2 0	

Hence the equations are called singular, and either the solution is not unique or it does not 
exist. In this case, the solution is not unique, as shown in Figure B –2.

■■ Figure B –1  Uniqueness of solution
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Nonexistence of Solution

	
x x

x x

1 5

1 5

2 6

4 2 16
1 2

1 2
	 (B.2.3)

Again, the determinant of the coefficient matrix is zero. In this case, no solution exists because 
we have parallel lines (no common point of intersection), as shown in Figure B –3.

	 B.3 	 Methods for Solving Linear Algebraic Equations
We will now present some common methods for solving systems of linear algebraic equations 
that have unique solutions. Some of these methods work best for small sets of equations solved 
longhand, whereas others are well suited for computer application.

Cramer’s Rule
We begin by introducing a method known as Cramer’s rule, which is useful for the longhand 
solution of small numbers of simultaneous equations. Consider the set of equations

	 a x c5[ ]{ } [ ]	 (B.3.1)

or, in index notation,

	 5
5 1
∑ a x c

i

n

ij j i	 (B.3.2)

We first let d i[ ]( )  be the matrix [a] with column i replaced by the column matrix [c]. Then the 
unknown xi’s are determined by

	 5
[ ]

[ ]

( )

x
d

a
i

i

	 (B.3.3)

■■ Figure B –3  Nonexistence of solution■■ Figure B –2  Nonuniqueness of solution
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As an example of Cramer’s rule, consider the following equations:

	

x x x

x x x

x x

2 1 2 5

2 1 5

1 5

3 2 2

2 4 2 1

4 3

1 2 3

1 2 3

2 3

	 (B.3.4)

In matrix form, Eqs. (B.3.4) become

	













































x

x

x

2 2

2 5

1 3 2
2 4 2
0 4 1

2
1
3

1

2

3

	 (B.3.5)

By Eq. (B.3.3), we can solve for the unknown xi’s as

	

x
d

a

x
d

a

x
d

a

5 5

2

2

2 2

2

5
2

2
5

5 5

2 2

2
5

5 5

2

2

2
5 2

[ ]

[ ]

2 3 2
1 4 2
3 4 1

1 3 2
2 4 2
0 4 1

41

10
4.1

[ ]

[ ]

1 2 2
2 1 2
0 3 1

10
1.1

[ ]

[ ]

1 3 2
2 4 1
0 4 3

10
1.4

1

(1)

2

(2)

3

(3)

	 (B.3.6)

In general, to find the determinant of an n × n matrix, we must evaluate the determinants 
of n matrices of order 2 3 2n n( 1) ( 1). It has been shown that the solution of n simultane-
ous equations by Cramer’s rule, evaluating determinants by expansion by minors, requires 

2 1n n( 1)( 1)! multiplications. Hence, this method takes large amounts of computer time and 
therefore is not used in solving large systems of simultaneous equations either longhand or 
by computer.

Inversion of the Coefficient Matrix
The set of equations 5a x c[ ]{ } { } can be solved for {x} by inverting the coefficient matrix [a] 
and premultiplying both sides of the original set of equations by a 2[ ] 1, such that

	

a a x a c

I x a c

x a c

5

5

5

2 2

2

2

[ ] [ ][ ] [ ] { }

[ ]{ } [ ] { }

{ } [ ] { }

1 1

1

1

	 (B.3.7)
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Two methods for determining the inverse of a matrix (the cofactor method and row reduction) 
were discussed in Appendix A.

The inverse method is much more time-consuming (because much time is required to deter-
mine the inverse of [a]) than either the elimination method or the iteration method, which are 
discussed subsequently. Therefore, inversion is practical only for small systems of equations.

However, the concept of inversion is often used during the formulation of the finite element 
equations, even though elimination or iteration is used in achieving the final solution for the 
unknowns (such as nodal displacements).

Besides the tedious calculations necessary to obtain the inverse, the method usually 
involves determining the inverse of sparse, banded matrices (stiffness matrices in structural 
analysis usually contain many zeros with the nonzero coefficients located in a band around 
the main diagonal). This sparsity and banded nature can be used to advantage in terms of 
storage requirements and solution algorithms on the computer. The inverse results in a dense, 
full matrix with loss of the advantages resulting from the sparse, banded nature of the original 
coefficient matrix.

To illustrate the solution of a system of equations by the inverse method, consider the 
same equations that we solved previously by Cramer’s rule. For convenience’s sake, we repeat 
the equations here.

	
2 2

2 5

1 3 2
2 4 2
0 4 1

2
1
3

1

2

3













































x

x

x

	 (B.3.8)

The inverse of this coefficient matrix was found in Eq. (A.3.11) of Appendix A. The unknowns 
are then determined as

	
x

x

x
























































5 2

2 2 2

2 2 2

2

5

2

1

10

12 11 2
2 1 2
8 4 2

2
1
3

4.1
1.1
1.4

1

2

3

	 (B.3.9)

Gaussian Elimination
We will now consider a commonly used method called Gaussian elimination that is easily 
adapted to the computer for solving systems of simultaneous equations. It is based on trian-
gularization of the coefficient matrix and evaluation of the unknowns by back-substitution 
starting from the last equation.

The general system of n equations with n unknowns given by

	

�
�

� � �
�

� �
5

11 12 1

21 22 2

1 2

1

2

1

2























































a a a

a a a

a a a

x

x

x

c

c

c

n

n

n n nn n n

	 (B.3.10)

will be used to explain the Gaussian elimination method.
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	 1.	 Eliminate the coefficient of x1 in every equation except the first one.
To do this, select a11 as the pivot, and
	a.	 Add the multiple a a/21 112  of the first row to the second row.
	b.	 Add the multiple a a/31 112  of the first row to the third row.
	c.	 Continue this procedure through the nth row.

The system of equations will then be reduced to the following form:

 	

a a a

a a

a a

x

x

x

c

c

a

n

n

n nn n n

�

�
� �

�

� �





































































9 9

9 9

9

9

5
0

0

11 12 1

22 2

2

1

2

1

2 	 (B.3.11)

	 2.	 Eliminate the coefficient of x2 in every equation below the second equation. To do this, 
select a229  as the pivot, and
	a.	 Add the multiple a a9 92 /32 22 of the second row to the third row.

	b.	 Add the multiple a a9 92 /42 22 of the second row to the fourth row.
	c.	 Continue this procedure through the nth row.

The system of equations will then be reduced to the following form:

 	

a a a a

a a a

a a

a a

x

x

x

x

c

c

c

c

n

n

n

n nn n n

�

�

�
� �

�
� �

















































































9 9 9

99 99

99 99

9

99

99

5

0

0 0

0 0

11 12 13 1

22 23 2

33 3

3

1

2

3

1

2

3 	 (B.3.12)

We repeat this process for the remaining rows until we have the system of equations (called 
triangularized) as

	

a a a a a

a a a a

a a a

a a

a

x

x

x

x

x

c

c

c

c

c

n

n

n

n

nn
n

n n
n

�

�

�

�
� �

�

� �

′′ ′′


























































































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

9 9 9 9

99

999 999

9

99

999
5

2 2

0

0 0

0 0 0

0 0 0 0

11 12 13 14 1

22 23 24 2

33 34 3

44 4

1
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3

4

1

2

3

4

1

	 (B.3.13)

	 3.	 Determine xn from the last equation as

	 x
c

a
n

n
n

nn
n

1

1
5

2

2
	 (B.3.14)
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and determine the other unknowns by back-substitution. These steps are summarized in general 
form by 

	

a a a
a

a

k n

i k n

j k n

x
a

a a x

ij ij kj
ik

kk

i
ii

i n
r i

n

ir r∑

…
…

…








5 2

5 2

5 1

5 1

5 21

5 1

1, 2, , 1

1, ,

, , 1

1
, 1

1

	 (B.3.15)

where 1ai n, 1 represent the latest right side c s given by Eq. (B.3.13).
We will solve the following example to illustrate the Gaussian elimination method.

Example B.1

Solve the following set of simultaneous equations using Gauss elimination method.

       	

1 1 5

1 5

1 1 5

2 2 1 9

2 1 4

1 1 1 6

1 2 3

1 2

1 2 3

x x x

x x

x x x

	 (B.3.16)

SOLUTION:
Step 1
Eliminate the coefficient of x1 in every equation except the first one. Select 5a 211  as the 
pivot, and

a.	 Add the multiple a a/ 2 / 221 112 5 2  of the first row to the second row.
b.	 Add the multiple a a/ 1 / 231 112 5 2  of the first row to the third row.

We then obtain

	

1 1 5

2 2 5 2 5 2

1 1 5 2 5

2 2 1 9

0 1 1 4 9 5

0 0
1

2
6

9

2

3

2

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

	 (B.3.17)

Step 2
Eliminate the coefficient of x2 in every equation below the second equation. In this case, 
we accomplished this in Step 1.

Step 3
Solve for x3 in the third of Eqs. (B.3.17) as

	 5 5 33

3
2
1
2

x 	
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Solve for x2 in the second of Eqs. (B.3.17) as

	 5
2 1

2
5

5 3

1
22x 	

Solve for x1 in the first of Eqs. (B.3.17) as

	 5
2 2

5
9 2(2) 3

2
11x 	

To illustrate the use of the index Eqs. (B.3.15), we re-solve the same example 
as follows. The ranges of the indexes in Eqs. (B.3.15) are 5k 1,2; 5i 2,3; and 

5j 1,2,3,4.

Step 1
For 5k 1, 5i 2, and j indexing from 1 to 4,

	

5 2 5 2 5

5 2 5 2 5 2

5 2 5 2 5 2

5 2 5 2 5 2

2 2
2

2
0

1 2
2

2
1

0 1
2

2
1

4 9
2

2
5

21 21 11
21

11

22 22 12
21

11

23 23 13
21

11

24 24 14
21

11

























a a a
a

a

a a a
a

a

a a a
a

a

a a a
a

a

	 (B.3.18)

Note that these new coefficients correspond to those of the second of Eqs. (B.3.17), 
where the right-side a s of Eqs. (B.3.18) are those from the previous step [here from 
Eqs. (B.3.16)], the right side a24 is really 5c 42 , and the left side a24 is the new 5 2c 52 .
For 5k 1, 5i 3, and j indexing from 1 to 4,

	

5 2 5 2 5

5 2 5 2 5

5 2 5 2 5

5 2 5 2 5

1 2
1

2
0

1 2
1

2
0

1 1
1

2

1

2

6 9
1

2

3

2

31 31 11
31

11

32 32 12
31

11

33 33 13
31

11

34 34 14
31

11

























a a a
a

a

a a a
a

a

a a a
a

a

a a a
a

a

	 (B.3.19)

where these new coefficients correspond to those of the third of Eqs. (B.3.17) as previously 
explained.
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Step 2
For 5k 2, 5i 3, and ( )j k5  indexing from 2 to 4,

	

5 2 5 2 2
2

5

5 2 5 2 2
2

5

5 2 5 2 2
2

5

0 ( 1)
0

1
0

1

2
( 1)

0

1

1

2

3

2
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3

2
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22
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
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
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












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
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





a a a
a

a

a a a
a

a

a a a
a
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′′

′′

	 (B.3.20)

where the new coefficients again correspond to those of the third of Eqs. (B.3.17), because 
Step 1 already eliminated the coefficients of x2 as observed in the third of Eqs. (B.3.17), 
and the a s on the right side of Eqs. (B.3.20) are taken from Eqs. (B.3.18) and (B.3.19).

Step 3
By Eqs. (B.3.15), for x3, we have

	 5 2
1

( 0)3
33

34x
a

a 	

or, using a33 and a34 from Eqs. (B.3.20),

	
1 3

2
33 1

2

x 5 5( )




 	

where the summation is interpreted as zero in the second of Eqs. (B.3.15) when r > n (for 
x3, r 5 4, and n 5 3). For x2, we have

	 x
a

a a x( )5 2
1

2
22

24 23 3 	

or, using the appropriate a s from Eqs. (B.3.18),

	 5
2

2 2 2 5
1

1
[ 5 ( 1)(3)] 22x 	

and for x1, we have

	 5 2 2
1

( )1
11

14 12 2 13 3x
a

a a x a x 	

or, using the a s from the first of Eqs. (B.3.16),

	 5 2 2 5
1

2
[9 2(2) 1(3)] 11x 	

In summary, the latest a s from the previous steps have been used in Eqs. (B.3.15) to obtain 
the x s.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



B  |  Methods for Solution of Simultaneous Linear Equations852

Note that the pivot element was the diagonal element in each step. However, the diagonal 
element must be nonzero because we divide by it in each step. An original matrix with all 
nonzero diagonal elements does not ensure that the pivots in each step will remain nonzero, 
because we are adding numbers to equations below the pivot in each following step. Therefore, 
a test is necessary to determine whether the pivot akk  at each step is zero. If it is zero, the current 
row (equation) must be interchanged with one of the following rows—usually with the next 
row unless that row has a zero at the position that would next become the pivot. Remember 
that the right-side corresponding element in {c} must also be interchanged. After making this 
test and, if necessary, interchanging the equations, continue the procedure in the usual manner.

An example will now illustrate the method for treating the occurrence of a zero pivot 
element.

Example B.2

Solve the following set of simultaneous equations.

	

1 1 5

1 1 5

1 5

2 2 1 9

1 1 1 6

2 1 4

1 2 3

1 2 3

1 2

x x x

x x x

x x

	 (B.3.21)

SOLUTION:
It will often be convenient to set up the solution procedure by considering the coefficient 
matrix [a] plus the right-side matrix {c} in one matrix without writing down the unknown 
matrix {x}. This new matrix is called the augmented matrix. For the set of Eqs. (B.3.21), 
we have the augmented matrix written as

	
2 2 1 9
1 1 1 6
2 1 0 4
















	 (B.3.22)

We use the steps previously outlined as follows:

Step 1
We select a 5 211  as the pivot and
a.	 Add the multiple a a2 5 2/ 1 / 221 11  of the first row to the second row of Eq. (B.3.22).
b.	� Add the multiple a a2 5 2/ 2 / 231 11  of the first row to the third row of Eq. (B.3.22) 

to obtain

	

2 2 2

2 2 1 3

0 0

0 1 1 5

1
2

3
2
















	 (B.3.23)

At the end of Step 1, we would normally choose a22 as the next pivot. However, a22 is now 
equal to zero. If we interchange the second and third rows of Eq. (B.3.23), the new a22 will 
be nonzero and can be used as a pivot. Interchanging rows 2 and 3 results in
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	 2 2 2

2 2 1 9
0 1 1 5

0 0 1
2

3
2



















	 (B.3.24)

For this special set of only three equations, the interchange has resulted in an upper-
triangular coefficient matrix and concludes the elimination procedure. The back-substitution 
process of Step 3 now yields

	 5 5 53 2 13 2 1x x x 	

A second problem when selecting the pivots in sequential manner without testing for the 
best possible pivot is that loss of accuracy due to rounding in the results can occur. In general, 
the pivots should be selected as the largest (in absolute value) of the elements in any column. 
For example, consider the set of equations given by

	
1 5

1 5

0.002 2.00 2.00

3.00 1.50 4.50
1 2

1 2

x x

x x
	 (B.3.25)

whose actual solution is given by

	 5 51.0005 0.9991 2x x 	 (B.3.26)

The solution by Gaussian elimination without testing for the largest absolute value of the 
element in any column is

	

1 5

2 5 2

5

5

0.002 2.00 2.00

2998.5 995.5

0.3320

668

1 2

2

2

1

x

x

x

x

x
	

(B.3.27)

This solution does not satisfy the second of Eqs. (B.3.25). The solution by interchanging 
equations is

	
1 5

1 5

3.00 1.50 4.50

0.002 2.00 2.00
1 2

1 2

x x

x x
	

or	 1 5

5

5

5

3.00 1.50 4.50

1.999 1.997

0.999

1.0005

1 2

2

2

1

x x

x

x

x

	

(B.3.28)

Equations (B.3.28) agree with the actual solution [Eqs. (B.3.26)].
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Hence, in general, the pivots should be selected as the largest (in absolute value) of 
the elements in any column. This process is called partial pivoting. Even better results 
can be obtained by choosing the pivot as the largest element in the whole matrix of the 
remaining equations and performing appropriate interchanging of rows. This is called 
complete pivoting. Complete pivoting requires a large amount of testing, so it is not rec-
ommended in general.

The finite element equations generally involve coefficients with different orders of magni-
tude, so Gaussian elimination with partial pivoting is a useful method for solving the equations.

Finally, it has been shown that for n simultaneous equations, the number of arithme-
tic operations required in Gaussian elimination is n divisions, n n1

3
3 21  multiplications, and 

n n1
3

3 1  additions. If partial pivoting is included, the number of comparisons needed to select 
pivots is n n 1( 1) / 2.

Other elimination methods, including the Gauss–Jordan and Cholesky methods, have some 
advantages over Gaussian elimination and are sometimes used to solve large systems of equa-
tions. For descriptions of other methods, see References [1–3].

Gauss–Seidel Iteration
Another general class of methods (other than the elimination methods) used to solve systems 
of linear algebraic equations is the iterative methods. Iterative methods work well when the 
system of equations is large and sparse (many zero coefficients). The Gauss–Seidel method 
starts with the original set of equations a x c5[ ]{ } { } written in the form
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The following steps are then applied.

1.	 Assume a set of initial values for the unknowns x1, x2, . . ., xn, and substitute them into the 
right side of the first of Eqs. (B.3.29) to solve for the new x1.

2.	 Use the latest value for x1 obtained from Step 1 and the initial values for x3, x4, . . ., xn in 
the right side of the second of Eqs. (B.3.29) to solve for the new x2.

3.	 Continue using the latest values of the x s obtained in the left side of Eqs. (B.3.29) as the 
next trial values in the right side for each succeeding step.

4.	 Iterate until convergence is satisfactory.

A good initial set of values (guesses) is often x c ai i ii5 / . An example will serve to illus-
trate the method.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



B.3  Methods for Solving Linear Algebraic Equations 855

Example B.3

Consider the set of linear simultaneous equations given by
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Determine x1 through x4.

SOLUTION:
Using the initial guesses given by x c ai i ii5 / , we have
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Solving the first of Eqs. (B.3.30) for x1 yields
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Solving the second of Eqs. (B.3.30) for x2, we have
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Solving the third of Eqs. (B.3.30) for x3, we have
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4
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Solving the fourth of  for Eqs. (B.3.30) for x4, we obtain
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2
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The first iteration has now been completed. The second iteration yields
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Table B –1 lists the results of four iterations of the Gauss–Seidel method and the exact 
solution. From Table B –1, we observe that convergence to the exact solution has proceeded 
rapidly by the fourth iteration, and the accuracy of the solution is dependent on the number 
of iterations.

Iteration x1 x2 x3 x4

0 0.5 1.0 1.0 −1.0

1 0.75 1.68 1.672 −0.16

2 0.922 1.899 1.944 −0.028

3 0.975 1.979 1.988 −0.006

4 0.9985 1.9945 1.9983 −0.0008

Exact 1.0 2.0 2.00 0

 Table B –1  Results of four iterations of the Gauss–Seidel method for Eqs. (B.3.30)

In general, iteration methods are self-correcting, such that an error made in calculations 
at one iteration will be corrected by later iterations. However, there are certain systems of 
equations for which iterative methods are not convergent. The following example illustrates a 
system of equations for which the Gauss–Seidel iteration method will not converge to the exact 
solution, as the main diagonal terms are smaller than the off-diagonal terms.

	
1 5

2 5

1 3 5

4 1 120
1 2

1 2

x x

x x
	 (B.3.31)

When the equations can be arranged such that the diagonal terms are greater than the off-
diagonal terms, which can be done for the previous Eq. (B.3.31), the possibility of convergence 
is usually enhanced.

Finally, it has been shown that for n simultaneous equations, the number of arithmetic 
operations required by Gauss–Seidel iteration is n divisions, n2 multiplications, and n n22  
additions for each iteration.

	 B.4 	 Banded-Symmetric Matrices, Bandwidth, 
Skyline, and Wavefront Methods

The coefficient matrix (stiffness matrix) for the linear equations that occur in structural analysis 
is always symmetric and banded. Because a meaningful analysis generally requires the use of a 
large number of variables, the implementation of compressed storage of the stiffness matrix is 
desirable both from the standpoint of fitting into memory (immediate access portion of the com-
puter) and for computational efficiency. We will discuss the banded-symmetric format, which is 
not necessarily the most efficient format but is relatively simple to implement on the computer.

Another method, based on the concept of the skyline of the stiffness matrix, is often used to 
improve the efficiency in solving the equations. The skyline is an envelope that begins with the 
first nonzero coefficient in each column of the stiffness matrix (Figure B –5). In skylining, only 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



B.4  Banded-Symmetric Matrices, Bandwidth, Skyline, and Wavefront Methods 857

the coefficients between the main diagonal and the skyline are stored (normally by successive 
columns) in a one-dimensional array. In general, this procedure takes even less storage space 
in the computer and is more efficient in terms of equation solving than the conventional banded 
format. (For more information on skylining, consult References [3, 10–11].)

A matrix is banded if the nonzero terms of the matrix are gathered about the main diag-
onal. To illustrate this concept, consider the plane truss of Figure B –4.

From Figure B –4, we see that element 2 connects nodes 1 and 4. Therefore, the 32 2 
submatrices at positions 1–1, 1–4, 4–1, and 4– 4 of Figure B –5 have nonzero coefficients. 
Figure B –5 represents the total stiffness matrix of the plane truss. The X’s denote nonzero coef-
ficients. From Figure B –5, we observe that the nonzero terms are within the band shown. When 
we use a banded storage format, only the main diagonal and the nonzero upper codiagonals 
need be stored as shown in Figure B –6. Note that any codiagonal with a nonzero term requires 
storage of the whole codiagonal and any codiagonals between it and the main diagonal. The use 
of banded storage is efficient for computational purposes. Reference [4] gives a more detailed 
explanation of banded compressed storage.

■■ Figure B – 4  Plane truss for bandwidth illustration

■■ Figure B –5  Stiffness matrix for the plane truss of Figure B –4, where X denotes,in general, 
blocks of 32 2 submatrices with nonzero coefficients
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We now define the semibandwidth nb  as n n mb d5 1( 1), where nd  is the number of 
degrees of freedom per node and m is the maximum difference in node numbers deter-
mined by calculating the difference in node numbers for each element of a finite element 
model. In the example for the plane truss of Figure B –4, m 5 2 54 1 3 and nd 5 2, so 
nb 5 1 52(3 1) 8.

Execution time (primarily equation-solving time) is a function of the number of equations 
to be solved. It has been shown [5] that when banded storage of global stiffness matrix [K ] 
is not used, execution time is proportional to n(1 / 3) 3, where n is the number of equations 
to be solved, or, equivalently, the size of [K ]. When banded storage of [K ] is used, the exe-
cution time is proportional to n nb( ) 2. The ratio of time of execution without banded storage 
to that with banded storage is then n nb(1 / 3)( / )2. For the plane truss example, this ratio is 

5(1 / 3)(24 / 8) 32 . Therefore, it takes about three times as long to execute the solution of the 
example truss if banded storage is not used.

Hence, to reduce bandwidth we should number systematically and try to have a minimum 
difference between adjacent nodes. A small bandwidth is usually achieved by consecutive node 
numbering across the shorter dimension, as shown in Figure B – 4. Some computer programs 
use the banded-symmetric format for storing the global stiffness matrix, [K ].

Several automatic node-renumbering schemes have been computerized [6]. This option is 
available in most general-purpose computer programs. Alternatively, the wavefront or frontal 
method is becoming popular for optimizing equation solution time. In the wavefront method, 
elements, instead of nodes, are automatically renumbered.

In the wavefront method, the assembly of the equations alternates with their solution 
by Gauss elimination. The sequence in which the equations are processed is determined by 
element numbering rather than by node numbering. The first equations eliminated are those 
associated with element 1 only. Next, the contributions of stiffness coefficients of the adjacent 
element, element 2, are added to the system of equations. If any additional degrees of freedom 
are contributed by elements 1 and 2 only—that is, if no other elements contribute stiffness 
coefficients to specific degrees of freedom—these equations are eliminated (condensed) from 
the system of equations. As one or more additional elements make their contributions to the 
system of equations and additional degrees of freedom are contributed only by these elements, 
those degrees of freedom are eliminated from the solution. This repetitive alternation between 

■■ Figure B –6  Banded storage format of the stiffness matrix of figure B –5

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



B.4  Banded-Symmetric Matrices, Bandwidth, Skyline, and Wavefront Methods 859

assembly and solution was initially seen as a wavefront that sweeps over the structure in a pat-
tern determined by the element numbering. For greater efficiency of this method, consecutive 
element numbering should be done across the structure in a direction that spans the smallest 
number of nodes.

The wavefront method, though somewhat more difficult to understand and to program 
than the banded-symmetric method, is computationally more efficient. A banded solver stores 
and processes any blocks of zeros created in assembling the stiffness matrix. In the wavefront 
method, these blocks of zero coefficients are not stored or processed. Many large-scale com-
puter programs are now using the wavefront method to solve the system of equations. (For 
additional details of this method, see References [7–9].) Example B.4 illustrates the wavefront 
method for solution of a truss problem.

Example B.4

For the plane truss shown in Figure B –7, illustrate the wavefront solution procedure.

■■ Figure B –7  Truss for wavefront solution

′
′

′

Solution:
We will solve this problem in symbolic form. Merging k s for elements 1, 2, and 3 and 
enforcing boundary conditions at node 1, we have
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(B.4.1)

Eliminating u2 and v2 (all stiffness contributions from node 2 degrees of freedom have been 
included from these elements; these contributions are from elements 1–3) by static conden-
sation or Gauss elimination yields
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where the condensed stiffness and force matrices are

	 k K K K Kc[ ] [ ] [ ][ ] [ ]22 21 11
1

129 9 9 9 95 2 2 	 (B.4.3)

	 F F K K Fc{ } { } [ ][ ] { }2 21 11
1

19 9 9 9 95 2 2 	 (B.4.4)

where primes on the degrees of freedom, such as u93 in Eq. (B.4.1), indicate that all stiffness 
coefficients associated with that degree of freedom have not yet been included. Now include 
elements 4–6 for degrees of freedom at node 3. The resulting equations are
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Using static condensation, we eliminate u3 and v3 (all contributions from node 3 degrees of 
freedom have been included from each element) to obtain
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where	 k K K K Kc[ ] [ ] [ ][ ] [ ]22 21 11
1

1299 99 99 99 995 2 2 	 (B.4.7)

	 F F K K Fc99 99 99 99 995 2 2{ } [ ] [ ][ ] { }2 21 11
1

1 	 (B.4.8)

Next we include element 7 contributions to the stiffness matrix. The condensed set of 
equations yield
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where	 [ ] [ ] [ ] [ ] [ ]22 21 11
1

12k K K K Kc- 5 - 2 - - -2 	 (B.4.10)

	 F F K K Fc{ } { } [ ][ ] { }2 21 11
1

1999 999 999 999 9995 2 2 	 (B.4.11)

The elimination procedure is now complete, and we solve Eq. (B.4.9) for u4 and v4.  
Then we back-substitute u4 and v4 into Eq. (B.4.5) to obtain u3 and v3. Finally, we 
back-substitute u3 through v4 into Eq. (B.4.1) to obtain u2 and v2. Static condensation 
and Gauss elimination with back-substitution have been used to solve the set of equa-
tions for all the degrees of freedom. The solution procedure has then proceeded as 
though it were a wave sweeping over the structure, starting at node 2, engulfing node 2 
and elements with degrees of freedom at node 2, and then sweeping through node 3 
and finally node 4.

We now describe a practical computer scheme often used in computer programs for the 
solution of the resulting system of algebraic equations. The significance of this scheme is that 
it takes advantage of the fact that the stiffness method produces a banded [K ] matrix in which 
the nonzero elements occur about the main diagonal in [K ]. While the equations are solved, 
this banded format is maintained.

Example B.5

We will now use a simple example to illustrate this computer scheme. Consider the 
three-spring assemblage shown in Figure B –8. The assemblage is subjected to forces 
at node 2 of 100 lb in the x direction and 200 lb in the y direction. Node 1 is com-
pletely constrained from displacement in both the x and y directions, whereas node 3 
is completely constrained in the y direction but is displaced a known amount d  in the 
x direction.

■■ Figure B –8  Three-spring assemblage
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Solution:
Our purpose here is not to obtain the actual [K ] for the assemblage but rather to illustrate 
the scheme used for solution. The general solution can be shown to be given by
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where [K ] has been left in general form. Upon our imposing the boundary conditions, the 
computer program transforms Eq. (B.4.12) to:
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From Eq. (B.4.13), we can see that u 5 01 , v 5 01 , v 5 03 , and u d53 . These displace-
ments are consistent with the imposed boundary conditions. The unknown displacements, 
u2 and v2, can be determined routinely by solving Eq. (B.4.13).

We will now explain the computer scheme that is generally applicable to transform 
Eq. (B.4.12) to Eq. (B.4.13). First, the terms associated with the known displacement 
boundary condition(s) within each equation were transformed to the right side of those 
equations. In the third and fourth equations of Eq. (B.4.12), k d35  and k d45  were trans-
formed to the right side, as shown in Eq. (B.4.13). Then the right-side force term corre-
sponding to the known displacement row was equated to the known displacement. In the 
fifth equation of Eq. (B.4.12), where u d53 , the right-side, fifth-row force term F x3  was 
equated to the known displacement d , as shown in Eq. (B.4.13). For the homogeneous 
boundary conditions, the affected rows of {F }, corresponding to the zero-displacement 
rows, were replaced with zeros. Again, this is done in the computer scheme only to obtain 
the nodal displacements and does not imply that these nodal forces are zero. We obtain 
the unknown nodal forces by determining the nodal displacements and back-substituting 
these results into the original Eq. (B.4.12). Because u 5 01 , v 5 01 , and v 5 03  in 
Eq. (B.4.12), the first, second, and sixth rows of the force matrix of Eq. (B.4.13) were set 
to zero. Finally, for both nonhomogeneous and homogeneous boundary conditions, the 
rows and columns of [K ] corresponding to these prescribed boundary conditions were set 
to zero except the main diagonal, which was made unity. That is, the first, second, fifth, 
and sixth rows and columns of [K ] in Eq. (B.4.12) were set to zero, except for the main 
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863Problems

diagonal terms, which were made unity. Although doing so is not necessary, setting the 
main diagonal terms equal to 1 facilitates the simultaneous solution of the six equations in 
Eq. (B.4.13) by an elimination method used in the computer program. This modification 
is shown in the [K] matrix of Eq. (B.4.13).
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Problems

	 B.1		  Determine the solution of the following simultaneous equations by Cramer’s rule.

	
1 5

2 5

x x

x x

2 4 20

4 2 10
1 2

1 2
	

	 B.2		  Determine the solution to the set of equations in problem B.1 by the inverse method.
	 B.3		  Solve the following system of simultaneous equations by Gaussian elimination.

	

2 2 5

1 5 2

2 1 5

x x x

x x

x x x

2 4 5 6

2 4 1

1 1 2 2

1 2 3

2 3

1 2 3

	

	 B.4		  Solve the following system of simultaneous equations by Gaussian elimination.

	

1 2 5

2 1 5

2 1 2 5 2

x x x

x x x

x x x

2 1 3 11

4 2 3 8

2 2 1 6

1 2 3

1 2 3

1 2 3
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864 B  |  Methods for Solution of Simultaneous Linear Equations

	 B.5		  Given the following relations:

	
5 2 5 1

5 2 5 1

x y y z x x

x y y z x x

3 2 2

2 4 2
1 1 2 1 1 2

2 1 2 2 1 2
	

			   a.	 Write these relationships in matrix form.
			   b.	 Express {z} in terms of {y}.
			   c.	 Express {y} in terms of {z}.

	 B.6		  Starting with the initial guess  X T{ } 1 1 1 1 15 , perform five iterations of 
the Gauss–Seidel method on the following system of equations. On the basis of the 
results of these five iterations, what is the exact solution?

	

2 1 1

1 6 1 4

2 4 1 4

1 4 1 6

1 2 2

1 2

1 2 3

2 3 4

3 4 5

4 5

x x

x x x

x x x

x x x

x x

2 5 2

2 1 2 5

2 1 2 5

2 1 2 5

2 1 5 2

	

	 B.7		  Solve Problem B.1 by Gauss–Seidel iteration. Hint: Read the paragraphs on page 856.
	 B.8		  Classify the solutions to the following systems of equations according to Section B.2 

as unique, nonunique, or nonexistent.

			   a.	 x x

x x

2 6 10

4 12 20
1 2

1 2

2 5

2 5

 	 b.	 x x

x x

1 5

1 5

6 3 9

2 6 12
1 2

1 2

 

			   c.	 x x

x x

8 4 32

4 2 8
1 2

1 2

1 5

1 5

 	 d.	 x x x

x x x

x x x

1 1 5

1 1 5

1 1 5

1 1 1 1

2 2 2 2

3 3 3 3

1 2 3

1 2 3

1 2 3

 

	 B.9		  Determine the bandwidths of the plane trusses shown in Figure PB –9. What con-
clusions can you draw regarding labeling of nodes?

■■ Figure PB –9
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Equations from Elasticity 
Theory

Introduction
In this appendix, we will develop the basic equations of the theory of elasticity. These equa-
tions should be referred to frequently throughout the structural mechanics portions of this text.

There are three basic sets of equations included in theory of elasticity. These equations 
must be satisfied if an exact solution to a structural mechanics problem is to be obtained. These 
sets of equations are (1) the differential equations of equilibrium formulated here in terms of the 
stresses acting on a body, (2) the strain/displacement and compatibility differential equations, 
and (3) the stress/strain or material constitutive laws.

	 C.1 	 Differential Equations of Equilibrium
For simplicity, we initially consider the equilibrium of a deformed plane differential element 
subjected to normal stresses xs  and ys , in-plane shear stress τ xy (in units of force per unit area), 
and body forces Xb and Yb (in units of force per unit volume), as shown in Figure C –1. The 
stresses are assumed to be constant as they act on the width of each face. However, the stresses 
are assumed to vary from one face to the opposite. For example, we have xs  acting on the left 
vertical face, whereas x dxx xs s1 ( / )� �  acts on the right vertical face as there is assumed to 
be a small change in stress from the left edge of the element to the right edge. The element is 
assumed to have unit thickness.

Summing forces in the x direction, we have

	

F
x

dx dy dy X dx dy

y
dy dx dx

x x x
x

x b

yx
yx

yx

�

�

�

�
τ

τ
τ













s
s

sS 5 5 1 2 1

1 1 2 5

0 (1) (1) (1)

(1) (1) 0

	

(C.1.1)

After simplifying and canceling terms in Eq. (C.1.1), we obtain

	
�

�

�

�

τ
x y

Xx yx
b 0

s
1 1 5 	 (C.1.2)

A P P E N D I X

C

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C  |  Equations from Elasticity Theory866

Similarly, summing forces in the y direction, we obtain

	
y x

Yy xy
b

�

�

�

�

τs
1 1 5 0	 (C.1.3)

Because we are considering only the planar element, three equilibrium equations must be 
satisfied. The third equation is equilibrium of moments about an axis normal to the x – y plane; 
that is, taking moments about point C in Figure C –1, we have

	
∑ τ τ

τ

τ τ
τ













0 (1)
2 2

(1)
2 2

0

M dy
d x

x
dx

d x

dx
d y

y
dy

d y

z xy xy
xy

yx yx
yx

�

�

�

�

5 5 1 1

2 2 1 5

	 (C.1.4)

Simplifying Eq. (C.1.4) and neglecting higher-order terms yields

	 τ τxy yx5 	 (C.1.5)

We now consider the three-dimensional state of stress shown in Figure C –2, which shows 
the additional stresses zs , x zτ , and yzτ . For clarity, we show only the stresses on three mutually 
perpendicular planes. With a straightforward procedure, we can extend the two-dimensional 
equations (C.1.2), (C.1.3), and (C.1.5) to three dimensions. The resulting total set of equilib-
rium equations is

	

x y z
X

x y z
Y

x y z
Z

x x y x z
b

x y y yz
b

x z yz z
b

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

τ τ

τ τ

τ τ

s

s

s

1 1 1 5

1 1 1 5

1 1 1 5

0

0

0

	 (C.1.6)

and	 x y y x x z z x yz z yτ τ τ τ τ τ5 5 5 	 (C.1.7)

■■ Figure C –1  Plane differential element subjected to stresses
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C.2  Strain/Displacement and Compatibility Equations 867

	 C.2 	 Strain/Displacement and Compatibility Equations
We first obtain the strain/displacement or kinematic differential relationships for the two-
dimensional case. We begin by considering the differential element shown in Figure C –3, 
where the undeformed state is represented by the dashed lines and the deformed shape (after 
straining takes place) is represented by the solid lines.

Considering line element AB in the x direction, we can see that it becomes A B9 9 after 
deformation, where u and v represent the displacements in the x and y directions. We assume 
u and v are continuous, single-valued functions of x and y and that they are small compared to 
the dimensions of the body. By the definition of engineering normal strain (that is, the change 
in length divided by the original length of a line), we have

	
A B AB

AB
x

9 9
« 5

2
	 (C.2.1)

■■ Figure C –3  Differential element before and after deformation

■■ Figure C –2  Three-dimensional stress element
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C  |  Equations from Elasticity Theory868

Now	 AB d x5 	 (C.2.2)

and	 A B d x
u

x
d x

v

x
d x

�

�

�

�










5 1 19 9( )2

2 2

	 (C.2.3)

Therefore, evaluating A B9 9 using the binomial theorem and neglecting the higher-order 
terms � �u x( / )2 and � �v x( / )2 (an approach consistent with the assumption of small strains), 
we have

	 A B dx
u

x
dx5 19 9 �

�
	 (C.2.4)

Using Eqs. (C.2.2) and (C.2.4) in Eq. (C.2.1), we obtain

	
u

x
x« 5

�

�
	 (C.2.5)

Similarly, considering line element AD in the y direction, we have

	
v

y
y« 5

�

�
	 (C.2.6)

The shear strain x yg  is defined to be the change in the angle between two lines, such as 
AB and AD, that originally formed a right angle. Hence, from Figure C –3, we can see that xyg  
is the sum of two angles and is given by

	
u

y

v

x
x y

�

�

�

�
g 5 1 	 (C.2.7)

Equations (C.2.5) through (C.2.7) represent the strain/displacement relationships for in-plane 
behavior.

For three-dimensional situations, we have a displacement w in the z direction. It then 
becomes straightforward to extend the two-dimensional derivations to the three-dimensional 
case to obtain the additional strain/displacement equations as

	
w

z
z« 5

�

�
	 (C.2.8)

	
u

z

w

x
xz

�

�

�

�
g 5 1 	 (C.2.9)

	
v

z

w

y
yzg 5 1

�

�

�

�
	 (C.2.10)

Along with the strain/displacement equations, we need compatibility equations to ensure 
that the displacement components u, v, and w are single-valued continuous functions so 
that tearing or overlap of elements does not occur. For the planar-elastic case, we obtain the 
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C.3  Stress/Strain Relationships 869

compatibility equation by differentiating x yg  with respect to both x and y and then using the 
definitions for x«  and y«  given by Eqs. (C.2.5) and (C.2.6). Hence,

	
x y x y

u

y x y

v

x y x
x y x y�

� �

�

� �

�

�

�

� �

�

�

�

�

�

�

g « «
5 1 5 1

2 2 2 2

2

2

2
	 (C.2.11)

where the second equation in terms of the strains on the right side is obtained by noting 
that single-valued continuity of displacements requires that the partial differentiations with 
respect to x and y be interchangeable in order. Therefore, we have x y y x5/ /2 2� � � � � � . 
Equation (C.2.11) is called the condition of compatibility, and it must be satisfied by the strain 
components in order for us to obtain unique expressions for u and v. Equations (C.2.5), (C.2.6), 
(C.2.7), and (C.2.11) together are then sufficient to obtain unique single-valued functions 
for u and v.

In three dimensions, we obtain five additional compatibility equations by differentiating 
x zg  and yzg  in a manner similar to that described above for xyg . We need not list these equations 

here; details of their derivation can be found in Reference [1].
In addition to the compatibility conditions that ensure single-valued continuous functions 

within the body, we must also satisfy displacement or kinematic boundary conditions. This 
simply means that the displacement functions must also satisfy prescribed or given displace-
ments on the surface of the body. These conditions often occur as support conditions from 
rollers and/or pins. In general, we might have

	 u u v v w w5 5 50 0 0	 (C.2.12)

at specified surface locations on the body. We may also have conditions other than displace-
ments prescribed (for example, prescribed rotations).

	 C.3 	 Stress/Strain Relationships
We will now develop the three-dimensional stress/strain relationships for an isotropic body 
only. This is done by considering the response of a body to imposed stresses. We subject the 
body to the stresses xs , ys , and zs  independently as shown in Figure C – 4.

We first consider the change in length of the element in the x direction due to the inde-
pendent stresses xs , ys , and zs . We assume the principle of superposition to hold; that is, we 
assume that the resultant strain in a system due to several forces is the algebraic sum of their 
individual effects.

Considering Figure C – 4(b), the stress in the x direction produces a positive strain

	
E

x
x

9
s

« 5 	 (C.3.1)

where Hooke’s law, Es 5 «, has been used in writing Eq. (C.3.1), and E is defined as the 
modulus of elasticity. Considering Figure C – 4(c), the positive stress in the y direction produces 
a negative strain in the x direction as a result of Poisson’s effect given by

	
E

x
yνs

«0 5 2 	 (C.3.2)
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C  |  Equations from Elasticity Theory870

where n is Poisson’s ratio. Similarly, considering Figure C – 4(d), the stress in the z direction 
produces a negative strain in the x direction given by

	
E

x
zν

999
s

« 5 2 	 (C.3.3)

Using superposition of Eqs. (C.3.1), (C.3.2), (C.3.3), we obtain

	
E E E

x
x y zν νs s s

« 5 2 2 	 (C.3.4)

The strains in the y and z directions can be determined in a manner similar to that used to obtain 
Eq. (C.3.4) for the x direction. They are

	
ν ν

ν ν

E E E

E E E

y
x y z

z
x y z

s s s

s s s

« 5 2 1 2

« 5 2 2 1

	 (C.3.5)

■■ Figure C –4  Element subjected to normal stress acting in three mutually perpendicular 
directions
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Solving Eqs. (C.3.4) and (C.3.5) for the normal stresses, we obtain

	

E

E

E

x x y z

y x y z

z x y z

ν ν
ν ν ν

ν ν
ν ν ν

ν ν
ν ν ν

s

s

s

5
1 2

« 2 1 « 1 «

5
1 2

« 1 2 « 1 «

5
1 2

« 1 « 1 2 «

(1 )(1 2 )
[ (1 ) ]

(1 )(1 2 )
[ (1 ) ]

(1 )(1 2 )
[ (1 ) ]

	 (C.3.6)

The Hooke’s law relationship, Es 5 «, used for normal stress also applies for shear stress 
and strain; that is,

	 τ Gg5 	 (C.3.7)

where G is the shear modulus. Hence, the expressions for the three different sets of shear 
strains are

	
G G G

x y
x y

yz
yz

z x
z xτ τ τ

g g g5 5 5 	 (C.3.8)

Solving Eqs. (C.3.8) for the stresses, we have

	 G G Gx y x y yz yz z x z xτ τ τg g g5 5 5 	 (C.3.9)

In matrix form, we can express the stresses in Eqs. (C.3.6) and (C.3.9) as

	

E

x

y

z

xy

yz

zx

x

y

z

xy

yz

zx

τ
τ
τ

ν ν

ν ν ν
ν ν

ν
ν

ν

ν































































































s

s

s

g

g

g

5
1 2

3

2

2

2

2

2

2

«

«

«

(1 )(1 2 )

1 0 0 0
1 0 0 0

1 0 0 0
1 2

2
0 0

1 2

2
0

Symmetry
1 2

2

	 (C.3.10)

where we note that the relationship

	 G
E

ν
5

12(1 )
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has been used in Eq. (C.3.10). The square matrix on the right side of Eq. (C.3.10) is called the 
stress/strain or constitutive matrix and is defined by [D], where [D] is

	 D
E

ν ν

ν ν ν
ν ν

ν
ν

ν

ν



































5
1 2

2

2

2

2

2

2

[ ]
(1 )(1 2 )

1 0 0 0
1 0 0 0

1 0 0 0
1 2

2
0 0

1 2

2
0

Symmetry
1 2

2

	 (C.3.11)

Reference
[1]	 Timoshenko, S., and Goodier, J., Theory of Elasticity, 3rd ed., McGraw-Hill, New York, 1970.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Equivalent Nodal Forces

The equivalent nodal (or joint) forces for different types of loads on beam elements are shown 
in Table D–1 (on the following page).

Problems

	 D.1		  Determine the equivalent joint or nodal forces for the beam elements shown in 
Figure PD–1.

A P P E N D I X

D

■■ Figure PD–1

Nk 5.2Nk 05

1.5 m

6 m

30 kN/m 2.5 kN

3 m 3 m

1.5 m

2.5 kN

3 m

15 kN/m

10 m

30 kN/m

6 m

3 m
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In this appendix, we will use the principle of virtual work to derive the general finite element 
equations for a dynamic system.

Strictly speaking, the principle of virtual work applies to a static system, but through the 
introduction of D’Alembert’s principle, we will be able to use the principle of virtual work to 
derive the finite element equations applicable for a dynamic system.

The principle of virtual work is stated as follows:

If a deformable body in equilibrium is subjected to arbitrary virtual (imaginary) 
displacements associated with a compatible deformation of the body, the virtual 
work of external forces on the body is equal to the virtual strain energy of the 
internal stresses.

In the principle, compatible displacements are those that satisfy the boundary conditions and 
ensure that no discontinuities, such as voids or overlaps, occur within the body. Figure E–1 
shows the hypothetical actual displacement, a compatible (admissible) displacement, and an 
incompatible (inadmissible) displacement for a simply supported beam. Here vd  represents 
the variation in the transverse displacement function v. In the finite element formulation, vd  
would be replaced by nodal degrees of freedom did . The inadmissible displacements shown 
in Figure E–1(b) are the result when the support condition at the right end of the beam and 
the continuity of displacement and slope within the beam are not satisfied. For more details 
of this principle, consult structural mechanics references such as Reference [1]. Also, for 
additional descriptions of strain energy and work done by external forces (as applied to a bar), 
see Section 3.10.

Applying the principle to a finite element, we have

	 U We ed d5( ) ( )	 (E.1)

where U ed ( ) is the virtual strain energy due to internal stresses and W ed ( ) is the virtual work of 
external forces on the element. We can express the internal virtual strain energy using matrix 
notation as

	 ∫∫∫ εU dVe T

v

d d s5 { } { }( ) 	 (E.2)

Principle of Virtual Work
A P P E N D I X

E
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From Eq. (E.2), we can observe that internal strain energy is due to internal stresses moving 
through virtual strains d«. The external virtual work is due to nodal, surface, and body forces. 
In addition, application of D’Alembert’s principle yields effective or inertial forces ρ��u dV , 
��v dVr , and ��w dVr , where the double dots indicate second derivatives of the translations u, v, 

and w in the x, y, and z directions, respectively, with respect to time. These forces are shown 
in Figure E–2. According to D’Alembert’s principle, these effective forces act in directions 
that are opposite to the assumed positive sense of the accelerations. We can now express the 
external virtual work as

	 ∫∫ ∫∫∫ ��W d P T dS X dVe T

S

s
T

s
T

V

d d d c d c r c5 1 1 2{ } { } { } { } { } ({ } { })( ) 	 (E.3)

where dd{ } is the vector of virtual nodal displacements, d c{ } is the vector of virtual displace-
ment functions ud , vd , and wd , sd c{ } is the vector of virtual displacement functions acting 
over the surface where surface tractions occur, {P} is the nodal load matrix, Ts{ } is the surface 
force per unit area matrix, and {X} is the body force per unit volume matrix.

Substituting Eqs. (E.2) and (E.3) into Eq. (E.1), we obtain

	 ∫∫∫ ∫∫ ∫∫∫ ��dV d P T dS X dVT

V

T
s

T
s

S

T

V

d s d d c d c r c« 5 1 1 2{ } { } { } { } { } { } { } ({ } { }) 	 (E.4)

E  |  Principle of Virtual Work

■■ Figure E–1  (a) Admissible and (b) inadmissible virtual displacement functions

■■ Figure E–2  Effective forces acting on an element
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As shown throughout this text, shape functions are used to relate displacement functions 
to nodal displacements as

	 N d N ds sc c5 5{ } [ ]{ } { } [ ]{ }	 (E.5)

Ns[ ] is the shape function matrix evaluated on the surface where traction Ts{ } occurs. Strains 
are related to nodal displacements as

	 B d« 5{ } [ ]{ }	 (E.6)

and stresses are related to strains by

	 Ds 5 «{ } [ ]{ }	 (E.7)

Hence, substituting Eqs. (E.5), (E.6), and (E.7) for c{ }, «{ }, and σ{ } into Eq. (E.4), we obtain

	

∫∫∫ ∫∫

∫∫∫

δ

��

d B D B d dV d P d N T dS

d N X N d dV

T

V

T T T

S

s
T

s

T

V

T

d d

d r

5 1

1 2

{ } [ ] [ ][ ]{ } { } { } { } [ ] { }

{ } [ ] ({ } [ ]{ })
	 (E.8)

Note that the shape functions are independent of time. Because {d} (or d T{ } ) is the matrix of 
nodal displacements, which is independent of spatial integration, we can simplify Eq. (E.8) by 
taking the d T{ }  terms from the integrals to obtain

	

∫∫∫ ∫∫

∫∫∫

d B D B dV d d P d N T dS

d N X N d dV

T T

V

T T
s

T

S

s

T T

V

d d d

d r

5 1

1 2 ��

{ } [ ] [ ][ ] { } { } { } { } [ ] { }

{ } [ ] ({ } [ ]{ })
	 (E.9)

Because d Td{ }  is an arbitrary virtual nodal displacement vector common to each term in 
Eq. (E.9), the following relationship must be true.

∫∫∫ ∫∫ ∫∫∫ ∫∫∫ ��B D B dV d P N T dS N X dV N N dV dT

V

s
T

S

s
T

V

T

V

r5 1 1 2[ ] [ ][ ] { } { } [ ] { } [ ] { } [ ] [ ] { }

(E.10)

We now define

	 ∫∫∫m N N dVT

V

r5[ ] [ ] { } 	 (E.11)

	 ∫∫∫k B D B dVT

V

5[ ] [ ] [ ][ ] 	 (E.12)

	 ∫∫f N T dSs s
T

S

s5{ } [ ] { } 	 (E.13)

	 ∫∫∫f N X dVb
T

V

5{ } [ ] { } 	 (E.14)
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Using Eqs. (E.11) through (E.14) in Eq. (E.10) and moving the last term of Eq. (E.10) to the 
left side, we obtain

	 ��m d k d P f fs b1 5 1 1[ ]{ } [ ]{ } { } { } { }	 (E.15)

The matrix [m] in Eq. (E.11) is the element consistent-mass matrix [2], [k] in Eq. (E.12) is the 
element stiffness matrix, fs{ } in Eq. (E.13) is the matrix of element equivalent nodal loads due 
to surface forces, and fb{ } in Eq. (E.14) is the matrix of element equivalent nodal loads due 
to body forces.

Specific applications of Eq. (E.15) are given in Chapter 16 for bars and beams subjected 
to dynamic (time-dependent) forces. For static problems, we set ��d{ } equal to zero in Eq. (E.15) 
to obtain

	 k d P f fs b5 1 1[ ]{ } { } { } { }	 (E.16)

Chapters 3 through 9, 11, and 12 illustrate the use of Eq. (E.16) applied to bars, trusses, beams, 
frames, and to plane stress, axisymmetric stress, three-dimensional stress, and plate-bending 
problems.
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Wide-Flange Sections (W Shapes) SI Units

Web Flange

Area Depth Thickness Width Thickness x-x axis y-y axis

Designation A d tw bf tf I S rx I S ry

mm 3 kg/m mm2 mm mm mm mm 106 mm4 103 mm3 mm 106 mm4 103mm3 mm

W610 3 155 19800 611 12.70 324.0 19.0 1290 4220 255 108.0 667 73.9

W610 3 140 17870 617 13.08 230.0 22.2 1124 3640 251 45.4 394 50.4

W610 3 125 15940 612 11.94 229.0 19.6 985 3220 249 39.3 343 49.7

W610 3 113 14450 608 11.18 228.0 17.3 874 2880 246 34.3 301 48.7

W610 3 101 12970 603 10.54 228.0 14.9 762 2530 242 29.3 257 47.5

W610 3 92 11800 603 10.90 179.0 13.15 646 2140 234 14.4 161 34.9

W610 3 82 10500 599 10.00 178.0 12.8 560 1870 231 12.1 136 33.9

W530 3 138 17610 549 14.73 214.0 23.6 862 3138 221 38.7 362 46.9

W530 3 124 15677 544 13.06 212.0 21.2 762 2799 220 33.9 319 46.5

W530 3 109 13871 539 11.56 211.0 18.8 666 2469 219 29.4 279 46.0

W530 3 101 12903 537 10.92 210.0 17.4 616 2298 218 26.9 258 45.7

W530 3 92 11806 533 10.16 209.0 15.6 554 2077 217 23.9 229 45.0

W530 3 82 10473 528 9.60 209.0 13.2 475 1800 213 20.1 192 43.8

W460 3 177 22645 482 16.64 286.0 26.9 912 3784 201 105.0 736 88.2

Geometric Properties of 
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881F  |  Geometric Properties of Structural Steel Wide-Flange Sections (W Shapes)

Wide-Flange Sections (W Shapes) SI Units

Web Flange

Area Depth Thickness Width Thickness x-x axis y-y axis

Designation A d tw bf tf I S rx I S ry

mm 3 kg/m mm2 mm mm mm mm 106 mm4 103 mm3 mm 106 mm4 103mm3 mm

W460 3 144 18387 472 13.59 283.0 22.1 728 3085 199 83.7 591 67.5

W460 3 113 14387 463 10.80 280.0 17.3 554 2394 196 63.3 451 66.3

W460 3 97 12320 466 11.43 193.0 19.1 445 1911 190 22.8 237 43.0

W460 3 89 11350 463 10.54 192.0 17.7 410 1766 190 20.9 217 42.9

W460 3 82 10450 460 9.91 191.0 16.0 370 1611 188 18.7 195 42.3

W460 3 74 9484 457 9.02 190.0 14.5 333 1457 187 16.7 175 42.0

W460 3 68 8733 459 9.14 154.0 15.4 296 1293 184 9.4 122 32.8

W460 3 60 7588 455 8.00 153.0 13.3 255 1120 183 8.0 104 32.4

W460 3 52 6640 450 7.62 152.0 10.8 212 944 179 6.4 84 31.0

W410 3 85 10840 417 10.92 181.0 18.2 316 1512 171 17.9 198 40.7

W410 3 74 9484 413 9.65 180.0 16.0 274 1328 170 15.5 172 40.4

W410 3 67 8581 410 8.76 179.0 14.4 244 1200 169 13.7 153 39.9

W410 3 54 6839 403 7.49 177.0 10.9 186 926 165 10.2 115 38.6

W410 3 46 5884 403 6.99 140.0 11.2 156 774 163 5.14 73.6 29.6

W410 3 39 4955 399 6.35 140.0 8.8 125 629 159 3.99 57.1 28.4

W360 3 196 25032 372 16.40 374.0 26.2 636 3421 159 229.0 1222 95.6

W360 3 162 20630 364 13.30 371.0 21.8 515 2832 158 186.0 1001 94.9

W360 3 134 17061 356 11.20 369.0 18.0 415 2332 156 151.0 817 94.0

W360 3 79 10100 354 9.40 205.0 16.8 227 1280 150 24.2 236 48.9

W360 3 64 8150 347 7.75 203.0 13.5 179 1030 148 18.8 185 48.0

W360 3 57 7226 358 7.87 172.0 13.1 160 895 149 11.10 129 39.2

W360 3 51 6452 355 7.24 171.0 11.6 142 797 148 9.70 113 38.8

W360 3 45 5710 352 6.86 171.0 9.8 121 689 146 8.16 95.4 37.8

W360 3 39 4961 353 6.48 128.0 10.7 102 577 143 3.71 58.1 27.3

W360 3 33 4187 349 5.84 127.0 8.5 82.9 475 141 2.91 45.9 26.4

W310 3 253 32212 356 24.40 319.0 39.6 682 3833 146 215.0 1346 81.6

W310 3 202 25744 341 20.10 315.0 31.7 519.0 3042 142 165.0 1050 80.1

W310 3 158 20046 327 15.50 310.0 25.1 386.0 2363 139 125.0 805 78.9

W310 3 129 16500 318 13.10 308.0 20.6 308.0 1935 137 100.0 652 78.0

W310 3 74 9480 310 9.4 205.0 16.3 165.0 1060 132 23.4 228 49.7

W310 3 67 8530 306 8.51 204.0 14.6 145.0 948 130 20.7 203 49.3

W310 3 39 4935 310 5.84 165.0 9.7 84.9 547 131 7.20 87.4 38.2

W310 3 33 4180 313 6.6 102.0 10.8 65.0 415 125 1.92 37.6 21.4

W310 3 24 3040 305 5.59 101.0 6.7 42.8 281 119 1.16 23 19.5

W310 3 21 2680 303 5.08 101.0 5.7 37.0 244 117 0.99 19.5 19.2

W250 3 149 18970 282 17.27 263.0 28.4 259.0 1839 117 86.2 656 67.4

W250 3 80 10200 256 9.4 255.0 15.6 126.0 984 111 42.9 337 64.9

(Continued )
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Web Flange

Area Depth Thickness Width Thickness x-x axis y-y axis

Designation A d tw bf tf I S rx I S ry

mm 3 kg/m mm2 mm mm mm mm 106 mm4 103 mm3 mm 106 mm4 103mm3 mm

W250 3 67 8560 257 8.89 204.0 15.7 104.0 809 110 22.2 218 50.9

W250 3 58 7400 252 8.0 203.0 13.5 87.3 693 109 18.8 185 50.4

W250 3 45 5700 266 7.62 148.0 13.0 70.8 535 111 6.95 94.2 34.9

W250 3 28 3626 260 6.35 102.0 10.0 40.1 308 105 1.79 34.9 22.2

W250 3 22 2850 254 5.84 102.0 6.9 28.7 226 100 1.20 23.7 20.6

W250  3 18 2284 251 4.83 101.0 5.3 22.4 179 99 0.91 18 19.9

W200 3 100 12700 229 14.50 210.0 23.7 113.0 987 94.3 36.6 349 53.7

Flange Sections (W Shapes) SI Units (Continued )

W200 3 86 11000 222 13.00 209.0 20.6 94.7 853 92.8 31.4 300 53.4

W200 3 71 9100 216 10.20 206.0 17.4 76.6 709 91.7 25.4 247 52.8

W200 3 59 7580 210 9.14 205.0 14.2 61.2 583 89.9 20.4 199 51.9

W200 3 46 5890 203 7.24 203.0 11.0 45.5 448 87.9 15.3 151 51.0

W200 3 36 4570 201 6.22 165.0 10.2 34.4 342 86.8 7.64 92.6 40.9

W200 3 22 2860 206 6.22 102.0 8.0 20.0 194 83.6 1.42 27.8 22.3

W150 3 37 4730 162 8.13 154.0 11.6 22.2 274 68.5 7.07 91.8 38.7

W150 3 30 3790 157 6.60 153.0 9.3 17.1 218 67.2 5.54 72.4 38.2

W150 3 22 2860 152 5.84 152.0 6.6 12.1 159 65 3.87 50.9 36.8

W150 3 24 3060 160 6.60 102.0 10.3 13.4 168 66.2 1.83 35.9 24.5

W150 3 18 2290 153 5.84 102.0 7.1 9.19 120 63.3 1.26 24.7 23.5

W150 3 14 1730 150 4.32 100.0 5.5 6.84 91.2 62.9 0.912 18.2 23

I 5 area moment of inertia, S 5 Section modulus, r 5 radius of gyration
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Table 1–1

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
v Shape does not meet the h/tw limit for shear in Specification Section G2.1a with Fy = 50 ksi.

W36×800h 236 42.6 421/2 2.38 23/8 13/16 18.0 18 4.29 45/16 5.24 59/16 23/8 313/8 71/2

×652h 192 41.1 41 1.97 2 1 17.6 175/8 3.54 39/16 4.49 413/16 23/16

×529h 156 39.8 393/4 1.61 15/8 13/16 17.2 171/4 2.91 215/16 3.86 43/16 2
×487h 143 39.3 393/8 1.50 11/2 3/4 17.1 171/8 2.68 211/16 3.63 4 115/16

×441h 130 38.9 387/8 1.36 13/8 11/16 17.0 17 2.44 27/16 3.39 33/4 17/8

×395h 116 38.4 383/8 1.22 11/4 5/8 16.8 167/8 2.20 23/16 3.15 37/16 113/16

×361h 106 38.0 38 1.12 11/8 9/16 16.7 163/4 2.01 2 2.96 35/16 13/4

×330 97.0 37.7 375/8 1.02 1 1/2 16.6 165/8 1.85 17/8 2.80 31/8 13/4

×302 88.8 37.3 373/8 0.945 15/16 1/2 16.7 165/8 1.68 111/16 2.63 3 111/16

×282c 82.9 37.1 371/8 0.885 7/8 7/16 16.6 165/8 1.57 19/16 2.52 27/8 15/8

×262c 77.0 36.9 367/8 0.840 13/16 7/16 16.6 161/2 1.44 17/16 2.39 23/4 15/8

×247c 72.5 36.7 365/8 0.800 13/16 7/16 16.5 161/2 1.35 13/8 2.30 25/8 15/8

×231c 68.1 36.5 361/2 0.760 3/4 3/8 16.5 161/2 1.26 11/4 2.21 29/16 19/16

W36×256 75.4 37.4 373/8 0.960 15/16 1/2 12.2 121/4 1.73 13/4 2.48 25/8 15/16 321/8 51/2

×232c 68.1 37.1 371/8 0.870 7/8 7/16 12.1 121/8 1.57 19/16 2.32 27/16 11/4

×210c 61.8 36.7 363/4 0.830 13/16 7/16 12.2 121/8 1.36 13/8 2.11 25/16 11/4

×194c 57.0 36.5 361/2 0.765 3/4 3/8 12.1 121/8 1.26 11/4 2.01 23/16 13/16

×182c 53.6 36.3 363/8 0.725 3/4 3/8 12.1 121/8 1.18 13/16 1.93 21/8 13/16

×170c 50.1 36.2 361/8 0.680 11/16 3/8 12.0 12 1.10 11/8 1.85 2 13/16

×160c 47.0 36.0 36 0.650 5/8 5/16 12.0 12 1.02 1 1.77 115/16 11/8

×150c 44.2 35.9 357/8 0.625 5/8 5/16 12.0 12 0.940 15/16 1.69 17/8 11/8

×135c,v 39.7 35.6 351/2 0.600 5/8 5/16 12.0 12 0.790 13/16 1.54 111/16 11/8

W33×387h 114 36.0 36 1.26 11/4 5/8 16.2 161/4 2.28 21/4 3.07 33/16 17/16 295/8 51/2

×354h 104 35.6 351/2 1.16 13/16 5/8 16.1 161/8 2.09 21/16 2.88 215/16 13/8

×318 93.6 35.2 351/8 1.04 11/16 9/16 16.0 16 1.89 17/8 2.68 23/4 15/16

×291 85.7 34.8 347/8 0.960 15/16 1/2 15.9 157/8 1.73 13/4 2.52 25/8 15/16

×263 77.5 34.5 341/2 0.870 7/8 7/16 15.8 153/4 1.57 19/16 2.36 27/16 11/4

×241c 71.0 34.2 341/8 0.830 13/16 7/16 15.9 157/8 1.40 13/8 2.19 21/4 11/4

×221c 65.2 33.9 337/8 0.775 3/4 3/8 15.8 153/4 1.28 11/4 2.06 21/8 13/16

×201c 59.2 33.7 335/8 0.715 11/16 3/8 15.7 153/4 1.15 11/8 1.94 2 13/16

W33×169c 49.5 33.8 337/8 0.670 11/16 3/8 11.5 111/2 1.22 11/4 1.92 21/8 13/16 295/8 51/2

×152c 44.8 33.5 331/2 0.635 5/8 5/16 11.6 115/8 1.06 11/16 1.76 115/16 11/8

×141c 41.6 33.3 331/4 0.605 5/8 5/16 11.5 111/2 0.960 15/16 1.66 113/16 11/8

×130c 38.3 33.1 331/8 0.580 9/16 5/16 11.5 111/2 0.855 7/8 1.56 13/4 11/8

×118c,v 34.7 32.9 327/8 0.550 9/16 5/16 11.5 111/2 0.740 3/4 1.44 15/8 11/8
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W36 – W33
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800 2.10 13.5 64700 3040 16.6 3650 4200 467 4.22 743 5.14 38.3 1060 1540000
652 2.48 16.3 50600 2460 16.2 2910 3230 367 4.10 581 4.96 37.5 593 1130000
529 2.96 19.9 39600 1990 16.0 2330 2490 289 4.00 454 4.80 36.9 327 846000
487 3.19 21.4 36000 1830 15.8 2130 2250 263 3.96 412 4.74 36.7 258 754000
441 3.48 23.6 32100 1650 15.7 1910 1990 235 3.92 368 4.69 36.4 194 661000
395 3.83 26.3 28500 1490 15.7 1710 1750 208 3.88 325 4.61 36.2 142 575000
361 4.16 28.6 25700 1350 15.6 1550 1570 188 3.85 293 4.58 36.0 109 509000
330 4.49 31.4 23300 1240 15.5 1410 1420 171 3.83 265 4.53 35.8 84.3 456000
302 4.96 33.9 21100 1130 15.4 1280 1300 156 3.82 241 4.53 35.7 64.3 412000
282 5.29 36.2 19600 1050 15.4 1190 1200 144 3.80 223 4.50 35.5 52.7 378000
262 5.75 38.2 17900 972 15.3 1100 1090 132 3.76 204 4.46 35.4 41.6 342000
247 6.11 40.1 16700 913 15.2 1030 1010 123 3.74 190 4.42 35.3 34.7 316000
231 6.54 42.2 15600 854 15.1 963 940 114 3.71 176 4.40 35.2 28.7 292000

256 3.53 33.8 16800 895 14.9 1040 528 86.5 2.65 137 3.25 35.7 52.9 168000
232 3.86 37.3 15000 809 14.8 936 468 77.2 2.62 122 3.21 35.6 39.6 148000
210 4.48 39.1 13200 719 14.6 833 411 67.5 2.58 107 3.18 35.3 28.0 128000
194 4.81 42.4 12100 664 14.6 767 375 61.9 2.56 97.7 3.15 35.2 22.2 116000
182 5.12 44.8 11300 623 14.5 718 347 57.6 2.55 90.7 3.13 35.2 18.5 107000
170 5.47 47.7 10500 581 14.5 668 320 53.2 2.53 83.8 3.11 35.1 15.1 98500
160 5.88 49.9 9760 542 14.4 624 295 49.1 2.50 77.3 3.08 35.0 12.4 90200
150 6.37 51.9 9040 504 14.3 581 270 45.1 2.47 70.9 3.06 34.9 10.1 82200
135 7.56 54.1 7800 439 14.0 509 225 37.7 2.38 59.7 2.99 34.8 7.00 68100

387 3.55 23.7 24300 1350 14.6 1560 1620 200 3.77 312 4.49 33.7 148 459000
354 3.85 25.7 22000 1240 14.5 1420 1460 181 3.74 282 4.44 33.5 115 408000
318 4.23 28.7 19500 1110 14.5 1270 1290 161 3.71 250 4.39 33.3 84.4 357000
291 4.60 31.0 17700 1020 14.4 1160 1160 146 3.68 226 4.35 33.1 65.1 319000
263 5.03 34.3 15900 919 14.3 1040 1040 131 3.66 202 4.31 33.0 48.7 281000
241 5.66 35.9 14200 831 14.1 940 933 118 3.62 182 4.29 32.8 36.2 251000
221 6.20 38.5 12900 759 14.1 857 840 106 3.59 164 4.25 32.7 27.8 224000
201 6.85 41.7 11600 686 14.0 773 749 95.2 3.56 147 4.21 32.5 20.8 198000

169 4.71 44.7 9290 549 13.7 629 310 53.9 2.50 84.4 3.03 32.6 17.7 82400
152 5.48 47.2 8160 487 13.5 559 273 47.2 2.47 73.9 3.01 32.4 12.4 71700
141 6.01 49.6 7450 448 13.4 514 246 42.7 2.43 66.9 2.98 32.3 9.70 64400
130 6.73 51.7 6710 406 13.2 467 218 37.9 2.39 59.5 2.94 32.2 7.37 56600
118 7.76 54.5 5900 359 13.0 415 187 32.6 2.32 51.3 2.89 32.1 5.30 48300
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Table 1–1 (continued)

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
g The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section

to ensure compatibility.
h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
v Shape does not meet the h/tw limit for shear in Specification Section G2.1a with Fy = 50 ksi.

W30×391h 115 33.2 331/4 1.36 13/8 11/16 15.6 155/8 2.44 27/16 3.23 33/8 11/2 261/2 51/2

×357h 105 32.8 323/4 1.24 11/4 5/8 15.5 151/2 2.24 21/4 3.03 31/8 17/16

×326h 95.8 32.4 323/8 1.14 11/8 9/16 15.4 153/8 2.05 21/16 2.84 215/16 13/8

×292 85.9 32.0 32 1.02 1 1/2 15.3 151/4 1.85 17/8 2.64 23/4 15/16

×261 76.9 31.6 315/8 0.930 15/16 1/2 15.2 151/8 1.65 15/8 2.44 29/16 15/16

×235 69.2 31.3 311/4 0.830 13/16 7/16 15.1 15 1.50 11/2 2.29 23/8 11/4

×211 62.2 30.9 31 0.775 3/4 3/8 15.1 151/8 1.32 15/16 2.10 21/4 13/16

×191c 56.3 30.7 305/8 0.710 11/16 3/8 15.0 15 1.19 13/16 1.97 21/16 13/16

×173c 51.0 30.4 301/2 0.655 5/8 5/16 15.0 15 1.07 11/16 1.85 2 11/8

W30×148c 43.5 30.7 305/8 0.650 5/8 5/16 10.5 101/2 1.18 13/16 1.83 21/16 11/8 261/2 51/2

×132c 38.9 30.3 301/4 0.615 5/8 5/16 10.5 101/2 1.00 1 1.65 17/8 11/8

×124c 36.5 30.2 301/8 0.585 9/16 5/16 10.5 101/2 0.930 15/16 1.58 113/16 11/8

×116c 34.2 30.0 30 0.565 9/16 5/16 10.5 101/2 0.850 7/8 1.50 13/4 11/8

×108c 31.7 29.8 297/8 0.545 9/16 5/16 10.5 101/2 0.760 3/4 1.41 111/16 11/8

×99c 29.1 29.7 295/8 0.520 1/2 1/4 10.5 101/2 0.670 11/16 1.32 19/16 11/16

×90c,v 26.4 29.5 291/2 0.470 1/2 1/4 10.4 103/8 0.610 5/8 1.26 11/2 11/16

W27×539h 159 32.5 321/2 1.97 2 1 15.3 151/4 3.54 39/16 4.33 47/16 113/16 235/8 51/2g

×368h 108 30.4 303/8 1.38 13/8 11/16 14.7 145/8 2.48 21/2 3.27 33/8 11/2 51/2

×336h 98.9 30.0 30 1.26 11/4 5/8 14.6 141/2 2.28 21/4 3.07 33/16 17/16

×307h 90.4 29.6 295/8 1.16 13/16 5/8 14.4 141/2 2.09 21/16 2.88 3 17/16

×281 82.9 29.3 291/4 1.06 11/16 9/16 14.4 143/8 1.93 115/16 2.72 213/16 13/8

×258 76.0 29.0 29 0.980 1 1/2 14.3 141/4 1.77 13/4 2.56 211/16 15/16

×235 69.4 28.7 285/8 0.910 15/16 1/2 14.2 141/4 1.61 15/8 2.40 21/2 15/16

×217 64.0 28.4 283/8 0.830 13/16 7/16 14.1 141/8 1.50 11/2 2.29 23/8 11/4

×194 57.2 28.1 281/8 0.750 3/4 3/8 14.0 14 1.34 15/16 2.13 21/4 13/16

×178 52.5 27.8 273/4 0.725 3/4 3/8 14.1 141/8 1.19 13/16 1.98 21/16 13/16

×161c 47.6 27.6 275/8 0.660 11/16 3/8 14.0 14 1.08 11/16 1.87 2 13/16

×146c 43.1 27.4 273/8 0.605 5/8 5/16 14.0 14 0.975 1 1.76 17/8 11/8

W27×129c 37.8 27.6 275/8 0.610 5/8 5/16 10.0 10 1.10 11/8 1.70 2 11/8 235/8 51/2

×114c 33.5 27.3 271/4 0.570 9/16 5/16 10.1 101/8 0.930 15/16 1.53 113/16 11/8

×102c 30.0 27.1 271/8 0.515 1/2 1/4 10.0 10 0.830 13/16 1.43 13/4 11/16

×94c 27.7 26.9 267/8 0.490 1/2 1/4 10.0 10 0.745 3/4 1.34 15/8 11/16

×84c 24.8 26.7 263/4 0.460 7/16 1/4 10.0 10 0.640 5/8 1.24 19/16 11/16
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W30 – W27
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391 3.19 19.7 20700 1250 13.4 1450 1550 198 3.67 310 4.37 30.8 173 366000
357 3.45 21.6 18700 1140 13.3 1320 1390 179 3.64 279 4.32 30.6 134 324000
326 3.75 23.4 16800 1040 13.2 1190 1240 162 3.60 252 4.27 30.4 103 287000
292 4.12 26.2 14900 930 13.2 1060 1100 144 3.58 223 4.22 30.2 75.2 250000
261 4.59 28.7 13100 829 13.1 943 959 127 3.53 196 4.16 30.0 54.1 215000
235 5.02 32.2 11700 748 13.0 847 855 114 3.51 175 4.13 29.8 40.3 190000
211 5.74 34.5 10300 665 12.9 751 757 100 3.49 155 4.10 29.6 28.4 166000
191 6.35 37.7 9200 600 12.8 675 673 89.5 3.46 138 4.07 29.5 21.0 146000
173 7.04 40.8 8230 541 12.7 607 598 79.8 3.42 123 4.03 29.4 15.6 129000

148 4.44 41.6 6680 436 12.4 500 227 43.3 2.28 68.0 2.77 29.5 14.5 49400
132 5.27 43.9 5770 380 12.2 437 196 37.2 2.25 58.4 2.75 29.3 9.72 42100
124 5.65 46.2 5360 355 12.1 408 181 34.4 2.23 54.0 2.73 29.2 7.99 38600
116 6.17 47.8 4930 329 12.0 378 164 31.3 2.19 49.2 2.70 29.2 6.43 34900
108 6.89 49.6 4470 299 11.9 346 146 27.9 2.15 43.9 2.66 29.1 4.99 30900
99 7.80 51.9 3990 269 11.7 312 128 24.5 2.10 38.6 2.62 29.0 3.77 26800
90 8.52 57.5 3610 245 11.7 283 115 22.1 2.09 34.7 2.60 28.9 2.84 24000

539 2.15 12.1 25600 1570 12.7 1890 2110 277 3.65 437 4.41 29.0 496 443000
368 2.96 17.3 16200 1060 12.2 1240 1310 179 3.48 279 4.14 27.9 170 255000
336 3.19 18.9 14600 972 12.1 1130 1180 162 3.45 252 4.09 27.7 131 226000
307 3.46 20.6 13100 887 12.0 1030 1050 146 3.41 227 4.04 27.5 101 199000
281 3.72 22.5 11900 814 12.0 936 953 133 3.39 206 4.00 27.4 79.5 178000
258 4.03 24.4 10800 745 11.9 852 859 120 3.36 187 3.96 27.2 61.6 159000
235 4.41 26.2 9700 677 11.8 772 769 108 3.33 168 3.92 27.1 47.0 141000
217 4.71 28.7 8910 627 11.8 711 704 100 3.32 154 3.89 26.9 37.6 128000
194 5.24 31.8 7860 559 11.7 631 619 88.1 3.29 136 3.85 26.8 27.1 111000
178 5.92 32.9 7020 505 11.6 570 555 78.8 3.25 122 3.83 26.6 20.1 98400
161 6.49 36.1 6310 458 11.5 515 497 70.9 3.23 109 3.79 26.5 15.1 87300
146 7.16 39.4 5660 414 11.5 464 443 63.5 3.20 97.7 3.76 26.4 11.3 77200

129 4.55 39.7 4760 345 11.2 395 184 36.8 2.21 57.6 2.66 26.5 11.1 32500
114 5.41 42.5 4080 299 11.0 343 159 31.5 2.18 49.3 2.64 26.4 7.33 27600
102 6.03 47.1 3620 267 11.0 305 139 27.8 2.15 43.4 2.62 26.3 5.28 24000
94 6.70 49.5 3270 243 10.9 278 124 24.8 2.12 38.8 2.59 26.2 4.03 21300
84 7.78 52.7 2850 213 10.7 244 106 21.2 2.07 33.2 2.54 26.1 2.81 17900
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Table 1–1 (continued)

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
g The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section

to ensure compatibility.
h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
v Shape does not meet the h/tw limit for shear in Specification Section G2.1a with Fy = 50 ksi.
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W24×370h 109 28.0 28 1.52 11/2 3/4 13.7 135/8 2.72 23/4 3.22 35/8 19/16 203/4 51/2

×335h 98.4 27.5 271/2 1.38 13/8 11/16 13.5 131/2 2.48 21/2 2.98 33/8 11/2

×306h 89.8 27.1 271/8 1.26 11/4 5/8 13.4 133/8 2.28 21/4 2.78 33/16 17/16

×279h 82.0 26.7 263/4 1.16 13/16 5/8 13.3 131/4 2.09 21/16 2.59 3 17/16

×250 73.5 26.3 263/8 1.04 11/16 9/16 13.2 131/8 1.89 17/8 2.39 213/16 13/8

×229 67.2 26.0 26 0.960 15/16 1/2 13.1 131/8 1.73 13/4 2.23 25/8 15/16

×207 60.7 25.7 253/4 0.870 7/8 7/16 13.0 13 1.57 19/16 2.07 21/2 11/4

×192 56.3 25.5 251/2 0.810 13/16 7/16 13.0 13 1.46 17/16 1.96 23/8 11/4

×176 51.7 25.2 251/4 0.750 3/4 3/8 12.9 127/8 1.34 15/16 1.84 21/4 13/16

×162 47.7 25.0 25 0.705 11/16 3/8 13.0 13 1.22 11/4 1.72 21/8 13/16

×146 43.0 24.7 243/4 0.650 5/8 5/16 12.9 127/8 1.09 11/16 1.59 2 11/8

×131 38.5 24.5 241/2 0.605 5/8 5/16 12.9 127/8 0.960 15/16 1.46 17/8 11/8

×117c 34.4 24.3 241/4 0.550 9/16 5/16 12.8 123/4 0.850 7/8 1.35 13/4 11/8

×104c 30.6 24.1 24 0.500 1/2 1/4 12.8 123/4 0.750 3/4 1.25 15/8 11/16

W24×103c 30.3 24.5 241/2 0.550 9/16 5/16 9.00 9 0.980 1 1.48 17/8 11/8 203/4 51/2

×94c 27.7 24.3 241/4 0.515 1/2 1/4 9.07 91/8 0.875 7/8 1.38 13/4 11/16

×84c 24.7 24.1 241/8 0.470 1/2 1/4 9.02 9 0.770 3/4 1.27 111/16 11/16

×76c 22.4 23.9 237/8 0.440 7/16 1/4 8.99 9 0.680 11/16 1.18 19/16 11/16

×68c 20.1 23.7 233/4 0.415 7/16 1/4 8.97 9 0.585 9/16 1.09 11/2 11/16

W24×62c 18.2 23.7 233/4 0.430 7/16 1/4 7.04 7 0.590 9/16 1.09 11/2 11/16 203/4 31/2g

×55c,v 16.2 23.6 235/8 0.395 3/8 3/16 7.01 7 0.505 1/2 1.01 17/16 1 203/4 31/2g

W21×201 59.2 23.0 23 0.910 15/16 1/2 12.6 125/8 1.63 15/8 2.13 21/2 15/16 18 51/2

×182 53.6 22.7 223/4 0.830 13/16 7/16 12.5 121/2 1.48 11/2 1.98 23/8 11/4

×166 48.8 22.5 221/2 0.750 3/4 3/8 12.4 123/8 1.36 13/8 1.86 21/4 13/16

×147 43.2 22.1 22 0.720 3/4 3/8 12.5 121/2 1.15 11/8 1.65 2 13/16

×132 38.8 21.8 217/8 0.650 5/8 5/16 12.4 121/2 1.04 11/16 1.54 115/16 11/8

×122 35.9 21.7 215/8 0.600 5/8 5/16 12.4 123/8 0.960 15/16 1.46 113/16 11/8

×111 32.7 21.5 211/2 0.550 9/16 5/16 12.3 123/8 0.875 7/8 1.38 13/4 11/8

×101c 29.8 21.4 213/8 0.500 1/2 1/4 12.3 121/4 0.800 13/16 1.30 111/16 11/16
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W24 – W21
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370 2.51 14.2 13400 957 11.1 1130 1160 170 3.27 267 3.92 25.3 201 186000
335 2.73 15.6 11900 864 11.0 1020 1030 152 3.23 238 3.86 25.0 152 161000
306 2.94 17.1 10700 789 10.9 922 919 137 3.20 214 3.81 24.9 117 142000
279 3.18 18.6 9600 718 10.8 835 823 124 3.17 193 3.76 24.6 90.5 125000
250 3.49 20.7 8490 644 10.7 744 724 110 3.14 171 3.71 24.5 66.6 108000
229 3.79 22.5 7650 588 10.7 675 651 99.4 3.11 154 3.67 24.3 51.3 96100
207 4.14 24.8 6820 531 10.6 606 578 88.8 3.08 137 3.62 24.1 38.3 84100
192 4.43 26.6 6260 491 10.5 559 530 81.8 3.07 126 3.60 24.0 30.8 76300
176 4.81 28.7 5680 450 10.5 511 479 74.3 3.04 115 3.57 23.9 23.9 68400
162 5.31 30.6 5170 414 10.4 468 443 68.4 3.05 105 3.57 23.8 18.5 62600
146 5.92 33.2 4580 371 10.3 418 391 60.5 3.01 93.2 3.53 23.7 13.4 54600
131 6.70 35.6 4020 329 10.2 370 340 53.0 2.97 81.5 3.49 23.5 9.50 47100
117 7.53 39.2 3540 291 10.1 327 297 46.5 2.94 71.4 3.46 23.4 6.72 40800
104 8.50 43.1 3100 258 10.1 289 259 40.7 2.91 62.4 3.42 23.3 4.72 35200

103 4.59 39.2 3000 245 10.0 280 119 26.5 1.99 41.5 2.40 23.6 7.07 16600
94 5.18 41.9 2700 222 9.87 254 109 24.0 1.98 37.5 2.40 23.4 5.26 15000
84 5.86 45.9 2370 196 9.79 224 94.4 20.9 1.95 32.6 2.37 23.3 3.70 12800
76 6.61 49.0 2100 176 9.69 200 82.5 18.4 1.92 28.6 2.34 23.2 2.68 11100
68 7.66 52.0 1830 154 9.55 177 70.4 15.7 1.87 24.5 2.30 23.1 1.87 9430

62 5.97 50.1 1550 131 9.23 153 34.5 9.80 1.38 15.7 1.75 23.2 1.71 4620
55 6.94 54.6 1350 114 9.11 134 29.1 8.30 1.34 13.3 1.71 23.1 1.18 3870

201 3.86 20.6 5310 461 9.47 530 542 86.1 3.02 133 3.55 21.4 40.9 62000
182 4.22 22.6 4730 417 9.40 476 483 77.2 3.00 119 3.51 21.2 30.7 54400
166 4.57 25.0 4280 380 9.36 432 435 70.0 2.99 108 3.48 21.1 23.6 48500
147 5.44 26.1 3630 329 9.17 373 376 60.1 2.95 92.6 3.45 20.9 15.4 41100
132 6.01 28.9 3220 295 9.12 333 333 53.5 2.93 82.3 3.42 20.8 11.3 36000
122 6.45 31.3 2960 273 9.09 307 305 49.2 2.92 75.6 3.40 20.7 8.98 32700
111 7.05 34.1 2670 249 9.05 279 274 44.5 2.90 68.2 3.37 20.6 6.83 29200
101 7.68 37.5 2420 227 9.02 253 248 40.3 2.89 61.7 3.35 20.6 5.21 26200
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Table 1–1 (continued)

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
f Shape exceeds compact limit for flexure with Fy = 50 ksi.
g The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section

to ensure compatibility.
h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.

W21×93 27.3 21.6 215/8 0.580 9/16 5/16 8.42 83/8 0.930 15/16 1.43 15/8 15/16 183/8 51/2

×83c 24.3 21.4 213/8 0.515 1/2 1/4 8.36 83/8 0.835 13/16 1.34 11/2 7/8

×73c 21.5 21.2 211/4 0.455 7/16 1/4 8.30 81/4 0.740 3/4 1.24 17/16 7/8

×68c 20.0 21.1 211/8 0.430 7/16 1/4 8.27 81/4 0.685 11/16 1.19 13/8 7/8

×62c 18.3 21.0 21 0.400 3/8 3/16 8.24 81/4 0.615 5/8 1.12 15/16 13/16

×55c 16.2 20.8 203/4 0.375 3/8 3/16 8.22 81/4 0.522 1/2 1.02 13/16 13/16

×48c,f 14.1 20.6 205/8 0.350 3/8 3/16 8.14 81/8 0.430 7/16 0.930 11/8 13/16

W21×57c 16.7 21.1 21 0.405 3/8 3/16 6.56 61/2 0.650 5/8 1.15 15/16 13/16 183/8 31/2

×50c 14.7 20.8 207/8 0.380 3/8 3/16 6.53 61/2 0.535 9/16 1.04 11/4 13/16

×44c 13.0 20.7 205/8 0.350 3/8 3/16 6.50 61/2 0.450 7/16 0.950 11/8 13/16

W18×311h 91.6 22.3 223/8 1.52 11/2 3/4 12.0 12 2.74 23/4 3.24 37/16 13/8 151/2 51/2

×283h 83.3 21.9 217/8 1.40 13/8 11/16 11.9 117/8 2.50 21/2 3.00 33/16 15/16

×258h 75.9 21.5 211/2 1.28 11/4 5/8 11.8 113/4 2.30 25/16 2.70 3 11/4

×234h 68.8 21.1 21 1.16 13/16 5/8 11.7 115/8 2.11 21/8 2.51 23/4 13/16

×211 62.1 20.7 205/8 1.06 11/16 9/16 11.6 111/2 1.91 115/16 2.31 29/16 13/16

×192 56.4 20.4 203/8 0.960 15/16 1/2 11.5 111/2 1.75 13/4 2.15 27/16 11/8

×175 51.3 20.0 20 0.890 7/8 7/16 11.4 113/8 1.59 19/16 1.99 27/16 11/4 151/8

×158 46.3 19.7 193/4 0.810 13/16 7/16 11.3 111/4 1.44 17/16 1.84 23/8 11/4

×143 42.1 19.5 191/2 0.730 3/4 3/8 11.2 111/4 1.32 15/16 1.72 23/16 13/16

×130 38.2 19.3 191/4 0.670 11/16 3/8 11.2 111/8 1.20 13/16 1.60 21/16 13/16

×119 35.1 19.0 19 0.655 5/8 5/16 11.3 111/4 1.06 11/16 1.46 115/16 13/16

×106 31.1 18.7 183/4 0.590 9/16 5/16 11.2 111/4 0.940 15/16 1.34 113/16 11/8

×97 28.5 18.6 185/8 0.535 9/16 5/16 11.1 111/8 0.870 7/8 1.27 13/4 11/8

×86 25.3 18.4 183/8 0.480 1/2 1/4 11.1 111/8 0.770 3/4 1.17 15/8 11/16

×76c 22.3 18.2 181/4 0.425 7/16 1/4 11.0 11 0.680 11/16 1.08 19/16 11/16

W18×71 20.8 18.5 181/2 0.495 1/2 1/4 7.64 75/8 0.810 13/16 1.21 11/2 7/8 151/2 31/2g

×65 19.1 18.4 183/8 0.450 7/16 1/4 7.59 75/8 0.750 3/4 1.15 17/16 7/8

×60c 17.6 18.2 181/4 0.415 7/16 1/4 7.56 71/2 0.695 11/16 1.10 13/8 13/16

×55c 16.2 18.1 181/8 0.390 3/8 3/16 7.53 71/2 0.630 5/8 1.03 15/16 13/16

×50c 14.7 18.0 18 0.355 3/8 3/16 7.50 71/2 0.570 9/16 0.972 11/4 13/16

W18×46c 13.5 18.1 18 0.360 3/8 3/16 6.06 6 0.605 5/8 1.01 11/4 13/16 151/2 31/2g

×40c 11.8 17.9 177/8 0.315 5/16 3/16 6.02 6 0.525 1/2 0.927 13/16 13/16

×35c 10.3 17.7 173/4 0.300 5/16 3/16 6.00 6 0.425 7/16 0.827 11/8 3/4
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W21 – W18
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93 4.53 32.3 2070 192 8.70 221 92.9 22.1 1.84 34.7 2.24 20.7 6.03 9940
83 5.00 36.4 1830 171 8.67 196 81.4 19.5 1.83 30.5 2.21 20.6 4.34 8630
73 5.60 41.2 1600 151 8.64 172 70.6 17.0 1.81 26.6 2.19 20.5 3.02 7410
68 6.04 43.6 1480 140 8.60 160 64.7 15.7 1.80 24.4 2.17 20.4 2.45 6760
62 6.70 46.9 1330 127 8.54 144 57.5 14.0 1.77 21.7 2.15 20.4 1.83 5960
55 7.87 50.0 1140 110 8.40 126 48.4 11.8 1.73 18.4 2.11 20.3 1.24 4980
48 9.47 53.6 959 93.0 8.24 107 38.7 9.52 1.66 14.9 2.05 20.2 0.803 3950

57 5.04 46.3 1170 111 8.36 129 30.6 9.35 1.35 14.8 1.68 20.4 1.77 3190
50 6.10 49.4 984 94.5 8.18 110 24.9 7.64 1.30 12.2 1.64 20.3 1.14 2570
44 7.22 53.6 843 81.6 8.06 95.4 20.7 6.37 1.26 10.2 1.60 20.2 0.770 2110

311 2.19 10.4 6970 624 8.72 754 795 132 2.95 207 3.53 19.6 176 76200
283 2.38 11.3 6170 565 8.61 676 704 118 2.91 185 3.47 19.4 134 65900
258 2.56 12.5 5510 514 8.53 611 628 107 2.88 166 3.42 19.2 103 57600
234 2.76 13.8 4900 466 8.44 549 558 95.8 2.85 149 3.37 19.0 78.7 50100
211 3.02 15.1 4330 419 8.35 490 493 85.3 2.82 132 3.32 18.8 58.6 43400
192 3.27 16.7 3870 380 8.28 442 440 76.8 2.79 119 3.28 18.6 44.7 38000
175 3.58 18.0 3450 344 8.20 398 391 68.8 2.76 106 3.24 18.5 33.8 33300
158 3.92 19.8 3060 310 8.12 356 347 61.4 2.74 94.8 3.20 18.3 25.2 29000
143 4.25 22.0 2750 282 8.09 322 311 55.5 2.72 85.4 3.17 18.2 19.2 25700
130 4.65 23.9 2460 256 8.03 290 278 49.9 2.70 76.7 3.13 18.1 14.5 22700
119 5.31 24.5 2190 231 7.90 262 253 44.9 2.69 69.1 3.13 17.9 10.6 20300
106 5.96 27.2 1910 204 7.84 230 220 39.4 2.66 60.5 3.10 17.8 7.48 17400
97 6.41 30.0 1750 188 7.82 211 201 36.1 2.65 55.3 3.08 17.7 5.86 15800
86 7.20 33.4 1530 166 7.77 186 175 31.6 2.63 48.4 3.05 17.6 4.10 13600
76 8.11 37.8 1330 146 7.73 163 152 27.6 2.61 42.2 3.02 17.5 2.83 11700

71 4.71 32.4 1170 127 7.50 146 60.3 15.8 1.70 24.7 2.05 17.7 3.49 4700
65 5.06 35.7 1070 117 7.49 133 54.8 14.4 1.69 22.5 2.03 17.6 2.73 4240
60 5.44 38.7 984 108 7.47 123 50.1 13.3 1.68 20.6 2.02 17.5 2.17 3850
55 5.98 41.1 890 98.3 7.41 112 44.9 11.9 1.67 18.5 2.00 17.5 1.66 3430
50 6.57 45.2 800 88.9 7.38 101 40.1 10.7 1.65 16.6 1.98 17.4 1.24 3040

46 5.01 44.6 712 78.8 7.25 90.7 22.5 7.43 1.29 11.7 1.58 17.5 1.22 1720
40 5.73 50.9 612 68.4 7.21 78.4 19.1 6.35 1.27 10.0 1.56 17.4 0.810 1440
35 7.06 53.5 510 57.6 7.04 66.5 15.3 5.12 1.22 8.06 1.52 17.3 0.506 1140
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Table 1–1 (continued)

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
g The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section

to ensure compatibility.
h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
v Shape does not meet the h/tw limit for shear in Specification Section G2.1a with Fy = 50 ksi.

W16×100 29.5 17.0 17 0.585 9/16 5/16 10.4 103/8 0.985 1 1.39 17/8 11/8 131/4 51/2

×89 26.2 16.8 163/4 0.525 1/2 1/4 10.4 103/8 0.875 7/8 1.28 13/4 11/16

×77 22.6 16.5 161/2 0.455 7/16 1/4 10.3 101/4 0.760 3/4 1.16 15/8 11/16

×67c 19.7 16.3 163/8 0.395 3/8 3/16 10.2 101/4 0.665 11/16 1.07 19/16 1

W16×57 16.8 16.4 163/8 0.430 7/16 1/4 7.12 71/8 0.715 11/16 1.12 13/8 7/8 135/8 31/2g

×50c 14.7 16.3 161/4 0.380 3/8 3/16 7.07 71/8 0.630 5/8 1.03 15/16 13/16

×45c 13.3 16.1 161/8 0.345 3/8 3/16 7.04 7 0.565 9/16 0.967 11/4 13/16

×40c 11.8 16.0 16 0.305 5/16 3/16 7.00 7 0.505 1/2 0.907 13/16 13/16

×36c 10.6 15.9 157/8 0.295 5/16 3/16 6.99 7 0.430 7/16 0.832 11/8 3/4

W16×31c 9.13 15.9 157/8 0.275 1/4 1/8 5.53 51/2 0.440 7/16 0.842 11/8 3/4 135/8 31/2

×26c,v 7.68 15.7 153/4 0.250 1/4 1/8 5.50 51/2 0.345 3/8 0.747 11/16 3/4 135/8 31/2

W14×730h 215 22.4 223/8 3.07 31/16 19/16 17.9 177/8 4.91 415/16 5.51 63/16 23/4 10 3-71/2-3g

×665h 196 21.6 215/8 2.83 213/16 17/16 17.7 175/8 4.52 41/2 5.12 513/16 25/8 3-71/2-3g

×605h 178 20.9 207/8 2.60 25/8 15/16 17.4 173/8 4.16 43/16 4.76 57/16 21/2 3-71/2-3
×550h 162 20.2 201/4 2.38 23/8 13/16 17.2 171/4 3.82 313/16 4.42 51/8 23/8

×500h 147 19.6 195/8 2.19 23/16 11/8 17.0 17 3.50 31/2 4.10 413/16 25/16

×455h 134 19.0 19 2.02 2 1 16.8 167/8 3.21 33/16 3.81 41/2 21/4

×426h 125 18.7 185/8 1.88 17/8 15/16 16.7 163/4 3.04 31/16 3.63 45/16 21/8

×398h 117 18.3 181/4 1.77 13/4 7/8 16.6 165/8 2.85 27/8 3.44 41/8 21/8

×370h 109 17.9 177/8 1.66 15/8 13/16 16.5 161/2 2.66 211/16 3.26 315/16 21/16

×342h 101 17.5 171/2 1.54 19/16 13/16 16.4 163/8 2.47 21/2 3.07 33/4 2
×311h 91.4 17.1 171/8 1.41 17/16 3/4 16.2 161/4 2.26 21/4 2.86 39/16 115/16

×283h 83.3 16.7 163/4 1.29 15/16 11/16 16.1 161/8 2.07 21/16 2.67 33/8 17/8

×257 75.6 16.4 163/8 1.18 13/16 5/8 16.0 16 1.89 17/8 2.49 33/16 113/16

×233 68.5 16.0 16 1.07 11/16 9/16 15.9 157/8 1.72 13/4 2.32 3 13/4

×211 62.0 15.7 153/4 0.980 1 1/2 15.8 153/4 1.56 19/16 2.16 27/8 111/16

×193 56.8 15.5 151/2 0.890 7/8 7/16 15.7 153/4 1.44 17/16 2.04 23/4 111/16

×176 51.8 15.2 151/4 0.830 13/16 7/16 15.7 155/8 1.31 15/16 1.91 25/8 15/8

×159 46.7 15.0 15 0.745 3/4 3/8 15.6 155/8 1.19 13/16 1.79 21/2 19/16

×145 42.7 14.8 143/4 0.680 11/16 3/8 15.5 151/2 1.09 11/16 1.69 23/8 19/16
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W16 – W14
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100 5.29 24.3 1490 175 7.10 198 186 35.7 2.51 54.9 2.92 16.0 7.73 11900
89 5.92 27.0 1300 155 7.05 175 163 31.4 2.49 48.1 2.88 15.9 5.45 10200
77 6.77 31.2 1110 134 7.00 150 138 26.9 2.47 41.1 2.85 15.8 3.57 8590
67 7.70 35.9 954 117 6.96 130 119 23.2 2.46 35.5 2.82 15.7 2.39 7300

57 4.98 33.0 758 92.2 6.72 105 43.1 12.1 1.60 18.9 1.92 15.7 2.22 2660
50 5.61 37.4 659 81.0 6.68 92.0 37.2 10.5 1.59 16.3 1.89 15.6 1.52 2270
45 6.23 41.1 586 72.7 6.65 82.3 32.8 9.34 1.57 14.5 1.88 15.6 1.11 1990
40 6.93 46.5 518 64.7 6.63 73.0 28.9 8.25 1.57 12.7 1.86 15.5 0.794 1730
36 8.12 48.1 448 56.5 6.51 64.0 24.5 7.00 1.52 10.8 1.83 15.4 0.545 1460

31 6.28 51.6 375 47.2 6.41 54.0 12.4 4.49 1.17 7.03 1.42 15.4 0.461 739
26 7.97 56.8 301 38.4 6.26 44.2 9.59 3.49 1.12 5.48 1.38 15.3 0.262 565

730 1.82 3.71 14300 1280 8.17 1660 4720 527 4.69 816 5.68 17.5 1450 362000
665 1.95 4.03 12400 1150 7.98 1480 4170 472 4.62 730 5.57 17.1 1120 305000
605 2.09 4.39 10800 1040 7.80 1320 3680 423 4.55 652 5.46 16.8 869 258000
550 2.25 4.79 9430 931 7.63 1180 3250 378 4.49 583 5.36 16.4 669 219000
500 2.43 5.21 8210 838 7.48 1050 2880 339 4.43 522 5.26 16.1 514 187000
455 2.62 5.66 7190 756 7.33 936 2560 304 4.38 468 5.17 15.8 395 160000
426 2.75 6.08 6600 706 7.26 869 2360 283 4.34 434 5.11 15.6 331 144000
398 2.92 6.44 6000 656 7.16 801 2170 262 4.31 402 5.06 15.4 273 129000
370 3.10 6.89 5440 607 7.07 736 1990 241 4.27 370 5.00 15.3 222 116000
342 3.31 7.41 4900 558 6.98 672 1810 221 4.24 338 4.94 15.1 178 103000
311 3.59 8.09 4330 506 6.88 603 1610 199 4.20 304 4.87 14.9 136 89100
283 3.89 8.84 3840 459 6.79 542 1440 179 4.17 274 4.81 14.7 104 77700
257 4.23 9.71 3400 415 6.71 487 1290 161 4.13 246 4.75 14.5 79.1 67800
233 4.62 10.7 3010 375 6.63 436 1150 145 4.10 221 4.69 14.3 59.5 59000
211 5.06 11.6 2660 338 6.55 390 1030 130 4.07 198 4.64 14.2 44.6 51500
193 5.45 12.8 2400 310 6.50 355 931 119 4.05 180 4.59 14.0 34.8 45900
176 5.97 13.7 2140 281 6.43 320 838 107 4.02 163 4.55 13.9 26.5 40500
159 6.54 15.3 1900 254 6.38 287 748 96.2 4.00 146 4.51 13.8 19.7 35600
145 7.11 16.8 1710 232 6.33 260 677 87.3 3.98 133 4.47 13.7 15.2 31700
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Table 1–1 (continued)

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
f Shape exceeds compact limit for flexure with Fy = 50 ksi.
g The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section

to ensure compatibility.
h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.

W14×132 38.8 14.7 145/8 0.645 5/8 5/16 14.7 143/4 1.03 1 1.63 25/16 19/16 10 51/2

×120 35.3 14.5 141/2 0.590 9/16 5/16 14.7 145/8 0.940 15/16 1.54 21/4 11/2

×109 32.0 14.3 143/8 0.525 1/2 1/4 14.6 145/8 0.860 7/8 1.46 23/16 11/2

×99f 29.1 14.2 141/8 0.485 1/2 1/4 14.6 145/8 0.780 3/4 1.38 21/16 17/16

×90f 26.5 14.0 14 0.440 7/16 1/4 14.5 141/2 0.710 11/16 1.31 2 17/16

W14×82 24.0 14.3 141/4 0.510 1/2 1/4 10.1 101/8 0.855 7/8 1.45 111/16 11/16 107/8 51/2

×74 21.8 14.2 141/8 0.450 7/16 1/4 10.1 101/8 0.785 13/16 1.38 15/8 11/16

×68 20.0 14.0 14 0.415 7/16 1/4 10.0 10 0.720 3/4 1.31 19/16 11/16

×61 17.9 13.9 137/8 0.375 3/8 3/16 10.0 10 0.645 5/8 1.24 11/2 1

W14×53 15.6 13.9 137/8 0.370 3/8 3/16 8.06 8 0.660 11/16 1.25 11/2 1 107/8 51/2

×48 14.1 13.8 133/4 0.340 5/16 3/16 8.03 8 0.595 5/8 1.19 17/16 1
×43c 12.6 13.7 135/8 0.305 5/16 3/16 8.00 8 0.530 1/2 1.12 13/8 1

W14×38c 11.2 14.1 141/8 0.310 5/16 3/16 6.77 63/4 0.515 1/2 0.915 11/4 13/16 115/8 31/2g

×34c 10.0 14.0 14 0.285 5/16 3/16 6.75 63/4 0.455 7/16 0.855 13/16 3/4 31/2

×30c 8.85 13.8 137/8 0.270 1/4 1/8 6.73 63/4 0.385 3/8 0.785 11/8 3/4 31/2

W14×26c 7.69 13.9 137/8 0.255 1/4 1/8 5.03 5 0.420 7/16 0.820 11/8 3/4 115/8 23/4g

×22c 6.49 13.7 133/4 0.230 1/4 1/8 5.00 5 0.335 5/16 0.735 11/16 3/4 115/8 23/4g

W12×336h 98.8 16.8 167/8 1.78 13/4 7/8 13.4 133/8 2.96 215/16 3.55 37/8 111/16 91/8 51/2

×305h 89.6 16.3 163/8 1.63 15/8 13/16 13.2 131/4 2.71 211/16 3.30 35/8 15/8

×279h 81.9 15.9 157/8 1.53 11/2 3/4 13.1 131/8 2.47 21/2 3.07 33/8 15/8

×252h 74.0 15.4 153/8 1.40 13/8 11/16 13.0 13 2.25 21/4 2.85 31/8 11/2

×230h 67.7 15.1 15 1.29 15/16 11/16 12.9 127/8 2.07 21/16 2.67 215/16 11/2

×210 61.8 14.7 143/4 1.18 13/16 5/8 12.8 123/4 1.90 17/8 2.50 213/16 17/16

×190 55.8 14.4 143/8 1.06 11/16 9/16 12.7 125/8 1.74 13/4 2.33 25/8 13/8

×170 50.0 14.0 14 0.960 15/16 1/2 12.6 125/8 1.56 19/16 2.16 27/16 15/16

×152 44.7 13.7 133/4 0.870 7/8 7/16 12.5 121/2 1.40 13/8 2.00 25/16 11/4

×136 39.9 13.4 133/8 0.790 13/16 7/16 12.4 123/8 1.25 11/4 1.85 21/8 11/4

×120 35.3 13.1 131/8 0.710 11/16 3/8 12.3 123/8 1.11 11/8 1.70 2 13/16

×106 31.2 12.9 127/8 0.610 5/8 5/16 12.2 121/4 0.990 1 1.59 17/8 11/8

×96 28.2 12.7 123/4 0.550 9/16 5/16 12.2 121/8 0.900 7/8 1.50 113/16 11/8

×87 25.6 12.5 121/2 0.515 1/2 1/4 12.1 121/8 0.810 13/16 1.41 111/16 11/16

×79 23.2 12.4 123/8 0.470 1/2 1/4 12.1 121/8 0.735 3/4 1.33 15/8 11/16

×72 21.1 12.3 121/4 0.430 7/16 1/4 12.0 12 0.670 11/16 1.27 19/16 11/16

×65f 19.1 12.1 121/8 0.390 3/8 3/16 12.0 12 0.605 5/8 1.20 11/2 1
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W14 – W12
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132 7.15 17.7 1530 209 6.28 234 548 74.5 3.76 113 4.23 13.6 12.3 25500
120 7.80 19.3 1380 190 6.24 212 495 67.5 3.74 102 4.20 13.5 9.37 22700
109 8.49 21.7 1240 173 6.22 192 447 61.2 3.73 92.7 4.17 13.5 7.12 20200
99 9.34 23.5 1110 157 6.17 173 402 55.2 3.71 83.6 4.14 13.4 5.37 18000
90 10.2 25.9 999 143 6.14 157 362 49.9 3.70 75.6 4.11 13.3 4.06 16000

82 5.92 22.4 881 123 6.05 139 148 29.3 2.48 44.8 2.85 13.5 5.07 6710
74 6.41 25.4 795 112 6.04 126 134 26.6 2.48 40.5 2.82 13.4 3.87 5990
68 6.97 27.5 722 103 6.01 115 121 24.2 2.46 36.9 2.80 13.3 3.01 5380
61 7.75 30.4 640 92.1 5.98 102 107 21.5 2.45 32.8 2.78 13.2 2.19 4710

53 6.11 30.9 541 77.8 5.89 87.1 57.7 14.3 1.92 22.0 2.22 13.3 1.94 2540
48 6.75 33.6 484 70.2 5.85 78.4 51.4 12.8 1.91 19.6 2.20 13.2 1.45 2240
43 7.54 37.4 428 62.6 5.82 69.6 45.2 11.3 1.89 17.3 2.18 13.1 1.05 1950

38 6.57 39.6 385 54.6 5.87 61.5 26.7 7.88 1.55 12.1 1.82 13.6 0.798 1230
34 7.41 43.1 340 48.6 5.83 54.6 23.3 6.91 1.53 10.6 1.80 13.5 0.569 1070
30 8.74 45.4 291 42.0 5.73 47.3 19.6 5.82 1.49 8.99 1.77 13.5 0.380 887

26 5.98 48.1 245 35.3 5.65 40.2 8.91 3.55 1.08 5.54 1.31 13.5 0.358 405
22 7.46 53.3 199 29.0 5.54 33.2 7.00 2.80 1.04 4.39 1.27 13.4 0.208 314

336 2.26 5.47 4060 483 6.41 603 1190 177 3.47 274 4.13 13.9 243 57000
305 2.45 5.98 3550 435 6.29 537 1050 159 3.42 244 4.05 13.6 185 48600
279 2.66 6.35 3110 393 6.16 481 937 143 3.38 220 4.00 13.4 143 42000
252 2.89 6.96 2720 353 6.06 428 828 127 3.34 196 3.93 13.2 108 35800
230 3.11 7.56 2420 321 5.97 386 742 115 3.31 177 3.87 13.0 83.8 31200
210 3.37 8.23 2140 292 5.89 348 664 104 3.28 159 3.82 12.8 64.7 27200
190 3.65 9.16 1890 263 5.82 311 589 93.0 3.25 143 3.76 12.6 48.8 23600
170 4.03 10.1 1650 235 5.74 275 517 82.3 3.22 126 3.71 12.5 35.6 20100
152 4.46 11.2 1430 209 5.66 243 454 72.8 3.19 111 3.66 12.3 25.8 17200
136 4.96 12.3 1240 186 5.58 214 398 64.2 3.16 98.0 3.61 12.2 18.5 14700
120 5.57 13.7 1070 163 5.51 186 345 56.0 3.13 85.4 3.56 12.0 12.9 12400
106 6.17 15.9 933 145 5.47 164 301 49.3 3.11 75.1 3.52 11.9 9.13 10700
96 6.76 17.7 833 131 5.44 147 270 44.4 3.09 67.5 3.49 11.8 6.85 9410
87 7.48 18.9 740 118 5.38 132 241 39.7 3.07 60.4 3.46 11.7 5.10 8270
79 8.22 20.7 662 107 5.34 119 216 35.8 3.05 54.3 3.43 11.6 3.84 7330
72 8.99 22.6 597 97.4 5.31 108 195 32.4 3.04 49.2 3.40 11.6 2.93 6540
65 9.92 24.9 533 87.9 5.28 96.8 174 29.1 3.02 44.1 3.38 11.5 2.18 5780
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Table 1–1 (continued)

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
f Shape exceeds compact limit for flexure with Fy = 50 ksi.
g The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section

to ensure compatibility.
v Shape does not meet the h/tw limit for shear in Specification Section G2.1a with Fy = 50 ksi.

W12×58 17.0 12.2 121/4 0.360 3/8 3/16 10.0 10 0.640 5/8 1.24 11/2 15/16 91/4 51/2

×53 15.6 12.1 12 0.345 3/8 3/16 10.0 10 0.575 9/16 1.18 13/8 15/16 91/4 51/2

W12×50 14.6 12.2 121/4 0.370 3/8 3/16 8.08 81/8 0.640 5/8 1.14 11/2 15/16 91/4 51/2

×45 13.1 12.1 12 0.335 5/16 3/16 8.05 8 0.575 9/16 1.08 13/8 15/16

×40 11.7 11.9 12 0.295 5/16 3/16 8.01 8 0.515 1/2 1.02 13/8 7/8

W12×35c 10.3 12.5 121/2 0.300 5/16 3/16 6.56 61/2 0.520 1/2 0.820 13/16 3/4 101/8 31/2

×30c 8.79 12.3 123/8 0.260 1/4 1/8 6.52 61/2 0.440 7/16 0.740 11/8 3/4

×26c 7.65 12.2 121/4 0.230 1/4 1/8 6.49 61/2 0.380 3/8 0.680 11/16 3/4

W12×22c 6.48 12.3 121/4 0.260 1/4 1/8 4.03 4 0.425 7/16 0.725 15/16 5/8 103/8 21/4g

×19c 5.57 12.2 121/8 0.235 1/4 1/8 4.01 4 0.350 3/8 0.650 7/8 9/16

×16c 4.71 12.0 12 0.220 1/4 1/8 3.99 4 0.265 1/4 0.565 13/16 9/16

×14c,v 4.16 11.9 117/8 0.200 3/16 1/8 3.97 4 0.225 1/4 0.525 3/4 9/16

W10×112 32.9 11.4 113/8 0.755 3/4 3/8 10.4 103/8 1.25 11/4 1.75 115/16 1 71/2 51/2

×100 29.4 11.1 111/8 0.680 11/16 3/8 10.3 103/8 1.12 11/8 1.62 113/16 1
×88 25.9 10.8 107/8 0.605 5/8 5/16 10.3 101/4 0.990 1 1.49 111/16 15/16

×77 22.6 10.6 105/8 0.530 1/2 1/4 10.2 101/4 0.870 7/8 1.37 19/16 7/8

×68 20.0 10.4 103/8 0.470 1/2 1/4 10.1 101/8 0.770 3/4 1.27 17/16 7/8

×60 17.6 10.2 101/4 0.420 7/16 1/4 10.1 101/8 0.680 11/16 1.18 13/8 13/16

×54 15.8 10.1 101/8 0.370 3/8 3/16 10.0 10 0.615 5/8 1.12 15/16 13/16

×49 14.4 10.0 10 0.340 5/16 3/16 10.0 10 0.560 9/16 1.06 11/4 13/16

W10×45 13.3 10.1 101/8 0.350 3/8 3/16 8.02 8 0.620 5/8 1.12 15/16 13/16 71/2 51/2

×39 11.5 9.92 97/8 0.315 5/16 3/16 7.99 8 0.530 1/2 1.03 13/16 13/16

×33 9.71 9.73 93/4 0.290 5/16 3/16 7.96 8 0.435 7/16 0.935 11/8 3/4

W10×30 8.84 10.5 101/2 0.300 5/16 3/16 5.81 53/4 0.510 1/2 0.810 11/8 11/16 81/4 23/4g

×26 7.61 10.3 103/8 0.260 1/4 1/8 5.77 53/4 0.440 7/16 0.740 11/16 11/16

×22c 6.49 10.2 101/8 0.240 1/4 1/8 5.75 53/4 0.360 3/8 0.660 15/16 5/8

W10×19 5.62 10.2 101/4 0.250 1/4 1/8 4.02 4 0.395 3/8 0.695 15/16 5/8 83/8 21/4g

×17c 4.99 10.1 101/8 0.240 1/4 1/8 4.01 4 0.330 5/16 0.630 7/8 9/16

×15c 4.41 10.0 10 0.230 1/4 1/8 4.00 4 0.270 1/4 0.570 13/16 9/16

×12c,f 3.54 9.87 97/8 0.190 3/16 1/8 3.96 4 0.210 3/16 0.510 3/4 9/16
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W12 – W10
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58 7.82 27.0 475 78.0 5.28 86.4 107 21.4 2.51 32.5 2.82 11.6 2.10 3570
53 8.69 28.1 425 70.6 5.23 77.9 95.8 19.2 2.48 29.1 2.79 11.5 1.58 3160

50 6.31 26.8 391 64.2 5.18 71.9 56.3 13.9 1.96 21.3 2.25 11.6 1.71 1880
45 7.00 29.6 348 57.7 5.15 64.2 50.0 12.4 1.95 19.0 2.23 11.5 1.26 1650
40 7.77 33.6 307 51.5 5.13 57.0 44.1 11.0 1.94 16.8 2.21 11.4 0.906 1440

35 6.31 36.2 285 45.6 5.25 51.2 24.5 7.47 1.54 11.5 1.79 12.0 0.741 879
30 7.41 41.8 238 38.6 5.21 43.1 20.3 6.24 1.52 9.56 1.77 11.9 0.457 720
26 8.54 47.2 204 33.4 5.17 37.2 17.3 5.34 1.51 8.17 1.75 11.8 0.300 607

22 4.74 41.8 156 25.4 4.91 29.3 4.66 2.31 0.848 3.66 1.04 11.9 0.293 164
19 5.72 46.2 130 21.3 4.82 24.7 3.76 1.88 0.822 2.98 1.02 11.8 0.180 131
16 7.53 49.4 103 17.1 4.67 20.1 2.82 1.41 0.773 2.26 0.982 11.7 0.103 96.9
14 8.82 54.3 88.6 14.9 4.62 17.4 2.36 1.19 0.753 1.90 0.962 11.7 0.0704 80.4

112 4.17 10.4 716 126 4.66 147 236 45.3 2.68 69.2 3.07 10.1 15.1 6020
100 4.62 11.6 623 112 4.60 130 207 40.0 2.65 61.0 3.03 10.0 10.9 5150
88 5.18 13.0 534 98.5 4.54 113 179 34.8 2.63 53.1 2.99 9.85 7.53 4330
77 5.86 14.8 455 85.9 4.49 97.6 154 30.1 2.60 45.9 2.95 9.73 5.11 3630
68 6.58 16.7 394 75.7 4.44 85.3 134 26.4 2.59 40.1 2.91 9.63 3.56 3100
60 7.41 18.7 341 66.7 4.39 74.6 116 23.0 2.57 35.0 2.88 9.54 2.48 2640
54 8.15 21.2 303 60.0 4.37 66.6 103 20.6 2.56 31.3 2.86 9.48 1.82 2320
49 8.93 23.1 272 54.6 4.35 60.4 93.4 18.7 2.54 28.3 2.84 9.42 1.39 2070

45 6.47 22.5 248 49.1 4.32 54.9 53.4 13.3 2.01 20.3 2.27 9.48 1.51 1200
39 7.53 25.0 209 42.1 4.27 46.8 45.0 11.3 1.98 17.2 2.24 9.39 0.976 992
33 9.15 27.1 171 35.0 4.19 38.8 36.6 9.20 1.94 14.0 2.20 9.30 0.583 791

30 5.70 29.5 170 32.4 4.38 36.6 16.7 5.75 1.37 8.84 1.60 10.0 0.622 414
26 6.56 34.0 144 27.9 4.35 31.3 14.1 4.89 1.36 7.50 1.58 9.89 0.402 345
22 7.99 36.9 118 23.2 4.27 26.0 11.4 3.97 1.33 6.10 1.55 9.81 0.239 275

19 5.09 35.4 96.3 18.8 4.14 21.6 4.29 2.14 0.874 3.35 1.06 9.85 0.233 104
17 6.08 36.9 81.9 16.2 4.05 18.7 3.56 1.78 0.845 2.80 1.04 9.78 0.156 85.1
15 7.41 38.5 68.9 13.8 3.95 16.0 2.89 1.45 0.810 2.30 1.01 9.72 0.104 68.3
12 9.43 46.6 53.8 10.9 3.90 12.6 2.18 1.10 0.785 1.74 0.983 9.66 0.0547 50.9
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Table 1–1 (continued)

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
f Shape exceeds compact limit for flexure with Fy = 50 ksi.
g The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section

to ensure compatibility.

W8×67 19.7 9.00 9 0.570 9/16 5/16 8.28 81/4 0.935 15/16 1.33 15/8 15/16 53/4 51/2

×58 17.1 8.75 83/4 0.510 1/2 1/4 8.22 81/4 0.810 13/16 1.20 11/2 7/8

×48 14.1 8.50 81/2 0.400 3/8 3/16 8.11 81/8 0.685 11/16 1.08 13/8 13/16

×40 11.7 8.25 81/4 0.360 3/8 3/16 8.07 81/8 0.560 9/16 0.954 11/4 13/16

×35 10.3 8.12 81/8 0.310 5/16 3/16 8.02 8 0.495 1/2 0.889 13/16 13/16

×31f 9.12 8.00 8 0.285 5/16 3/16 8.00 8 0.435 7/16 0.829 11/8 3/4

W8×28 8.24 8.06 8 0.285 5/16 3/16 6.54 61/2 0.465 7/16 0.859 15/16 5/8 61/8 4
×24 7.08 7.93 77/8 0.245 1/4 1/8 6.50 61/2 0.400 3/8 0.794 7/8 9/16 61/8 4

W8×21 6.16 8.28 81/4 0.250 1/4 1/8 5.27 51/4 0.400 3/8 0.700 7/8 9/16 61/2 23/4g

×18 5.26 8.14 81/8 0.230 1/4 1/8 5.25 51/4 0.330 5/16 0.630 13/16 9/16 61/2 23/4g

W8×15 4.44 8.11 81/8 0.245 1/4 1/8 4.02 4 0.315 5/16 0.615 13/16 9/16 61/2 21/4g

×13 3.84 7.99 8 0.230 1/4 1/8 4.00 4 0.255 1/4 0.555 3/4 9/16

×10c,f 2.96 7.89 77/8 0.170 3/16 1/8 3.94 4 0.205 3/16 0.505 11/16 1/2

W6×25 7.34 6.38 63/8 0.320 5/16 3/16 6.08 61/8 0.455 7/16 0.705 15/16 9/16 41/2 31/2

×20 5.87 6.20 61/4 0.260 1/4 1/8 6.02 6 0.365 3/8 0.615 7/8 9/16

×15f 4.43 5.99 6 0.230 1/4 1/8 5.99 6 0.260 1/4 0.510 3/4 9/16

W6×16 4.74 6.28 61/4 0.260 1/4 1/8 4.03 4 0.405 3/8 0.655 7/8 9/16 41/2 21/4g

×12 3.55 6.03 6 0.230 1/4 1/8 4.00 4 0.280 1/4 0.530 3/4 9/16

×9f 2.68 5.90 57/8 0.170 3/16 1/8 3.94 4 0.215 3/16 0.465 11/16 1/2

×8.5f 2.52 5.83 57/8 0.170 3/16 1/8 3.94 4 0.195 3/16 0.445 11/16 1/2

W5×19 5.56 5.15 51/8 0.270 1/4 1/8 5.03 5 0.430 7/16 0.730 13/16 7/16 31/2 23/4g

×16 4.71 5.01 5 0.240 1/4 1/8 5.00 5 0.360 3/8 0.660 3/4 7/16 31/2 23/4g

W4×13 3.83 4.16 41/8 0.280 1/4 1/8 4.06 4 0.345 3/8 0.595 3/4 1/2 25/8 21/4g
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W8 – W4
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67 4.43 11.1 272 60.4 3.72 70.1 88.6 21.4 2.12 32.7 2.43 8.07 5.05 1440
58 5.07 12.4 228 52.0 3.65 59.8 75.1 18.3 2.10 27.9 2.39 7.94 3.33 1180
48 5.92 15.9 184 43.2 3.61 49.0 60.9 15.0 2.08 22.9 2.35 7.82 1.96 931
40 7.21 17.6 146 35.5 3.53 39.8 49.1 12.2 2.04 18.5 2.31 7.69 1.12 726
35 8.10 20.5 127 31.2 3.51 34.7 42.6 10.6 2.03 16.1 2.28 7.63 0.769 619
31 9.19 22.3 110 27.5 3.47 30.4 37.1 9.27 2.02 14.1 2.26 7.57 0.536 530

28 7.03 22.3 98.0 24.3 3.45 27.2 21.7 6.63 1.62 10.1 1.84 7.60 0.537 312
24 8.12 25.9 82.7 20.9 3.42 23.1 18.3 5.63 1.61 8.57 1.82 7.53 0.346 259

21 6.59 27.5 75.3 18.2 3.49 20.4 9.77 3.71 1.26 5.69 1.46 7.88 0.282 152
18 7.95 29.9 61.9 15.2 3.43 17.0 7.97 3.04 1.23 4.66 1.43 7.81 0.172 122

15 6.37 28.1 48.0 11.8 3.29 13.6 3.41 1.70 0.876 2.67 1.06 7.80 0.137 51.8
13 7.84 29.9 39.6 9.91 3.21 11.4 2.73 1.37 0.843 2.15 1.03 7.74 0.0871 40.8
10 9.61 40.5 30.8 7.81 3.22 8.87 2.09 1.06 0.841 1.66 1.01 7.69 0.0426 30.9

25 6.68 15.5 53.4 16.7 2.70 18.9 17.1 5.61 1.52 8.56 1.74 5.93 0.461 150
20 8.25 19.1 41.4 13.4 2.66 14.9 13.3 4.41 1.50 6.72 1.70 5.84 0.240 113
15 11.5 21.6 29.1 9.72 2.56 10.8 9.32 3.11 1.45 4.75 1.66 5.73 0.101 76.5

16 4.98 19.1 32.1 10.2 2.60 11.7 4.43 2.20 0.967 3.39 1.13 5.88 0.223 38.2
12 7.14 21.6 22.1 7.31 2.49 8.30 2.99 1.50 0.918 2.32 1.08 5.75 0.0903 24.7
9 9.16 29.2 16.4 5.56 2.47 6.23 2.20 1.11 0.905 1.72 1.06 5.69 0.0405 17.7

8.5 10.1 29.1 14.9 5.10 2.43 5.73 1.99 1.01 0.890 1.56 1.05 5.64 0.0333 15.8

19 5.85 13.7 26.3 10.2 2.17 11.6 9.13 3.63 1.28 5.53 1.45 4.72 0.316 50.9
16 6.94 15.4 21.4 8.55 2.13 9.63 7.51 3.00 1.26 4.58 1.43 4.65 0.192 40.6

13 5.88 10.6 11.3 5.46 1.72 6.28 3.86 1.90 1.00 2.92 1.16 3.82 0.151 14.0
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Table 1–11 

Rectangular HSS
Dimensions and Properties

Shape

Design
Wall

Thick-
ness, t

Nominal 
Wt.

Area,
A I S r

Axis X-X

in. lb/ft in.2

b/t h/t

in.4 in.3 in. in.3

Z

Note: For compactness criteria, refer to the end of Table 1–12.
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HSS14×10×5/8 0.581 93.10 25.7 14.2 21.1 687 98.2 5.17 120
×1/2 0.465 75.94 20.9 18.5 27.1 573 81.8 5.23 98.8
×3/8 0.349 58.07 16.0 25.7 37.1 447 63.9 5.29 76.3
×5/16 0.291 48.87 13.4 31.4 45.1 380 54.3 5.32 64.6
×1/4 0.233 39.48 10.8 39.9 57.1 310 44.3 5.35 52.4

HSS14×6×5/8 0.581 76.09 21.0 7.33 21.1 478 68.3 4.77 88.7
×1/2 0.465 62.33 17.2 9.90 27.1 402 57.4 4.84 73.6
×3/8 0.349 47.86 13.2 14.2 37.1 317 45.3 4.91 57.3
×5/16 0.291 40.35 11.1 17.6 45.1 271 38.7 4.94 48.6
×1/4 0.233 32.66 8.96 22.8 57.1 222 31.7 4.98 39.6
×3/16 0.174 24.66 6.76 31.5 77.5 170 24.3 5.01 30.1

HSS14×4×5/8 0.581 67.59 18.7 3.88 21.1 373 53.3 4.47 73.1
×1/2 0.465 55.53 15.3 5.60 27.1 317 45.3 4.55 61.0
×3/8 0.349 42.75 11.8 8.46 37.1 252 36.0 4.63 47.8
×5/16 0.291 36.09 9.92 10.7 45.1 216 30.9 4.67 40.6
×1/4 0.233 29.25 8.03 14.2 57.1 178 25.4 4.71 33.2
×3/16 0.174 22.12 6.06 20.0 77.5 137 19.5 4.74 25.3

HSS12×10×1/2 0.465 69.14 19.0 18.5 22.8 395 65.9 4.56 78.8
×3/8 0.349 52.93 14.6 25.7 31.4 310 51.6 4.61 61.1
×5/16 0.291 44.62 12.2 31.4 38.2 264 44.0 4.64 51.7
×1/4 0.233 36.00 9.90 39.9 48.5 216 36.0 4.67 42.1

HSS12×8×5/8 0.581 76.13 21.0 10.8 17.7 397 66.1 4.34 82.1
×1/2 0.465 62.33 17.2 14.2 22.8 333 55.6 4.41 68.1
×3/8 0.349 47.82 13.2 19.9 31.4 262 43.7 4.47 53.0
×5/16 0.291 40.36 11.1 24.5 38.2 224 37.4 4.50 44.9
×1/4 0.233 32.60 8.96 31.3 48.5 184 30.6 4.53 36.6
×3/16 0.174 24.78 6.76 43.0 66.0 140 23.4 4.56 27.8

HSS12×6×5/8 0.581 67.62 18.7 7.33 17.7 321 53.4 4.14 68.8
×1/2 0.465 55.53 15.3 9.90 22.8 271 45.2 4.21 57.4
×3/8 0.349 42.72 11.8 14.2 31.4 215 35.9 4.28 44.8
×5/16 0.291 36.10 9.92 17.6 38.2 184 30.7 4.31 38.1
×1/4 0.233 29.19 8.03 22.8 48.5 151 25.2 4.34 31.1
×3/16 0.174 22.22 6.06 31.5 66.0 116 19.4 4.38 23.7
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Table 1–11 (continued)

Rectangular HSS
Dimensions and Properties

Shape I S r

noisroTY-YsixA
Surface

Area

in.4 in.3 in. in.3 ft 2/ft

Z J

in.4 in.3

C

—Flat depth or width is too small to establish a workable flat.

HSS14–HSS12

Depth

Workable Flat

Width

Copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.

HSS14×10×5/8 407 81.5 3.98 95.1 113/16 73/16 832 146 3.83
×1/2 341 68.1 4.04 78.5 113/4 73/4 685 120 3.87
×3/8 267 53.4 4.09 60.7 125/16 85/16 528 91.8 3.90
×5/16 227 45.5 4.12 51.4 129/16 89/16 446 77.4 3.92
×1/4 186 37.2 4.14 41.8 127/8 87/8 362 62.6 3.93

HSS14×6×5/8 124 41.2 2.43 48.4 113/16 33/16 334 83.7 3.17
×1/2 105 35.1 2.48 40.4 113/4 33/4 279 69.3 3.20
×3/8 84.1 28.0 2.53 31.6 125/16 45/16 219 53.7 3.23
×5/16 72.3 24.1 2.55 26.9 129/16 49/16 186 45.5 3.25
×1/4 59.6 19.9 2.58 22.0 127/8 47/8 152 36.9 3.27
×3/16 45.9 15.3 2.61 16.7 133/16 53/16 116 28.0 3.28

HSS14×4×5/8 47.2 23.6 1.59 28.5 111/4 — 148 52.6 2.83
×1/2 41.2 20.6 1.64 24.1 113/4 — 127 44.1 2.87
×3/8 33.6 16.8 1.69 19.1 121/4 21/4 102 34.6 2.90
×5/16 29.2 14.6 1.72 16.4 125/8 25/8 87.7 29.5 2.92
×1/4 24.4 12.2 1.74 13.5 127/8 27/8 72.4 24.1 2.93
×3/16 19.0 9.48 1.77 10.3 131/8 31/8 55.8 18.4 2.95

HSS12×10×1/2 298 59.7 3.96 69.6 93/4 73/4 545 102 3.53
×3/8 234 46.9 4.01 54.0 105/16 85/16 421 78.3 3.57
×5/16 200 40.0 4.04 45.7 109/16 89/16 356 66.1 3.58
×1/4 164 32.7 4.07 37.2 107/8 87/8 289 53.5 3.60

HSS12×8×5/8 210 52.5 3.16 61.9 93/16 53/16 454 97.7 3.17
×1/2 178 44.4 3.21 51.5 93/4 53/4 377 80.4 3.20
×3/8 140 35.1 3.27 40.1 105/16 65/16 293 62.1 3.23
×5/16 120 30.1 3.29 34.1 109/16 69/16 248 52.4 3.25
×1/4 98.8 24.7 3.32 27.8 107/8 67/8 202 42.5 3.27
×3/16 75.7 18.9 3.35 21.1 111/8 71/8 153 32.2 3.28

HSS12×6×5/8 107 35.5 2.39 42.1 93/16 33/16 271 71.1 2.83
×1/2 91.1 30.4 2.44 35.2 93/4 33/4 227 59.0 2.87
×3/8 72.9 24.3 2.49 27.7 105/16 45/16 178 45.8 2.90
×5/16 62.8 20.9 2.52 23.6 109/16 49/16 152 38.8 2.92
×1/4 51.9 17.3 2.54 19.3 107/8 47/8 124 31.6 2.93
×3/16 40.0 13.3 2.57 14.7 113/16 53/16 94.6 24.0 2.95

in. in.
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Table 1–11 (continued)

Rectangular HSS
Dimensions and Properties

Shape

Design
Wall

Thick-
ness, t

Nominal 
Wt.

Area,
A I S r

Axis X-X

in. lb/ft in.2

b/t h/t

in.4 in.3 in. in.3

Z

Note: For compactness criteria, refer to the end of Table 1–12.

Copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.

HSS12×4×5/8 0.581 59.11 16.4 3.88 17.7 245 40.8 3.87 55.5
×1/2 0.465 48.72 13.5 5.60 22.8 210 34.9 3.95 46.7
×3/8 0.349 37.61 10.4 8.46 31.4 168 28.0 4.02 36.7
×5/16 0.291 31.84 8.76 10.7 38.2 144 24.1 4.06 31.3
×1/4 0.233 25.79 7.10 14.2 48.5 119 19.9 4.10 25.6
×3/16 0.174 19.66 5.37 20.0 66.0 91.8 15.3 4.13 19.6

HSS12×31/2×3/8 0.349 36.34 10.0 7.03 31.4 156 26.0 3.94 34.7
×5/16 0.291 30.77 8.46 9.03 38.2 134 22.4 3.98 29.6

HSS12×3×5/16 0.291 29.71 8.17 7.31 38.2 124 20.7 3.90 27.9
×1/4 0.233 24.09 6.63 9.88 48.5 103 17.2 3.94 22.9
×3/16 0.174 18.38 5.02 14.2 66.0 79.6 13.3 3.98 17.5

HSS12×2×5/16 0.291 27.58 7.59 3.87 38.2 104 17.4 3.71 24.5
×1/4 0.233 22.39 6.17 5.58 48.5 86.9 14.5 3.75 20.1
×3/16 0.174 17.10 4.67 8.49 66.0 67.4 11.2 3.80 15.5

HSS10×8×5/8 0.581 67.62 18.7 10.8 14.2 253 50.5 3.68 62.2
×1/2 0.465 55.53 15.3 14.2 18.5 214 42.7 3.73 51.9
×3/8 0.349 42.72 11.8 19.9 25.7 169 33.9 3.79 40.5
×5/16 0.291 36.10 9.92 24.5 31.4 145 29.0 3.82 34.4
×1/4 0.233 29.19 8.03 31.3 39.9 119 23.8 3.85 28.1
×3/16 0.174 22.22 6.06 43.0 54.5 91.4 18.3 3.88 21.4

HSS10×6×5/8 0.581 59.11 16.4 7.33 14.2 201 40.2 3.50 51.3
×1/2 0.465 48.72 13.5 9.90 18.5 171 34.3 3.57 43.0
×3/8 0.349 37.61 10.4 14.2 25.7 137 27.4 3.63 33.8
×5/16 0.291 31.84 8.76 17.6 31.4 118 23.5 3.66 28.8
×1/4 0.233 25.79 7.10 22.8 39.9 96.9 19.4 3.69 23.6
×3/16 0.174 19.66 5.37 31.5 54.5 74.6 14.9 3.73 18.0

HSS10×5×3/8 0.349 35.06 9.67 11.3 25.7 120 24.1 3.53 30.4
×5/16 0.291 29.71 8.17 14.2 31.4 104 20.8 3.56 26.0
×1/4 0.233 24.09 6.63 18.5 39.9 85.8 17.2 3.60 21.3
×3/16 0.174 18.38 5.02 25.7 54.5 66.2 13.2 3.63 16.3
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Table 1–11 (continued)

Rectangular HSS
Dimensions and Properties

Shape I S r

noisroTY-YsixA
Surface

Area

in.4 in.3 in. in.3 ft 2/ft

Z J

in.4 in.3

C

—Flat depth or width is too small to establish a workable flat.

HSS12–HSS10

Depth

Workable Flat

Width

Copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.

HSS12×4×5/8 40.4 20.2 1.57 24.5 93/16 — 122 44.6 2.50
×1/2 35.3 17.7 1.62 20.9 93/4 — 105 37.5 2.53
×3/8 28.9 14.5 1.67 16.6 105/16 25/16 84.1 29.5 2.57
×5/16 25.2 12.6 1.70 14.2 105/8 25/8 72.4 25.2 2.58
×1/4 21.0 10.5 1.72 11.7 107/8 27/8 59.8 20.6 2.60
×3/16 16.4 8.20 1.75 9.00 113/16 33/16 46.1 15.7 2.62

HSS12×31/2×3/8 21.3 12.2 1.46 14.0 105/16 — 64.7 25.5 2.48
×5/16 18.6 10.6 1.48 12.1 105/8 — 56.0 21.8 2.50

HSS12×3×5/16 13.1 8.73 1.27 10.0 105/8 — 41.3 18.4 2.42
×1/4 11.1 7.38 1.29 8.28 107/8 — 34.5 15.1 2.43
×3/16 8.72 5.81 1.32 6.40 113/16 23/16 26.8 11.6 2.45

HSS12×2×5/16 5.10 5.10 0.820 6.05 105/8 — 17.6 11.6 2.25
×1/4 4.41 4.41 0.845 5.08 107/8 — 15.1 9.64 2.27
×3/16 3.55 3.55 0.872 3.97 113/16 — 12.0 7.49 2.28

HSS10×8×5/8 178 44.5 3.09 53.3 73/16 53/16 346 80.4 2.83
×1/2 151 37.8 3.14 44.5 73/4 53/4 288 66.4 2.87
×3/8 120 30.0 3.19 34.8 85/16 65/16 224 51.4 2.90
×5/16 103 25.7 3.22 29.6 85/8 65/8 190 43.5 2.92
×1/4 84.7 21.2 3.25 24.2 87/8 67/8 155 35.3 2.93
×3/16 65.1 16.3 3.28 18.4 93/16 73/16 118 26.7 2.95

HSS10×6×5/8 89.4 29.8 2.34 35.8 73/16 33/16 209 58.6 2.50
×1/2 76.8 25.6 2.39 30.1 73/4 33/4 176 48.7 2.53
×3/8 61.8 20.6 2.44 23.7 85/16 45/16 139 37.9 2.57
×5/16 53.3 17.8 2.47 20.2 85/8 45/8 118 32.2 2.58
×1/4 44.1 14.7 2.49 16.6 87/8 47/8 96.7 26.2 2.60
×3/16 34.1 11.4 2.52 12.7 93/16 53/16 73.8 19.9 2.62

HSS10×5×3/8 40.6 16.2 2.05 18.7 85/16 35/16 100 31.2 2.40
×5/16 35.2 14.1 2.07 16.0 85/8 35/8 86.0 26.5 2.42
×1/4 29.3 11.7 2.10 13.2 87/8 37/8 70.7 21.6 2.43
×3/16 22.7 9.09 2.13 10.1 93/16 43/16 54.1 16.5 2.45

in. in.
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Table 1–11 (continued)

Rectangular HSS
Dimensions and Properties

Shape

Design
Wall

Thick-
ness, t

Nominal 
Wt.

Area,
A I S r

Axis X-X

in. lb/ft in.2

b/t h/t

in.4 in.3 in. in.3

Z

Note: For compactness criteria, refer to the end of Table 1-12.

Copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.

HSS10×4×5/8 0.581 50.60 14.0 3.88 14.2 149 29.9 3.26 40.3
×1/2 0.465 41.91 11.6 5.60 18.5 129 25.8 3.34 34.1
×3/8 0.349 32.51 8.97 8.46 25.7 104 20.8 3.41 27.0
×5/16 0.291 27.58 7.59 10.7 31.4 90.1 18.0 3.44 23.1
×1/4 0.233 22.39 6.17 14.2 39.9 74.7 14.9 3.48 19.0
×3/16 0.174 17.10 4.67 20.0 54.5 57.8 11.6 3.52 14.6
×1/8 0.116 11.55 3.16 31.5 83.2 39.8 7.97 3.55 9.95

HSS10×31/2×1/2 0.465 40.21 11.1 4.53 18.5 118 23.7 3.26 31.9
×3/8 0.349 31.23 8.62 7.03 25.7 96.1 19.2 3.34 25.3
×5/16 0.291 26.51 7.30 9.03 31.4 83.2 16.6 3.38 21.7
×1/4 0.233 21.54 5.93 12.0 39.9 69.1 13.8 3.41 17.9
×3/16 0.174 16.46 4.50 17.1 54.5 53.6 10.7 3.45 13.7
×1/8 0.116 11.13 3.04 27.2 83.2 37.0 7.40 3.49 9.37

HSS10×3×3/8 0.349 29.96 8.27 5.60 25.7 88.0 17.6 3.26 23.7
×5/16 0.291 25.45 7.01 7.31 31.4 76.3 15.3 3.30 20.3
×1/4 0.233 20.69 5.70 9.88 39.9 63.6 12.7 3.34 16.7
×3/16 0.174 15.82 4.32 14.2 54.5 49.4 9.87 3.38 12.8
×1/8 0.116 10.70 2.93 22.9 83.2 34.2 6.83 3.42 8.80

HSS10×2×3/8 0.349 27.41 7.58 2.73 25.7 71.7 14.3 3.08 20.3
×5/16 0.291 23.32 6.43 3.87 31.4 62.6 12.5 3.12 17.5
×1/4 0.233 18.99 5.24 5.58 39.9 52.5 10.5 3.17 14.4
×3/16 0.174 14.54 3.98 8.49 54.5 41.0 8.19 3.21 11.1
×1/8 0.116 9.85 2.70 14.2 83.2 28.5 5.70 3.25 7.65

HSS9×7×5/8 0.581 59.11 16.4 9.05 12.5 174 38.7 3.26 48.3
×1/2 0.465 48.72 13.5 12.1 16.4 149 33.0 3.32 40.5
×3/8 0.349 37.61 10.4 17.1 22.8 119 26.4 3.38 31.8
×5/16 0.291 31.84 8.76 21.1 27.9 102 22.6 3.41 27.1
×1/4 0.233 25.79 7.10 27.0 35.6 84.1 18.7 3.44 22.2
×3/16 0.174 19.66 5.37 37.2 48.7 64.7 14.4 3.47 16.9
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Table 1–11 (continued)

Rectangular HSS
Dimensions and Properties

Shape I S r

noisroTY-YsixA
Surface

Area

in.4 in.3 in. in.3 ft 2/ft

Z J

in.4 in.3

C

—Flat depth or width is too small to establish a workable flat.

HSS10–HSS9

Depth

Workable Flat

Width

Copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.

HSS10×4×5/8 33.5 16.8 1.54 20.6 73/16 — 95.7 36.7 2.17
×1/2 29.5 14.7 1.59 17.6 73/4 — 82.6 31.0 2.20
×3/8 24.3 12.1 1.64 14.0 85/16 25/16 66.5 24.4 2.23
×5/16 21.2 10.6 1.67 12.1 85/8 25/8 57.3 20.9 2.25
×1/4 17.7 8.87 1.70 10.0 87/8 27/8 47.4 17.1 2.27
×3/16 13.9 6.93 1.72 7.66 93/16 33/16 36.5 13.1 2.28
×1/8 9.65 4.83 1.75 5.26 97/16 37/16 25.1 8.90 2.30

HSS10×31/2×1/2 21.4 12.2 1.39 14.7 73/4 — 63.2 26.5 2.12
×3/8 17.8 10.2 1.44 11.8 85/16 — 51.5 21.1 2.15
×5/16 15.6 8.92 1.46 10.2 85/8 — 44.6 18.0 2.17
×1/4 13.1 7.51 1.49 8.45 87/8 — 37.0 14.8 2.18
×3/16 10.3 5.89 1.51 6.52 93/16 211/16 28.6 11.4 2.20
×1/8 7.22 4.12 1.54 4.48 97/16 215/16 19.8 7.75 2.22

HSS10×3×3/8 12.4 8.28 1.22 9.73 85/16 — 37.8 17.7 2.07
×5/16 11.0 7.30 1.25 8.42 85/8 — 33.0 15.2 2.08
×1/4 9.28 6.19 1.28 6.99 87/8 — 27.6 12.5 2.10
×3/16 7.33 4.89 1.30 5.41 93/16 23/16 21.5 9.64 2.12
×1/8 5.16 3.44 1.33 3.74 97/16 27/16 14.9 6.61 2.13

HSS10×2×3/8 4.70 4.70 0.787 5.76 85/16 — 15.9 11.0 1.90
×5/16 4.24 4.24 0.812 5.06 85/8 — 14.2 9.56 1.92
×1/4 3.67 3.67 0.838 4.26 87/8 — 12.2 7.99 1.93
×3/16 2.97 2.97 0.864 3.34 93/16 — 9.74 6.22 1.95
×1/8 2.14 2.14 0.890 2.33 97/16 — 6.90 4.31 1.97

HSS9×7×5/8 117 33.5 2.68 40.5 63/16 43/16 235 62.0 2.50
×1/2 100 28.7 2.73 34.0 63/4 43/4 197 51.5 2.53
×3/8 80.4 23.0 2.78 26.7 75/16 55/16 154 40.0 2.57
×5/16 69.2 19.8 2.81 22.8 75/8 55/8 131 33.9 2.58
×1/4 57.2 16.3 2.84 18.7 77/8 57/8 107 27.6 2.60
×3/16 44.1 12.6 2.87 14.3 83/16 63/16 81.7 20.9 2.62

in. in.
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Table 1–11 (continued)

Rectangular HSS
Dimensions and Properties

Shape

Design
Wall

Thick-
ness, t

Nominal 
Wt.

Area,
A I S r

Axis X-X

in. lb/ft in.2

b/t h/t

in.4 in.3 in. in.3

Z

Note: For compactness criteria, refer to the end of Table 1-12.

Copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.

HSS9×5×5/8 0.581 50.60 14.0 5.61 12.5 133 29.6 3.08 38.5
×1/2 0.465 41.91 11.6 7.75 16.4 115 25.5 3.14 32.5
×3/8 0.349 32.51 8.97 11.3 22.8 92.5 20.5 3.21 25.7
×5/16 0.291 27.58 7.59 14.2 27.9 79.8 17.7 3.24 22.0
×1/4 0.233 22.39 6.17 18.5 35.6 66.1 14.7 3.27 18.1
×3/16 0.174 17.10 4.67 25.7 48.7 51.1 11.4 3.31 13.8

HSS9×3×1/2 0.465 35.11 9.74 3.45 16.4 80.8 18.0 2.88 24.6
×3/8 0.349 27.41 7.58 5.60 22.8 66.3 14.7 2.96 19.7
×5/16 0.291 23.32 6.43 7.31 27.9 57.7 12.8 3.00 16.9
×1/4 0.233 18.99 5.24 9.88 35.6 48.2 10.7 3.04 14.0
×3/16 0.174 14.54 3.98 14.2 48.7 37.6 8.35 3.07 10.8

HSS8×6×5/8 0.581 50.60 14.0 7.33 10.8 114 28.5 2.85 36.1
×1/2 0.465 41.91 11.6 9.90 14.2 98.2 24.6 2.91 30.5
×3/8 0.349 32.51 8.97 14.2 19.9 79.1 19.8 2.97 24.1
×5/16 0.291 27.58 7.59 17.6 24.5 68.3 17.1 3.00 20.6
×1/4 0.233 22.39 6.17 22.8 31.3 56.6 14.2 3.03 16.9
×3/16 0.174 17.10 4.67 31.5 43.0 43.7 10.9 3.06 13.0

HSS8×4×5/8 0.581 42.10 11.7 3.88 10.8 82.0 20.5 2.64 27.4
×1/2 0.465 35.11 9.74 5.60 14.2 71.8 17.9 2.71 23.5
×3/8 0.349 27.41 7.58 8.46 19.9 58.7 14.7 2.78 18.8
×5/16 0.291 23.32 6.43 10.7 24.5 51.0 12.8 2.82 16.1
×1/4 0.233 18.99 5.24 14.2 31.3 42.5 10.6 2.85 13.3
×3/16 0.174 14.54 3.98 20.0 43.0 33.1 8.27 2.88 10.2
×1/8 0.116 9.85 2.70 31.5 66.0 22.9 5.73 2.92 7.02

HSS8×3×1/2 0.465 31.71 8.81 3.45 14.2 58.6 14.6 2.58 20.0
×3/8 0.349 24.85 6.88 5.60 19.9 48.5 12.1 2.65 16.1
×5/16 0.291 21.19 5.85 7.31 24.5 42.4 10.6 2.69 13.9
×1/4 0.233 17.28 4.77 9.88 31.3 35.5 8.88 2.73 11.5
×3/16 0.174 13.26 3.63 14.2 43.0 27.8 6.94 2.77 8.87
×1/8 0.116 9.00 2.46 22.9 66.0 19.3 4.83 2.80 6.11
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Table 1–11 (continued)

Rectangular HSS
Dimensions and Properties

Shape I S r

noisroTY-YsixA
Surface

Area

in.4 in.3 in. in.3 ft 2/ft

Z J

in.4 in.3

C

—Flat depth or width is too small to establish a workable flat.

HSS9–HSS8

Depth

Workable Flat

Width

Copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.

HSS9×5×5/8 52.0 20.8 1.92 25.3 63/16 23/16 128 42.5 2.17
×1/2 45.2 18.1 1.97 21.5 63/4 23/4 109 35.6 2.20
×3/8 36.8 14.7 2.03 17.1 75/16 35/16 86.9 27.9 2.23
×5/16 32.0 12.8 2.05 14.6 75/8 35/8 74.4 23.8 2.25
×1/4 26.6 10.6 2.08 12.0 77/8 37/8 61.2 19.4 2.27
×3/16 20.7 8.28 2.10 9.25 83/16 43/16 46.9 14.8 2.28

HSS9×3×1/2 13.2 8.81 1.17 10.8 63/4 — 40.0 19.7 1.87
×3/8 11.2 7.45 1.21 8.80 75/16 — 33.1 15.8 1.90
×5/16 9.88 6.59 1.24 7.63 75/8 — 28.9 13.6 1.92
×1/4 8.38 5.59 1.27 6.35 77/8 — 24.2 11.3 1.93
×3/16 6.64 4.42 1.29 4.92 83/16 23/16 18.9 8.66 1.95

HSS8×6×5/8 72.3 24.1 2.27 29.5 53/16 33/16 150 46.0 2.17
×1/2 62.5 20.8 2.32 24.9 53/4 33/4 127 38.4 2.20
×3/8 50.6 16.9 2.38 19.8 65/16 45/16 100 30.0 2.23
×5/16 43.8 14.6 2.40 16.9 65/8 45/8 85.8 25.5 2.25
×1/4 36.4 12.1 2.43 13.9 67/8 47/8 70.3 20.8 2.27
×3/16 28.2 9.39 2.46 10.7 73/16 53/16 53.7 15.8 2.28

HSS8×4×5/8 26.6 13.3 1.51 16.6 53/16 — 70.3 28.7 1.83
×1/2 23.6 11.8 1.56 14.3 53/4 — 61.1 24.4 1.87
×3/8 19.6 9.80 1.61 11.5 65/16 25/16 49.3 19.3 1.90
×5/16 17.2 8.58 1.63 9.91 65/8 25/8 42.6 16.5 1.92
×1/4 14.4 7.21 1.66 8.20 67/8 27/8 35.3 13.6 1.93
×3/16 11.3 5.65 1.69 6.33 73/16 33/16 27.2 10.4 1.95
×1/8 7.90 3.95 1.71 4.36 77/16 37/16 18.7 7.10 1.97

HSS8×3×1/2 11.7 7.81 1.15 9.64 53/4 — 34.3 17.4 1.70
×3/8 9.95 6.63 1.20 7.88 65/16 — 28.5 14.0 1.73
×5/16 8.81 5.87 1.23 6.84 65/8 — 24.9 12.1 1.75
×1/4 7.49 4.99 1.25 5.70 67/8 — 20.8 10.0 1.77
×3/16 5.94 3.96 1.28 4.43 73/16 23/16 16.2 7.68 1.78
×1/8 4.20 2.80 1.31 3.07 77/16 27/16 11.3 5.27 1.80

in. in.
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Standard Weight (Std.)

Pipe 12 Std. 49.6 12.8 12.0 0.375 0.349 13.6 36.5 262 41.0 4.39 523 53.7
Pipe 10 Std. 40.5 10.8 10.0 0.365 0.340 11.1 31.6 151 28.1 3.68 302 36.9
Pipe 8 Std. 28.6 8.63 7.98 0.322 0.300 7.85 28.8 68.1 15.8 2.95 136 20.8
Pipe 6 Std. 19.0 6.63 6.07 0.280 0.261 5.22 25.4 26.5 7.99 2.25 52.9 10.6
Pipe 5 Std. 14.6 5.56 5.05 0.258 0.241 4.03 23.1 14.3 5.14 1.88 28.6 6.83
Pipe 4 Std. 10.8 4.50 4.03 0.237 0.221 2.97 20.4 6.82 3.03 1.51 13.6 4.05
Pipe 31/2 Std. 9.12 4.00 3.55 0.226 0.211 2.51 19.0 4.52 2.26 1.34 9.04 3.03
Pipe 3 Std. 7.58 3.50 3.07 0.216 0.201 2.08 17.4 2.85 1.63 1.17 5.69 2.19
Pipe 21/2 Std. 5.80 2.88 2.47 0.203 0.189 1.59 15.2 1.45 1.01 0.952 2.89 1.37
Pipe 2 Std. 3.66 2.38 2.07 0.154 0.143 1.00 16.6 0.627 0.528 0.791 1.25 0.713
Pipe 11/2 Std. 2.72 1.90 1.61 0.145 0.135 0.750 14.1 0.293 0.309 0.626 0.586 0.421
Pipe 11/4 Std. 2.27 1.66 1.38 0.140 0.130 0.620 12.8 0.184 0.222 0.543 0.368 0.305
Pipe 1 Std. 1.68 1.32 1.05 0.133 0.124 0.460 10.6 0.0830 0.126 0.423 0.166 0.177
Pipe 3/4 Std. 1.13 1.05 0.824 0.113 0.105 0.310 10.0 0.0350 0.0671 0.336 0.0700 0.0942
Pipe 1/2 Std. 0.850 0.840 0.622 0.109 0.101 0.230 8.32 0.0160 0.0388 0.264 0.0320 0.0555

Extra Strong (x-Strong)

Pipe 12 x-Strong 65.5 12.8 11.8 0.500 0.465 17.9 27.4 339 53.2 4.35 678 70.2
Pipe 10 x-Strong 54.8 10.8 9.75 0.500 0.465 15.0 23.1 199 37.0 3.64 398 49.2
Pipe 8 x-Strong 43.4 8.63 7.63 0.500 0.465 11.9 18.5 100 23.1 2.89 199 31.0
Pipe 6 x-Strong 28.6 6.63 5.76 0.432 0.403 7.88 16.4 38.3 11.6 2.20 76.6 15.6
Pipe 5 x-Strong 20.8 5.56 4.81 0.375 0.349 5.72 15.9 19.5 7.02 1.85 39.0 9.50
Pipe 4 x-Strong 15.0 4.50 3.83 0.337 0.315 4.14 14.3 9.12 4.05 1.48 18.2 5.53
Pipe 31/2 x-Strong 12.5 4.00 3.36 0.318 0.296 3.44 13.5 5.94 2.97 1.31 11.9 4.07
Pipe 3 x-Strong 10.3 3.50 2.90 0.300 0.280 2.83 12.5 3.70 2.11 1.14 7.40 2.91
Pipe 21/2 x-Strong 7.67 2.88 2.32 0.276 0.257 2.11 11.2 1.83 1.27 0.930 3.66 1.77
Pipe 2 x-Strong 5.03 2.38 1.94 0.218 0.204 1.39 11.6 0.827 0.696 0.771 1.65 0.964
Pipe 11/2 x-Strong 3.63 1.90 1.50 0.200 0.186 1.00 10.2 0.372 0.392 0.610 0.744 0.549
Pipe 11/4 x-Strong 3.00 1.66 1.28 0.191 0.178 0.830 9.33 0.231 0.278 0.528 0.462 0.393
Pipe 1 x-Strong 2.17 1.32 0.957 0.179 0.166 0.600 7.92 0.101 0.154 0.410 0.202 0.221
Pipe 3/4 x-Strong 1.48 1.05 0.742 0.154 0.143 0.410 7.34 0.0430 0.0818 0.325 0.0860 0.119
Pipe 1/2 x-Strong 1.09 0.840 0.546 0.147 0.137 0.300 6.13 0.0190 0.0462 0.253 0.0380 0.0686

Double-Extra Strong (xx-Strong)

Pipe 8 xx-Strong 72.5 8.63 6.88 0.875 0.816 20.0 10.6 154 35.8 2.78 308 49.9
Pipe 6 xx-Strong 53.2 6.63 4.90 0.864 0.805 14.7 8.23 63.5 19.2 2.08 127 27.4
Pipe 5 xx-Strong 38.6 5.56 4.06 0.750 0.699 10.7 7.96 32.2 11.6 1.74 64.4 16.7
Pipe 4 xx-Strong 27.6 4.50 3.15 0.674 0.628 7.64 7.17 14.7 6.53 1.39 29.4 9.50
Pipe 3 xx-Strong 18.6 3.50 2.30 0.600 0.559 5.16 6.26 5.79 3.31 1.06 11.6 4.89
Pipe 21/2 xx-Strong 13.7 2.88 1.77 0.552 0.514 3.81 5.59 2.78 1.94 0.854 5.56 2.91
Pipe 2 xx-Strong 9.04 2.38 1.50 0.436 0.406 2.51 5.85 1.27 1.07 0.711 2.54 1.60

Table 1–14

Pipe
Dimensions and Properties

Shape

Nom-
inal 
Wt.

Outside
Dia-

meter

Inside
Dia-

meter

D/t IArea

Dimensions

S J Z

lb/ft in. in.

Nominal
Wall

Thick-
ness

Design
Wall

Thick-
ness

in.4in.2in. .ni.ni 3 in. in.4 in.3

r

PIPE
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A N S W E R S  T O  S E L E C T E D  P R O B L E M S

Chapter 2

	 2.1	 a.	 KK



















k k

k k

k k k k

k k k k

5

2

2

2 1 2

2 2 1

[ ]

0 0

0 0

0

0

1 1

3 3

1 1 2 2

3 2 2 3

		  b.		 u
k P

k k k k k k
u

k k P

k k k k k k
5

1 1
5

1

1 1
,

( )
3

2

1 2 1 3 2 3
4

1 2

1 2 1 3 2 3

		  c.	 F
k k P

k k k k k k
F

k k k P

k k k k k k
x x5

2

1 1
5

2 1

1 1
,

( )
1

1 2

1 2 1 3 2 3
2

3 1 2

1 2 1 3 2 3

	 2.2	 u F f f f fx x x x x5 5 5 2 5 2 5 2 5 21cm, 1000 N, 1000 N, 1000 N2 3 1
(1)

2
(1)

2
(2)

3
(2)

	 2.3	 a.	 KK

























k k

k k k

k k k

k k k

k k

5

2

2 2

2 2

2 2

2

[ ]

0 0 0

2 0 0

0 2 0

0 0 2

0 0 0

		  b.		 u
P

k
u

P

k
u

P

k
5 5 5

2
, ,

2
2 3 4  

		  c.	 F
P

F
P

x x5 2 5 2
2

,
2

1 5  

	 2.4	 a.	 [ ] same as 2.3a.KK  

		  b.	
d d d

5 5 5
4

,
2

,
3

4
2 3 4u u u  

 		  c.	 F
k

F
k

x x
d d

5
2

5
4

,
4

1 5  

	 2.5	 KK



















5

2

2 2

2

2 2

[ ]

200 200 0 0
200 2000 0 1800

0 0 1000 1000
0 1800 1000 2800

 

	 2.6	 u u5 511.86 mm, 7.63 mm2 4  
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	 2.7	








k

k k
k k

5
2

2
[ ]  

	 2.8	 u u

f f f f Fx x x x x

5 5

5 2 5 2 5 2 5 2 5 2

2.5 cm, 5 cm

2500 N, 2500 N, 2500 N

2 3

1
(1)

2
(1)

2
(2)

3
(2)

1

 

	 2.9	 u u u u

f f f f

f f F

x x x x

x x x

5 5 5 5

5 2 5 2 5 2 5 2

5 2 5 2 5 2

0, 7.5 cm, 17.5 cm, 27.5 cm

15,000 N, 20,000 N

20,000 N, 15,000 N

1 2 3 4

1
(1)

2
(1)

2
(2)

3
(2)

3
(3)

4
(3)

1

 

	 2.10	 5 2

5 2 5 5 2 5 2

5 2 5 2 5 5 5

5 cm

10,000 N, 5000 N

5000 N, 10,000 N, 5000 N

2

1
(1)

2
(1)

2
(2)

3
(2)

2
(3)

4
(3)

1 3 4

u

f f f f

f f F F F

x x x x

x x x x x

 

	 2.11	 u f f

f f F

x x

x x x

5 5 2 5 2

5 2 5 2 5 2

0.015 m, 15 N

15 N, 15 N

2 1
(1)

2
(1)

2
(2)

3
(2)

1

 

	 2.12	 u u

f f f f

f f F F

x x x x

x x x x

5 5

5 2 5 2 5 2 5

5 2 5 5 2 5 2

0.0257 m, 0.0193 m

257 N, 193 N

193 N, 257 N, 193 N

2 3

1
(1)

2
(1)

2
(2)

3
(2)

3
(3)

4
(3)

1 4

 

	 2.13	 u u u

f f f f

f f f f

F F

x x x x

x x x x

x x

5 5 5

5 2 5 2 5 2 5 2

5 2 5 5 2 5

5 2 5 2

0.042 m, 0.083 m, 0.042 m

2.5 kN, 2.5 kN

2.5 kN, 2.5 kN

2.5 kN, 2.5 kN

2 3 4

1
(1)

2
(1)

2
(2)

3
(2)

3
(3)

4
(3)

4
(4)

5
(4)

1 5

 

	 2.14	 u u

f f f f

F
x x x x

x

5 2 5 2

5 2 5 5 2 5

5

0.025 m, 0.075 m

100 N, 200 N

100 N

2 3

1
(1)

2
(1)

2
(2)

3
(2)

1

 

	 2.15	 u f f

f f f f

F F F

x x

x x x x

x x x

5 5 2 5 2

5 2 5 2 5 2 5

5 2 5 2 5 2

0.002 m, 1 kN

1 kN, 2 kN

1 kN, 1 kN, 2 kN

3 1
(1)

3
(1)

2
(2)

3
(2)

3
(3)

4
(3)

1 2 4

 

	 2.16	 u u5 5 28.33 mm, 8.33 mm2 3  

	 2.17	 0.526 mm, 1.316 mm, 263.2 N, 736.8 N2 3 1 4u u F Fx x5 5 5 2 5 2  

	 2.18	 a.	 π↓x p5 5 22.5 cm , 6250 N-cm
min

 
 		  b.	 π←x p5 5 21.0 cm , 2500 N-cm

min
 

 		  c.	 1.962 mm , 3849 N mm
min

π↓ ⋅x p5 5 2  

 		  d.	 2.4525 mm , 1203 N mm
min

π→ ⋅x p5 5 2  
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	 2.19	 ↑x 5 40.0 mm  

	 2.20	 π←x p5 5 21.0 cm , 1666.7 N-cm
min

 

	 2.21	 Same as 2.10 

	 2.22	 Same as 2.15 

Chapter 3

	 3.1	 a.	

































A E

L

A E

L

A E

L

A E

L

A E

L

A E

L

A E

L

A E

L

A E

L

A E

L

A E

L

A E

L

5

2

2
1

2

2
1

2

2

[ ]

0 0

0

0

0 0

1 1

1

1 1

1

1 1

1

1 1

1

2 2

2

2 2

2

2 2

2

2 2

2

3 3

3

3 3

3

3 3

3

3 3

3

KK  

 		  b.	
3

,
2

3
2 3u

PL

AE
u

PL

AE
5 5  

 		  c.		   (i)  u u5 3 5 32 29.9 10 cm, 19.8 10 cm2
4

3
4  

				    (ii)  F Fx x5 2 5 21666.7 N, 3333.3 N1 4  

				   (iii)  s s s5 5 5 22772 kPa (T), 2772 kPa (T), 5544 kPa (C)(1) (2) (3)  

	 3.2	 u u F

f f f f

x

x x x x

5 2 3 5 2 3 5

5 2 5 5 2 5

2 21.19 10 m, 2.38 10 m, 10 kN

10 kN, 10 kN

2
4

3
4

1

1
(1)

2
(1)

2
(2)

3
(2)

 

	 3.3	 u F F

f f f f

x x

x x x x

5 3 5 2 5 2

5 2 5 2 5 2 5

25.714 10 cm, 28,570 N, 11,430 N

28,570 N, 11,430 N

2
3

1 3

1
(1)

2
(1)

2
(2)

3
(2)

 

	 3.4	 u u

F F

f f f f

f f

x x

x x x x

x x

5 2 3 5 2 3

5 5 2

5 2 5 5 2 5

5 2 5 2

2 20.5 10 m, 4.0 10 m

3335 N, 26,680 N

3335 N, 23,345 N

26,680 N

2
5

3
5

1 4

1
(1)

2
(1)

2
(2)

3
(2)

3
(3)

4
(3)

 

	 3.5	 u u F

f f f f

x

x x x x

5 3 5 3 5 2

5 2 5 5 2 5 2

2 29.375 10 m, 2.813 10 m, 75,000 N

75,000 N

2
5

3
4

1

1
(1)

2
(1)

2
(2)

3
(2)

 

	 3.6	 u F F F

f f f f f f

x x x

x x x x x x

5 3 5 2 5 5 2

5 2 5 2 5 2 5 5 2 5

29.02 10 m, 18,940 N, 10,530 N

18,940 N, 10,530 N

2
5

1 3 4

1
(1)

2
(1)

2
(2)

3
(2)

2
(3)

4
(3)
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	 3.7	 u u

F F

f f f f f f

x x

x x x x x x

5 3 5 3

5 2 5 2

5 2 5 5 2 5 2 5 2 5

2 28.61 10 cm, 2.075 10 cm

206.6 N, 49,800 N

206.6 N, 49,800 N

2
5

3
2

1 4

1
(1)

2
(1)

2
(2)

3
(2)

3
(3)

4
(3)

 

	 3.8	 u u F x5 2 5 2 50.50 mm, 3.356 mm, 40 kN2 3 1  

	 3.9	 u F F

f f f f

x x

x x x x

5 5 2 5

5 2 5 2 5 2 5 2

0.01244 m, 522.5 kN, 527.5 kN

522.5 kN, 527.5 kN

2 1 3

1
(1)

2
(1)

2
(2)

3
(2)

 

	 3.10	 u u

F F

f f f f

f f

x x

x x x x

x x

5 3 5 3

5 2 5 2

5 2 5 2 5 2 5

5 2 5

2 21.870 10 m, 1.454 10 m

13.10 kN, 2.90 kN

13.10 kN, 2.90 kN,

2.90 kN

2
3

3
3

1 4

1
(1)

2
(1)

2
(2)

3
(2)

3
(3)

4
(3)

 

	 3.11	 u F F F F

f f

f f f f f f

x x x x

x x

x x x x x x

5 3 5 2 5 5 5 2

5 2 5 2

5 2 5 5 2 5 5 2 5

27.144 10 m, 15.0 kN, 15.0 kN

15.0 kN,

15.0 kN

2
4

1 3 4 5

1
(1)

2
(1)

2
(2)

3
(2)

2
(3)

4
(3)

2
(4)

5
(4)

 

	 3.12	 u

u

5 2 3

5 2 3

2

2

two-element solution, 1.96 10 cm

one-element solution, 1.905 10 cm
1

3

1
3

 

	 3.13	 BB
L

x

L

x

L L

x

L
k A B E B dxT

L

L
5 2 1

2
1 5

2
[ ]

1 4 8 1 4
, [ ] [ ] [ ]

2 2 2 /2

/2

∫





 

	 3.15	 a.	



















k 5 3

2 2

2 2

2 2

2 2

[ ] 3.9375 10

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

N/m8  

  		  b.	



















k 5 3
2

2

[ ] 1.75 10

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

N/m8  

 		  c.	 k 5

2 2

2 2

2 2

2 2

[ ] 7000

3 3 3 3

3 1 3 1

3 3 3 3

3 1 3 1

kN/m





















 

 		  d.	 [ ] 1.4 10

0.883 0.321 0.883 0.321
0.321 0.117 0.321 0.117
0.883 0.321 0.883 0.321
0.321 0.117 0.321 0.117

kN/m4



















k 5 3

2 2

2 2

2 2

2 2

 

	 3.16	 a.	 u u9 5 50.707 cm, 1.414 cm1 2  
 		  b.	 u u5 5 20.866 cm, 0.3170 cm1 2  
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	 3.17	 a.	 2.165 mm, 1.25 mm,

0.098 mm, 5.83 mm
1 1

2 2

u v

u v

5 5 2

5 5 2

 

 		  b.	 1.25 mm, 2.165 mm,

3.03 mm, 5.098 mm
1 1

2 2

u v

u v

5 2 5

5 5

 

	 3.18	 a.	 s 5 74.25 MPa,  	 b.	 45.47 MPa 

	 3.19	 a.	 K k















































5

2 2 2 2

2 2 2

2 2

2 2

2

2 2

2 2

[ ]

2 0
1

2

1

2
1 0

1

2

1

2

0 1
1

2

1

2
0 0

1

2

1

2
1

2

1

2

1

2

1

2
0 0 0 0

1

2

1

2

1

2

1

2
0 0 0 0

1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
1

2

1

2
0 0 0 0

1

2

1

2
1

2

1

2
0 0 0 0

1

2

1

2

 

 		  b.	 u v
k

5 5
2

0,
50

1 1  

	 3.20	 s s5 5 5 5u v0, 7.86 mm, 11.78 MPa (T)2 2
(1) (2)  

	 3.21	 u v5 51155 L/(AE), 217.5 L/(AE)1 1  

	 3.22	 u v

s s s

5 3 5 3

5 2 5 5

2 21.256 10 m, 4.7 10 m

4821 kPa (C), 3517 kPa (T), 8340 kPa (T)

1
4

1
4

(1) (2) (3)

 

	 3.23	 u v s5 5 57.14 mm, 0, 100 MPa1 1
(1)  

	 3.24	 u
AE

v
AE

u
AE

v
AE

f f f f

f f f f

f f f f

x x x x

x x x x

x x x x

9 9 9 9

9 9 9 9

9 9 9 9

5 5 5
2

5

5 2 5 2 5 2 5 2

5 2 5 5 2 5

52 5 5 2 5

266,750
,

1,050,210
,

266,750
,

1,050,210

13,333 N, 16,667 N

16,667 N, 0

13,333 N, 0

2 2 3 3

1
(1)

2
(1)

1
(2)

3
(2)

2
(3)

4
(3)

2
(4)

3
(4)

3
(5)

4
(5)

1
(6)

4
(6)

 

	 3.25	 u v
AE

u
AE

v
AE

f f f f

f f f f

f f

x x x x

x x x x

x x

9 9 9 9

9 9 9 9

9 9

5 5 5
2

5

5 2 5 5 2 5 2

5 2 5 5 2 5

52 5

0,
2,249,930

,
533,400

,
2,100,000

0, 33,333 N

10,000 N, 26,665 N

0

2 2 3 3

1
(1)

2
(1)

1
(2)

3
(2)

2
(4)

3
(4)

3
(5)

4
(5)

1
(6)

4
(6)
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	 3.26	 No, the truss is unstable, K 5[ ] 0.

	 3.27	 u v

f f f f

f f

x x x x

x x

5 5 2

9 5 2 9 5 2 9 5 2 9 5

9 5 2 9 5 2

3.47 mm, 1.32 mm

62,760 N, 20,520 N

66,000 N

3 3

1
(1)

3
(1)

2
(2)

3
(2)

3
(3)

4
(3)

 

	 3.28	
T

C S
S C

C S
S C

T T

T T

T T

T

5

2

2
5

5 2

[ ]

0 0
0 0

0 0
0 0

and [ ][ ]

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

[ ] [ ] 1





































∴

 

	 3.29	 0.176 10 m, 0.893 10 m

62.5 MPa (T), 52.9 MPa (T), 12.3 MPa (T)

1
3

1
3

(1) (2) (3)

u v

s s s

5 2 3 5 2 3

5 5 5

2 2  

	 3.30	 u v

s s s

5 3 5 2 3

5 5 5 2

2 23.37 10 m, 1.51 10 m

159 MPa (T), 23.6 MPa (T), 47.9 MPa (C)

1
4

1
3

(1) (2) (3)

 

	 3.31	 16.5 10 m, 7.30 10 m

115.5 MPa (T), 231.0 MPa (C)

1
4

1
3

(2) (3)

u v

s s

5 3 5 2 3

5 5 2

2 2  

	 3.32	 0.135 10 m, 0.850 10 m,

0.137 10 m, 0.164 10 m,

198 MPa (C), 0, 44.6 MPa (T)

31.6 MPa (C), 191 MPa (C),

63.1 MPa (C)

2
2

2
2

3
1

4
1

(1) (2) (3)

(4) (5)

(6)

u v

v v

s s s

s s

s

5 3 5 2 3

5 2 3 5 2 3

5 2 5 5

5 2 5 2

5 2

2 2

2 2

 

	 3.33	 a.	 6.897 10 m, 0.014 m

211 MPa (T), 145 MPa (C)

1
3

1

(1) (2)

u v

s s

5 2 3 5 2

5 5 2

2  

 		  b.	 0, 0.00317 m

115 MPa

1 1

(1) (2)

u v

s s

5 5 2

5 5

 

	 3.34	 u v

s s s

s s

5 3 5 2 3

5 5 5 2

5 2 5

2 23.972 10 m, 9.86 10 m

105 MPa (T), 11.62 MPa (T), 5.18 MPa (C)

10.42 MPa (C), 0

4
4

4
5

(1) (2) (3)

(4) (5)

 

	 3.35	 v s5 2 3 521.667 10 m, 625 MPa (T)1
5 (1)  

	 3.36	 u9 5 4.24 mm1  

	 3.37	 u9 5 0.804 mm1  
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	 3.38	 22.0 mm2u9 5  

	 3.39	 2.05 mm2u9 5  

	 3.40	 u v

w s

s s

s

5 2 3 5 2 3

5 3 5 2

5 2 5 2

5 2

2 2

2

3.018 10 m, 1.517 10 m,

2.684 10 m, 338 kN/m (C),

1690 kN/m (C), 7965 kN/m (C)

2726 kN/m (C)

1
5

1
4

1
5 (1) 2

(2) 2 (3) 2

(4) 2

 

	 3.41	 2.766 10 m, 1.024 10 m

1.203 10 m, 41.0 MPa (T),

8.42 MPa (T), 11.58 MPa (C)

1
3

1
4

1
4 (1)

(2) (3)

u v

w s

s s

5 3 5 2 3

5 3 5

5 5 2

2 2

2

 

	 3.42	 u v w

s s s s

5 3 5 5 2 3

5 5 5 5 2

2 21.89 10 m, 0, 5.52 10 m

965 MPa (T), 122.6 MPa (C)

5
3

5 5
4

(1) (4) (2) (3)

 

	 3.43	 u v w

s

5 5 5 2

5 2

1.654 mm, 0, 1.463 mm

137 MPa (C)

4 4 4

(1)

 

	 3.45	 v v

s

s

s

5 2 5 2

5 2

5 2

5

0.5944 mm, 0.4698 mm

13.98 MPa (C)

23.49 MPa (C)

16.56 MPa (T)

2 3

(1)

(2)

(3)

 

	 3.46	 v v u

s s s

5 2 5 2 5 2

5 2 5 5

1.92 mm, 1.68 mm, 0.426 mm

27.2 MPa (C), 21.3 MPa (T), 8 MPa (T)

2 3 1

(1) (2) (3)

 

	 3.47	

s s

s

5
2

5 5 5
2

5 5
2

5 5
2

5 5 2

5

110
, 0, 0

405

0,
433

,
50

,
208

2.5 , 13.86

3.125

1 1 2 2

3 3 4 4

(2) (3)

(4)

u
P

AE
v u v

P

AE

u v
P

AE
u

P

AE
v

P

AE
P

A

P

A
P

A

 

	 3.48	 v v0.955 10 m, 1.03 10 m,

67.1 MPa (C), 60.0 MPa (T), 22.4 MPa (C)

44.7 MPa (C), 20.0 MPa (T)

2
2

4
2

(1) (2) (3)

(4) (5)

s s s

s s

5 2 3 5 2 3

5 5 5

5 5

2 2  

	 3.49	 u v F x9

s s s

5 5 2 3 5 2

5 5 5

20, 1.414 10 m, 10 kN

0, 0, 18.85 MPa (T)

1 2
4

2

(1) (2) (3)
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	 3.50	 v 5 2 3 21.414 10 m2
4  

	 3.51	 u9 5 3 28.8 10 m2
5  

	 3.52	 a.	 π↓u p5 3 5 222.5 10 m , 12.5 N-m1
4

min
 

 		  b.	 π→u p5 3 5 222.0 10 m , 12.0 N-m1
4

min
 

	 3.53	 5
2

2









k

A E

L
[ ]

3

2
1 1
1 1

0  

	 3.54	 two-element solution: 
u u s5 3 5 3 52 22.475 10 m, 3.6 10 m, 65.95 MPa (T),2

4
3

4 (1)  

		  s 5 30 MPa (T)(2)

	 3.55	 two-element solution: 5 3 5 32 2u u20.25 10 cm, 27 10 cm2
3

3
3  

		  s s5 554.0 MPa (T), 18 MPa (T)(1) (2)

	 3.56	 u s5 3 522.25 10 m, 6 MPa (T)2
5 (1)  

	 3.57	 u L E u L E L L/(2 ), 3 /(8 ), /8, 3 /81
2

2
2 (1) (2)g g s g s g5 5 5 5  

	 3.58	 a.	 f x 5 2.87 N1  

 		  b.	 26.7 kN, 80 kN1 2f fx x5 5  

	 3.62	 5

5 2

Largest tensile stress 905.1 kN/m in element DF

Largest compressive stress 1.81 MPa in element CE

2  

	 3.63	 5

5 2

Largest tensile stress 1.43 MPa in top left chord

Largest compressive stress 0.96 MPa in bottom left chord

 

Chapter 4

	 4.5	 v
PL

EI

PL

EI

PL

EI

F
P

M F
P

M
PL

y y

f f5
2

5
2

5

5 5 5 5
2

7

768
,

32
,

128
5

16
, 0,

11

16
,

3

16

2

3

1

2

2

2

1 1 3 3

 

	 4.6	 v
PL

EI

PL

EI
F P M PLy =f5

2
5 5 2

3
,

2
, ,1

3

1

2

2 2  

	 4.7	 f f5 2 5 5

5 5 2 5

0.075 m, 0.0160 rad, 0.00536 rad

12,500 N, 7500 N, 15,000 N-m

1 1 2

2 3 3

v

F F My y

 

	 4.8	 v F M Fy y5 2 5 2 5 50.075 m, 7040 N, 13,600 N-m, 11,570 N3 1 1 2  
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	 4.9	 f f5 2 5 2 5 2 5 2v v0.01389 m, 0.0119 rad, 0.0456 m, 0.01786 rad2 2 3 3  

	 4.10	 v

F M F My y

2.68 10 m, 8.93 10 rad

15 kN, 20 kN m, 5 kN, 10 kN m

2
4

2
5

1 1 3 3

f5 2 3 5 3

5 5 ? 5 5 2 ?

2 2  

	 4.11	 v

F Fy y

7.619 10 m, 3.809 10 rad, 1.904 10 rad

8.89 kN, 48.9 kN

3
3

2
3

1
3

1 2

f f5 2 3 5 2 3 5 3

5 2 5

2 2 2  

	 4.12	 v

F My

f5 2 5 2

5 5 2

9.184 mm, 0.00229 rad

2040 N, 12,250 N-m

2 2

1 1

 

	 4.13	 v

F F

F
y y

0.014 m, 5.95 10 rad

10.41 kN, 10.41 kN

3.174 kN

2 1
3

1 3

spring

f5 2 5 2 3

5 5

5

2  

	 4.14	 v v
wL

EI
v

wL

EI
wL

EI

F
wL

M
wL

y

1

607.5
,

507
1

270
,

2
,

12

2 4

4

3

4

2

3

4 2

1 1

2

f f f

5 5
2

5
2

5
2

5 2

5 5

 

	 4.15	
384

,
2

,
12

2

4

1 1

2

v
wL

EI
F

wL
M

wL
y5

2
5 5  

	 4.16	 v
wL

EI

wL

EI
F

wL
y

5

384
,

24
,

2
2

4

1 3

3

1f f5
2

5 2 5
2

5  

	 4.17	 v
wL

EI

wL

EI

wL

EI

F
wL

M
wL

F
wL

y y

4
,

8
,

7

24
3

4
,

4
,

7

4

3

4

2

3

3

3

1 1

2

2

f f5
2

5
2

5
2

5
2

5
2

5

 

	 4.18	
3

20
,

30
,

7

20
,

20
1 1

2

2 2

2

f
wL

m
wL

f
wL

m
wL

y y5
2

5
2

5
2

5  

	 4.19	
4

,
5

96
,

4
,

5

96
,

7

3840
1 1

2

3 3

2

2

4

F
wL

M
wL

F
wL

M
wL

v
wL

EI
y y5 5 5 5

2
5

2
 

	 4.20	
wL

EI
F

wL
M

wL
F

wL
y y

80
,

9

40
,

7

120
,

11

40
2

3

1 1

2

2f 5 5 5 5  

	 4.21	 f f5 2 5 2 5 2

5 2 5 2 ? 5

5 2 5 2 5 2 ? 5 2 ?

5 5 ? 5 5

0.0122 m, 0.00355 rad, 0.00152 rad

12 kN, 16 kN m, 28 kN

12 kN, 16 kN m, 32 kN m

16 kN, 32 kN m, 0, 0

3 3 2

1 1 2

1
(1)

2
(1)

1
(1)

2
(1)

2
(2)

2
(2)

3
(2)

3
(2)

v

F M F

f f m m

f m f m

y y

y y

y y
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	 4.22	 v

F F F

f m f m

y y y

y y

0.00235 rad, 0.0081m, 0.00235 rad

25.9 kN, 8.1 kN, 25.9 kN

25.9 kN, 0, 4.1 kN, 35.6 kN m

1 2 3

1 2 3

1
(1)

1
(1)

2
(1)

2
(1)

f f5 2 5 2 5

5 5 5

5 5 5 5 ?

 

	 4.23	 v

F M Fy y

f f5 2 5 2 5

5 5 5

9.766 cm, 0.00977 rad, 0.0391 rad

187,500 N-m, 375,000 N-m, 112,500 N

2 2 3

1 1 3

 

	 4.24	 v

F M Fy y

f f5 2 5 2 5 2

5 2 5 2 5

0.36 m, 0.1016 rad, 0.0303 rad

72,300 N, 128,300 N-m, 466,000 N

3 3 2

1 1 2

 

	 4.25	 5 2 5 5 5 5 25.33 cm, 23,685 N , 273,550 N-m2 1 3 1 3v F F M My y  

	 4.26	

F F Fy y y

3.596 10 rad, 9.92 10 rad, 1.091 10 rad

9875 N, 28,406 N, 6719 N

1
4

2
5

3
4

1 2 3

f f f5 2 3 5 3 5 3

5 5 5

2 2 2  

	 4.27	 0.003 m at midspan of AB and BC

166.7 MPa at midspan of AB and BC

333.3 MPa at B

max

max

min

v

s

s

5 2

5

5 2

 

	 4.28	

s

5 2

5 2

v 0.0195 m at midspan of BC

46.9 MPa at midspan of AB
max

min

 

	 4.30	 0.0167 m at C

26.8 MPa at fixed end A
max

max

v

s

5 2

5

 

	 4.32	 0.087 m at C

257 MPa at B
max

max

v

s

5 2

5

 

	 4.33	 T vr y 3 5W10 33, 0.005686 mmax  

	 4.39	
192 384

,
2

,
8 12

2

3 4

1 1

2

v
PL

EI

wL

EI
F

P wL
M

PL wL
y5

2
2 5

1
5 1  

	 4.40	
5

648
2

3

v
PL

EI
5

2
 

	 4.41	 v
P wL L

EI

PL wL

EI

F P
wL

M
PL wL

y

f5
2 1

5
2 1

5 1 5 1

(25 22 )

240
,

( )

8

2
,

2 3

2

3

2

2 3

1 1

2

 

	 4.42	 v f5 2 3 5 32 21.57 10 m, 1.19 10 rad2
4

2
4  

	 4.43	 v f f5 2 3 5 3 5 32 2 23.18 10 m, 1.58 10 rad, 1.58 10 rad2
4

2
4

3
4  

	 4.44	 v f f5 2 3 5 2 3 5 32 2 24.26 10 m, 2.56 10 rad, 5.38 10 rad3
5

2
5

3
5  
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	 4.46	 k
GA

L
w 







5

2

2
[ ] 1 1

1 1
 

	 4.49	 [ ] [ ] [ ] [ ] [ ]
0 0∫ ∫k EI B B dx k N N dxT

f
L

T
L

5 1  

	 4.50	 Same answer as 4.49

	 4.79	 For 400 mm span,
		  1.28 mmd 5  (No shear area effect)
		  1.34 mmd 5  (Shear area included)

		  For 100 mm span,
		  0.02 mmd 5  (No shear area effect)
		  0.0355 mmd 5  (Shear area effect included)

Chapter 5

	 5.1	 u v f5 5 50.634 mm, 0, 0 rad2 2 2  

	 5.2	 1.88 cm, 0.047 mm

0.00189 rad

10,286 N, 11,966 N

41,134 N-m, 30,796 N-m

8750 N, 10,355 N

31,077 N-m, 31,048 N-m

10,286 N, 11,966 N

30,796 N-m, 41,134 N-m

11,966 N, 11,966 N, 10,286 N

30,796 N-m

2 3 2 3

2 3

1
(1)

2
(1)

1
(1)

2
(1)

1
(1)

2
(1)

2
(2)

3
(2)

2
(2)

3
(2)

2
(2)

3
(2)

3
(3)

4
(3)

3
(3)

4
(3)

3
(3)

4
(3)

1 4 1 4

1

u u v v

f f f f

m m

f f f f

m m

f f f f

m m

F F F F

M

x x y y

x x y y

x x y y

x x y y

f f

9 9 9 9

9 9

9 9 9 9

9 9

9 9 9 9

9 9

5 5 5 2 5

5 2 5 2

5 2 5 2 5 2 5 2

5 5

5 2 5 5 2 5 2

5 2 5 2

5 2 5 5 2 5

5 5

5 2 5 2 5 2 5 2

5

 

	 5.3	 Channel section 15 cm 3 20.5 cm based on M 5 10,452 N-mmax  

	 5.4	 u v

f f f f

m m

f f f f

m m

F F M

F F M

F F M

x x y y

x x y y

x y

x y

x y

f

9 9 9 9

9 9

9 9 9 9

9 9

5 5 2 5 2

5 2 5 5 2 5 2

5 2 5 2

5 2 5 5 2 5 2

5 2 5 2

5 5 5 2

5 2 5 5 2

5 2 5 5 2

0.102 mm, 0.282 mm, 0.00276 rad

16.17 kN, 5.72 kN

25.44 kN-m, 51.33 kN-m

23.31 kN, 5.80 kN

25.97 kN-m, 51.87 kN-m

12.34 kN, 11.9 kN, 25.44 kN-m

5.26 kN, 23.44 kN, 25.97 kN-m

7.14 kN, 44.69 kN, 173.5 kN-m

4 4 4

1
(1)

4
(1)

1
(1)

4
(1)

1
(1)

4
(1)

2
(2)

4
(2)

2
(2)

4
(2)

2
(2)

4
(2)

1 1 1

2 2 2

3 3 3
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	 5.5	 1.34 mm, 4.27 mm, 0.00861 rad

360.1 kN, 15.34 kN, 36.25 kN-m

293.6 kN, 29.05 kN, 110.5 kN-m

187.15 kN, 68.14 kN, 110.4 kN-m

91.45 kN, 217.0 kN-m

187.09 kN-m, 308.12 kN, 36.25 kN-m

91.45 kN, 217.0 kN-m

2 2 2

1
(1)

1
(1)

1
(1)

2
(1)

2
(1)

2
(1)

2
(2)

3
(2)

2
(2)

2
(2)

3
(2)

3
(2)

1 3 1 1

3 3

u v

f f m

f f m

f f f m

f m

F F F M

F M

x y

x y

x x y

y

x x y

y

f

9 9 9

9 9 9

9 9 9 9

9 9

5 5 2 5 2

5 5 5

5 2 5 5 2

5 2 5 5 5

5 5 2

5 5 5 5

5 5 2

 

	 5.6	 u v

f f m

f f m

f f f m

f m

f f f f m

m

F F M

F F M

F F M

x y

x y

x x y

y

x x y y

x y

x y

x y

f

9 9 9

9 9 9

9 9 9 9

9 9

9 9 9 9 9

9

5 2 5 2 5 2

5 5 5

5 2 5 5 2

5 2 5 2 5 5

5 5 2

5 2 5 5 2 5 2 5 2

5 2

5 5 5

5 5 5 2

5 2 5 5 2

0.00537 mm, 1.5 mm, 0.00306 rad

186.3 kN, 24.35 kN, 49.36 kN-m

129.7 kN, 32.58 kN, 82.23 kN-m

1.12 kN, 233.24 kN, 112.4 kN-m

86.80 kN, 161.2 kN-m

201 kN, 5.97 kN, 15.4 kN-m

29.36 kN-m

114.5 kN, 148.97 kN, 49.36 kN-m

1.12 kN, 86.80 kN, 161.2 kN-m

115.8 kN, 164.22 kN, 15.4 kN-m

2 2 2

1
(1)

1
(1)

1
(1)

2
(1)

2
(1)

2
(1)

2
(2)

3
(2)

2
(2)

2
(2)

3
(2)

3
(2)

4
(3)

2
(3)

4
(3)

2
(3)

4
(3)

2
(3)

1 1 1

3 3 3

4 4 4

 

	 5.7	 u v

f f f m

f m

x x y

y

f

9 9 9 9

9 9

5 3 5 2 3

5 2 3

5 2 5 5 5 ?

5 5 2 ?

2 2

2

0.4308 10 m, 0.9067 10 m,

0.1403 10 rad

23.8 kN, 17.26 kN, 32.77 kN m

22.74 kN, 54.64 kN m

2
4

2
4

2
2

1
(1)

2
(1)

1
(1)

1
(1)

2
(1)

2
(1)

 

		  f f f m

f m

f f f f

m m

F F M

F F M

F F M

x x y

y

x x y y

x y

x y

x y

9 9 9 9

9 9

9 9 9 9

9 9

5 2 5 5 5 ?

5 5 2 ?

5 2 5 5 2 5

5 2 ? 5 2 ?

5 2 5 5 ?

5 2 5 5 2 ?

5 2 5 5 2 ?

11.31 kN, 37.19 kN, 65.09 kN m

42.81 kN, 87.54 kN m

17.55 kN, 1.40 kN

10.51 kN m, 5.30 kN m

17.26 kN, 23.80 kN, 32.77 kN m

11.31 kN, 42.81 kN, 87.54 kN m

11.42 kN, 13.40 kN, 5.30 kN m

2
(2)

3
(2)

2
(2)

2
(2)

3
(2)

3
(2)

2
(3)

4
(3)

2
(3)

4
(3)

2
(3)

4
(3)

1 1 1

3 3 3

4 4 4
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	 5.9	 f

9 9 9 9

9 9

9 9 9 9

5 2 3 5 2 3 5 3

5 2 5 5 2 5

5 ? 5 ?

5 2 5 5 2 5

5 ? 5 ?

2 2 2u v

f f f f

m m

f f f f

M M

x x y y

x x y y

1.486 10 m, 7.674 10 m, 7.978 10 rad

80.6 kN, 124 kN

165 kN m, 335 kN m

124 kN, 80.6 kN

165 kN m, 138 kN m

2
4

2
5

2
3

1
(1)

2
(1)

1
(1)

2
(1)

1
(1)

2
(1)

2
(2)

3
(2)

2
(2)

3
(2)

1 3

 

	 5.10	 v

f f m f

f m

x y x

y

f

9 9 9 9

9 9

5 2 3 5 2 3

5 5 5 ? 5

5 2 5 ?

2 20.1423 10 m, 0.5917 10 rad

0, 10 kN, 23.3 kN m, 0,

10 kN, 6.7 kN m

2
2

2
3

1
(1)

1
(1)

1
(1)

2
(1)

2
(1)

2
(1)

 

	 5.11	 5 2 3 5 5 5 ?2v F F Mx y1.11 10 m, 22.3 kN, 30 kN, 336 N m2
4

1 1 1  

	 5.12	 f

f

5 2 5 2 5 5 2

5 2 3 52

u v u

v

0.0214 m, 0.025 m, 0.00891 rad, 0.0214 m,

3.57 10 m, 0.00714 m

1 1 1 2

2
6

2

 

	 5.13	 f

f

5 5 5 2

5 5 2 5 2

u v

u v

1.278 mm, 0.0907 mm, 0.000137 rad

1.274 mm, 0.000323 mm, 0.000137 rad

2 2 2

3 3 3

 

	 5.14	 u v

f f m

f f m

x y

x y

f

9 9 9

9 9 9

5 5 2 5 2

5 5 2 5 2

5 5 5 2

0.386 mm, 1.067 mm, 0.00139 rad

71,444 N, 5043 N, 5219 N-m

71,444 N, 5043 N, 16,186 N-m

2 2 2

1
(1)

1
(1)

1
(1)

2
(1)

2
(1)

2
(1)

 

	 5.15	 u v

u

F F M Fx y y

f

f

5 2 3 5 2 3 5

5 2 3 5 2

5 5 5 2 ? 5 2

2 2

2

2.43 10 m, 2.41 10 m, 0.0064 rad

2.43 10 m, 0.0032 rad

30.0 kN, 16.9 kN, 82.5 kN m, 16.9 kN

2
2

2
5

2

3
2

3

1 1 1 3

 

	 5.16	 2.83 10 m, 1.0 10 m, 2.83 10 m3
5

4
5

4
5v u v5 2 3 5 3 5 2 32 2 2  

	 5.17	 v f5 2 51.324 mm, 03 3  

	 5.18	 u v 2.83 10 m, 2.92 10 rad2 2
5

2
4f5 5 2 3 5 32 2  

	 5.19	 u v f5 5 5 22.28 cm, 0.041 mm, 0.1189 rad2 2 2  

	 5.22	 s 5 85 MPabending max  

	 5.23	 f5 5 2 5 20.340 mm, 0.025 mm, 0.00071 rad5 5 5u v  

	 5.24	 f5 5 2 5 25.32 cm, 0.0579 mm, 0.3001 rad5 5 5u v  
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	 5.27	 v f f mx y0.0153 m, 30 kN, 6.67 kN, 02 1
(1)

1
(1)

1
(1)9 9 95 2 5 5 2 5  

	 5.28	 u v f5 5 2 57.97 mm, 0.0342 mm, 0.419 rad2 2 2  

	 5.29	 v v5 5 20 cm, 1.27 cm3 4  

	 5.30	 v v5 2 5 25.63 cm, 12.4 cm3 4  

	 5.32	 u

F F M

F F M
x y

x y

f5 5 2 3

5 2 5 2 5 ?

5 2 5 5 ?

24.30 mm, 0.241 10 rad

8339 N, 4995 N, 26,700 N m,

6661 N, 4995 N, 23,330 N m

2 2
3

1 1 1

4 4 4

 

	 5.33	 u v

f f m

f f m

x y

x y

f

9 9 9

9 9 9

5 5 3 5 3

5 2 5 5 ?

5 5 2 5 ?

2 20.0264 m, 0.463 10 m, 0.171 10 rad

21.1 N, 30.4 N, 74.95 N m

21.1 N, 30.4 N, 46.65 N m

7 7
4

7
2

1
(1)

1
(1)

1
(1)

3
(1)

3
(1)

3
(1)

 

	 5.35	 u f f m

f f m

x y

x y

9 9 9

9 9 9

5 5 2 5 5 ?

5 5 2 5 ?

0.0174 m, 22.6 kN, 16.0 kN, 53.6 kN m

22.6 kN, 16.0 kN, 42.4 kN m

9 1
(1)

1
(1)

1
(1)

3
(1)

3
(1)

3
(1)

 

	 5.36	 v 5 2 3 23.118 10 m6
3  

	 5.37	 5 2 3 2v 1.25 10 m5
2  

	 5.38	 1.43 10 m2
1u 5 3 2  

	 5.39	 Truss : 0.0260 m, 0.00566 m,

Frame : 0.0180 m, 0.00424 m

Truss, element 1: 49,730 N, 0

Frame, element 1: 43,060 N, 22,670 N

7 7

7 7

1 1

1 1

u v

u v

f f

f f
x y

x y

5 5

5 5

5 2 5

5 2 5

 

	 5.40	 v 5 2

5 3

0.0105 m at midspan

M 1.568 10 N-m at C

max

max
6

 

	 5.41	 0.0524 m

M 6.22 10 N-m

max

max
4

v 5

5 3

 

	 5.42	 uG 5 3 21.25 10 m2  

	 5.46	 [ ] 15 1 1
1 1

0 







K

GJ

L
5

2

2
 

	 5.48	 v 5 21.516 cm2  

	 5.51	 0.0103 m1v 5 2  
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	 5.55	 2.54 10 m3
3v 5 2 3 2  

	 5.57	 v 5 2 3 22.22 10 m5
2  

	 5.58	 5 5 2 5

5 2 5 2 5

2.91 cm, 4.95 um, 4.27 cm,

8.50 um, 1.5 mm, 4.26 cm
2 2 2

3 3 3

u v w

u v w

 

	 5.59	 w 5 3 27.25 10 m7
8  

Chapter 6
	 6.1	 Use Eq. (6.2.10) in Eq. (6.2.18) to show 1N N Ni j m1 1 5 .

	 6.3	 a.	

























k 5 3

2 2 2

2 2 2 2

2

2

2

[ ] 2.8 10

2.5 1.250 2.0 1.50 0.5 0.25
4.375 1.0 0.75 0.25 3.625

4.0 0 2.0 1.0
1.5 1.5 0.75

2.5 1.25

Symmetry 4.375

N/m8  

 		  b.	

























k 5 3

2 2 2 2

2 2 2 2

[ ] 93.33 10

1.54 0.75 1.0 0.45 0.54 0.3
1.815 0.3 0.375 0.45 1.44

1.0 0 0 0.3
0.375 0.45 0

0.54 0

Symmetry 1.44

N/m9  

		
c	.

	

























k 5 3

2 2 2 2

2 2 2 2

2 2

2 2

2 2

2 2

[ ] 10

32.48 16.24 5.6 13.44 26.88 2.8
16.24 26.12 2.8 6.72 13.44 22.4

5.6 2.8 5.6 0 0 2.8
13.44 6.72 0 6.72 13.44 0
26.88 13.44 0 13.44 26.88 0

2.8 22.4 2.8 0 0 22.4

8
 

	 6.4	 a.	 τx y xy

p

s s

s s u

5 5 52

5 5 2 5 2 8

336 MPa, 84 MPa, 262.5 MPa

501.2 MPa, 81.2 MPa, 32.21 2

 

 		  b.	 τs s

s s u

5 5 5 2

5 5 2 5 2 8

560 MPa, 140 MPa, 437.5 MPa

835.3 MPa, 135.3 MPa, 32.21 2

x y xy

p

 

 		  c.	 Same answers as Part a.

	 6.5	 a.	 s 5 546.3 MPavM  

 		  b.	 s 5 910.5 MPavM  

 		  c.	 s 5 546.3 MPavM  
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	 6.6	 a.	

























5 3

2 2 2 2

2 2 2

2 2 2

2 2 2 2

2 2 2

2 2 2

[ ] 1.037 10

8437.5 1687.5 7762.5 337.5 675 1350
1687.5 3937.5 337.5 2137.5 2025 1800
7762.5 337.5 8437.5 1687.5 675 1350

337.5 2137.5 1687.5 3937.5 2025 1800
675 2025 675 2025 1350 0

1350 1800 1350 1800 0 3600

N/m5k  

	 b.	





























5 3

2 2 2

2 2 2

2 2 2

2
[ ] 2.24 10

25.0 0 12.5 6.25 12.5 6.25

9.375 9.375 4.6875 9.375 4.6875

15.625 7.8125 3.125 1.5625

27.343 1.5625 3.125

15.625 7.8125

Symmetry 27.343

N/m7k  

	
c.

	
k 5 3

3 3 2 3 2 3 2 3 2 3

3 3 3 2 3 2 3 2 3

2 3 3 3 2 3 2 3 3

2 3 2 3 2 3 3 3 2 3

2 3 2 3 2 3 3 3

2 3 2 3 3 2 3 3

[ ] 0.5

1.225 10 3.5 10 1.015 10 7 10 2.1 10 2.8 10

3.5 10 7 10 7 10 1.4 10 4.2 10 5.6 10

1.015 10 7 10 1.225 10 3.5 10 2.1 10 2.8 10

7 10 1.4 10 3.5 10 7 10 4.2 10 5.6 10

2.1 10 4.2 10 2.1 10 4.2 10 4.2 10 0

2.8 10 5.6 10 2.8 10 5.6 10 0 1.12 10

9 8 9 7 8 8

8 8 7 8 8 8

9 7 9 8 8 8

7 8 8 8 8 8

8 8 8 8 8

8 8 8 8 9



























 

	 6.7	 a.	 2.645 GPa, 0.078 GPa, 0.1165 GPa

0.0730 GPa, 2.65 GPa, 2.591 2

τx y xy

p

s s

s s u

5 2 5 2 5

5 2 5 2 5 2 8

 

 		
b.

	
0, 21.0 MPa, 16.8 MPa

30.3 MPa, 9.3 MPa, 291 2

τx y xy

p

s s

s s u

5 5 5

5 5 2 5 2 8
 

 		  c.	 ps s u5 5 2 5 2 81971 MPa, 15,971 MPa, 10.281 2  

	 6.8	 a.	 2.615 GPa,vMs 5  
 		  b.	 35.86 GPa,vMs 5  

 		  c.	 17.05 GPavMs 5  

	 6.9	 a.	 τx y xy

p

s s

s s u

5 2 5 2 5 2

5 2 5 2 5 2 8

262.5 MPa, 787.5 MPa, 315 MPa

114.96 MPa, 935.04 MPa, 25.11 2

 

 		  b.	 τx y xy

p

s s

s s u

5 2 5 2 5 2

5 2 5 2 5 2 8

262.1 MPa, 787.5 MPa, 367.5 MPa

73.04 MPa, 976.5 MPa, 27.21 2

 

 		  c.	 τx y xy

p

s s

s s u

5 2 5 2 52

5 2 5 2 5 2 8

524.9 MPa, 1574.7 MPa, 367.5 MPa

409.03 MPa, 1691.5 MPa, 17.471 2

 

 		  d.	 ps s u5 5 2 5 2 885.64 MPa, 820.6 MPa, 40.01 2  
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 		  e.	 ps s u5 2 5 2 5 2 8274.8 MPa, 6892.2 MPa, 39.21 2  

		  f.		 τx y xy

p

s s

s s u

5 2 5 2 5 2

5 2 5 2 5 2 8

393.75 MPa, 1181.25 MPa, 367.5 MPa

248.9 MPa, 1326.1 MPa, 21.51 2

 

	 6.10	 a.	 x y xy

p

τs s

s s u

5 2 5 2 5 2

5 2 5 2 5 2 8

78.75 MPa, 49.2 MPa, 8.07 MPa

47.1 MPa, 80.85 MPa, 14.31 2

 

 		  b.	 x y xy

p

τs s

s s u

5 2 5 2 5

5 2 5 2 5 2 8

47.1 MPa, 20.25 MPa, 8.07 MPa

18.0 MPa, 49.35 MPa, 15.51 2

 

 		  c.	 x y xy

p

τs s

s s u

5 2 5 2 5

5 2 5 2 5 2 8

41.4 MPa, 29.25 MPa, 6.06 MPa

26.85 MPa, 43.95 MPa, 22.51 2

 

 		  d.	 x y xy

p

τs s

s s u

5 5 5

5 5 2 5 2 8

6.03 MPa, 14.13 MPa, 16.155 MPa

26.745 MPa, 6.555 MPa, 381 2

 

	 6.11	 a.	 f f f p Lt f

f p Lt f

s x s y s x s y

s x s y

5 5 5 5

5 5

0, 0, / 6, 0

/ 3, 0

1 1 2 0 2

3 0 3

 

 		  b.	 f f p Lt f p Lts x s x s x5 5 50, / 12, / 41 2 0 3 0  

	 6.12	 a.	 f p Lt f p Lts y s y5 5/ 6, 1 / 31 1 3 2  

 		  b.	 f f p Lts y s y p5 5 /1 2 0  

	 6.13	

τ

τ

u v

u v

x y xy

p

x y xy

p

s s

s s u

s s

s s u

5 5 2

5 2 5 2

5 5 5 2

5 5 2 5 2 8

5 2 5 5 2

5 5 2 5 8

0.0714 mm, 39.3 mm

0.0869 mm, 0.0418 mm

25.84 MPa, 7.38 MPa, 51.69 MPa

69.11 MPa, 35.89 MPa, 44.37

26.4 MPa, 8.67 MPa, 12.92 MPa

12.91 MPa, 30.64 MPa, 20.2

3 3

4 4

(1) (1) (1)

1
(1)

2
(1) (1)

(2) (2) (2)

1
(2)

2
(2) (2)

 

	 6.14	 b.	 0.737 10 m, 0.1456 10 m2
4

2
4u v5 3 5 2 32 2

		  		  Stresses for right side triangle: 

				  
39.11 MPa, 38.1 MPa

82.98 MPa, 5.68 MPa1 2

x ys s

s s

5 5

5 5 2

		  c.	 0 m, 1.63 10 m

5.99 10 N/m , 3.78 10 N/m

4.05 10 N/m , 5.99 10 N/m

3.78 10 N/m , 0 , 5.64 10 N/m

1.88 10 N/m , 1.11 10 N/m

1.88 10 N/m , 5.64 10 N/m , 90

5 5
5

(1) 5 2 (1) 6 2

(1) 1 2
1
(1) 5 2

2
(1) 6 2 (1) (3) 6 2

(3) 7 2 (3) 1 2

1
(3) 7 2

2
(3) 6 2 (3)

τ

τ

u v

x y

xy

p x

y xy

p

s s

s

s u s

s

s s u

5 5 2 3

5 3 5 2 3

5 3 5 3

5 2 3 5 8 5 3

5 3 5 2 3

5 3 5 3 5 2 8

2

2

2
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	 6.16	 All fbx’s are equal to 0.

		  a.	 16.06 N, 32.12 N1 2 3 4 5f f f f fb y b y b y b y b y5 5 5 5 2 5 2  

		  c.	 20.56 N, 41.12 N1 2 3 4 5f f f f fb y b y b y b y b y5 5 5 5 2 5 2  

	 6.19	 b.	 Yes,    c.  Yes,     e.  Yes,    g.  No

	 6.21	 a.	 nb 5 8, 

 		  b.	 nb 5 12 

	 6.26	 g

s s

« 5 « 5 2 5 2

5 5 2 5 2τ
x y xy

x y xy

0.0009375 cm/cm, 0.00125 cm/cm, 0.000625 rad

129.9 MPa, 223.6 MPa, 50.5 MPa (all at center)

 

Chapter 7

	 7.13	 Stress approaches 29.6 kPa near edge of hole.

	 7.16	 3.48 MPa1s 5   at fillet

	 7.17	 For largest stress at fillet, s 5 2.23 MPa1 .

	 7.22	 3 kN / m (round hole model)

3.51 kN / m (square hole with corner radius)

1
2

1
2

s

s

5

5

 

	 7.24	 vMs 5 8.1 MPa  

	 7.25	 6131 N / m ( 210 GPa)

6153 N / m ( 70 GPa)

1
2

1
2

E

E

s

s

5 5

5 5

 

	 7.26	 vMs 5 6.17 MPa  at hole, 5.78 MPa at transition

	 7.28	 Largest von Mises stress 29.7 MPa at inside edge at junction of narrow to larger 
section of wrench

	 7.30	 Largest principal stress 111 MPa1s 5  at narrowest width of member

	 7.31	 6827 MPa1vs 5  at inside of upper radius

	 7.37	 For a thickness of 20 mm, vMs 5 49.7 MPa at bottom of hole in jaws

Chapter 8

	 8.2	
b

u u u u
h

v v v v

h
u u u u

b
v v v v

E E
G

x y

xy

x x y y y x xy xyν
ν

ν
ν τ

g

s s g

« 5 2 1 1 2 « 5 2 1 1 2

5 2 1 1 2 1 2 1 1 2

5
2

« 1 « 5
2

« 1 « 5

1

3
( 4 4 ),

1

3
( 4 4 )

1

3
( 4 4 )

1

3
( 4 4 )

1
( ),

1
( ),

1 2 4 5 1 3 4 6

1 3 4 6 1 3 4 6

2 2

 

	 8.3	 f f
pth

f
pth

s x s x s x5 5
2

5
2

6
,

2

3
1 3 5  
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	 8.4	 f f
p th

f
p th

s x s x s x5 5
2

5
2

0,
6

,
3

1 3
0

5
0  

	 8.5	 a.	

τ

y x

x y

x y

xy

x y xy

g

s s

« 5 2 3 1 3 « 5 2 3 1 3

5 3 2 3 1 3

5 5 2 5

2 2 2 2

2 2

1.25 10 6.25 10 , 4.6 10 8.33 10 ,

1.25 10 4.675 1.736 10

57.50 MPa, 87.71 MPa, 26.20 MPa

4 4 4 5

4 5

 

 		  b.	

g

s s

« 5 2 3 1 3 « 5 2 3 1 3

5 2 3 2 3 2 3

5 5 2 5 2

2 2 2 2

2 2 2

τ

y x

x y

x y

xy

x y xy

1.25 10 4.156 10 , 4.167 10 1.25 10

1.25 10 1.041 10 5.208 10

16.24 MPa, 145.04 MPa, 11.04 MPa

4 4 4 4

4 4 4

 

	 8.6	 x

y

xyg

« 5 3

« 5 2 3

5 2 3

2

2

2

2.54 10

7.62 10

7.04 10

3

3

3

 

	 8.7	 N
x x

N
x y x y xy

N
y y

N
xy y

N
y xy

5 2 1 5
2 1

1
1

2

5
2

1 5 2 5 2

1
20 1800

,
60 1800 900

60 1800
,

900 900
,

15 900
, etc.

1

2

2

2 2

3

2

4

2

5

 

Chapter 9

	 9.1	 a.	

























K 5 3

2

2 2 2 2

2

2 2

2

2

[ ] 175.84 10

5 1 0 1 1 0
1 4 2 1 2 3
0 2 8 0 4 2
1 1 0 1 1 0
1 2 4 1 4 1
0 3 2 0 1 3

N/m7  

 		  b.	



























K 5 3

2 2

2 2

2 2

2 2 2

2

2 2

[ ] 151.59 10

2.75 0 2.25 0.5 0.25 0.5

0 1 1 1 1 0

2.25 1 5.75 2.5 0.25 1.5

0.5 1 2.5 4 0.5 3

0.25 1 0.25 0.5 1.75 0.5

0.5 0 1.5 3 0.5 3

N/m7  

 
		  c.	 5 3

2 2 2
2 2 2 2

2 2 2

2 2 2 2
2

2 2 2























k
0.315

[ ] 127.75 10

0.682 0.140 0.298 0.070 0.035 0.070
0.140 0.368 0.070 0.053 0.280 0.315
0.298 0.070 1.242 0.280 0.315 0.035
0.070 0.053 0.280 0.368 0.140
0.035 0.280 0.315 0.140 0.490 0.140
0.070 0.315 0.350 0.315 0.140 0.630

N/m6
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	 9.2	 f
bp h

f
bp h

s r s r
p p

5 5
2

6
,

2

3
2

0
3

0  

	 9.3	 5 5 5

5 5 5 2

f f f

f f f
b r b r b r

b z b z b z

0.153 N

6.428 N
1 2 3

1 2 3

 

	 9.4	 a.	 τr z rzs s s5 5 5 5u140 MPa, 0, 140 MPa, 21 MPa  

 		  b.	 τr z rzs s s5 5 2 5 5u106.95 MPa, 61.04 MPa, 68.85 MPa, 7.0 MPa 

 		  c.	 τr z rzs s s5 5 5 5u164.49 MPa, 38.49 MPa, 199.47 MPa, 31.5 MPa 

	 9.6	 a.	 5

2

2 2 2 2



























k[ ] 3.519

3125 625 0 625 625 0
2500 1250 625 1250 1875

5000 0 2500 1250
625 625 0

2500 625

Symmetry 1875

kN/mm 

 		  b.	 k[ ] 5.865

2475 0 2025 450 225 450
900 900 900 900 0

5175 2250 225 1350
3600 450 2700

1575 450

Symmetry 2700

kN/mm

























5

2 2

2 2

2

2
 

     c.	 k 5 3

3 3 2 3 2 3 3 2 3

3 3 2 3 2 3 2 3 2 3

2 3 2 3 3 2 3 3 3

2 3 2 3 2 3 3 3 2 3

3 2 3 3 3 3 3

2 3 2 3 3 2 3 3 3

[ ] 0.5

8.577 10 1.759 10 3.738 10 8.796 10 4.398 10 8.796 10

1.759 10 4.618 10 8.796 10 6.597 10 3.519 10 3.958 10

3.738 10 8.796 10 1.561 10 3.519 10 3.958 10 4.398 10

8.796 10 6.597 10 3.519 10 4.618 10 1.759 10 3.958 10

4.398 10 3.519 10 3.958 10 1.759 10 6.158 10 1.759 10

8.796 10 3.958 10 4.398 10 3.958 10 1.759 10 7.917 10

8 8 8 7 7 7

8 8 7 7 8 8

8 7 9 8 8 8

7 7 8 8 8 8

7 8 8 8 8 8

7 8 8 8 8 8



























 

	 9.7	 a.	 r z rzs s s5 2 5 2 5 5 2u42 MPa, 42 MPa, 126 MPa, 50.5 MPaτ  

 		  b.	 84 MPa, 33.6 MPa, 33.6 MPa, 25.2 MPar z rzs s s5 2 5 2 5 5 2u τ  

 		  c.	 r z rzs s s5 2 5 2 5 5 2u1435 MPa, 1225 MPa, 1785 MPa, 945 MPaτ  

	 9.12	 rs s5u  

	 9.14	 Using 6 mm radii in corners, s 5 2079 MPa1  at inside corner

	 9.18	 s 5 200 MPavM  near the top of the hole

	 9.19	 s 5u 159 MPa, 0.93 mmur 5  

	 9.20	 52.5 MPa1s 5 , ur 5 0.0782 m at top and bottom center of plates
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Chapter 10

	 10.2	 a.	 s 5 20.2 	 b.  N N5 50.6, 0.41 2  (for both of 3-noded bars)

	 10.3	 a.	 s 5 0.5 	 b.  N N5 50.25, 0.751 2       c.  5u 0.175 mmA  for Fig. (a)

		  a.	 5s 0 	 b.  5 5N N 0.501 2                       c.  5u 0.075 mmA  (for Fig. (b))

Chapter 11

	 11.1	 a.	

























B 5

2

2

2

2 2

2 2

2 2

[ ]
1

8

0 0 0 0 0 0 4 0 0 4 0 0
0 0 0 0 4 0 0 0 0 0 4 0
0 0 4 0 0 0 0 0 0 0 0 4
0 0 0 4 0 0 0 4 0 4 4 0
0 4 0 0 0 4 0 0 0 0 4 4
4 0 0 0 0 0 0 0 4 4 0 4

 

 		  b.	 B



























5

2

2

2

2 2

2 2

2 2

[ ]

0.5 0 0 0 0 0 0.5 0 0 0 0 0

0 0.75 0 0 0 0 0 0.25 0 0 0.5 0

0 0 0.75 0 0 0.5 0 0 0.25 0 0 0

0.75 0.5 0 0 0 0 0.25 0.5 0 0.5 0 0

0 0.75 0.75 0 0.5 0 0 0.25 0.25 0 0 0.5

0.75 0 0.5 0.5 0 0 0.25 0 0.5 0 0 0

 

	 11.2	 a.	

k







































5

2 2

2 2

2 2 2

2 2

2 2 2

2 2

2 2 2

2 2

2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

3[ ]

26.922 0 0 0 0 0 0 0 26.922 26.922 0 26.922
0 26.922 0 0 0 26.922 0 0 0 0 26.922 26.922
0 0 94.234 0 40.383 0 40.383 0 0 40.383 40.383 94.234
0 0 0 26.922 0 0 0 26.922 0 26.922 26.922 0
0 0 40.383 0 94.234 0 40.383 0 0 40.383 94.234 40.383
0 26.922 0 0 0 26.922 0 0 0 0 26.922 26.922
0 0 40.383 0 40.383 0 94.234 0 0 94.234 40.383 40.383
0 0 0 26.922 0 0 0 26.922 0 26.922 26.922 0

26.922 0 0 0 0 0 0 0 26.922 26.922 0 26.922
26.922 0 40.383 26.922 40.383 0 94.234 26.922 26.922 148.08 67.305 67.305

0 26.922 40.383 26.922 94.234 26.922 40.383 26.922 0 67.305 148.08 67.305
26.922 26.922 94.234 0 40.383 26.922 40.383 0 26.922 67.305 67.305 148.08

109 N

m

 

	 10.4		  N s s s N s s s

N s s s N s s s

5 2 1 1 2 5 2 2 1

5 2 2 1 1 5 1 2 2

(2 / 3) (2 / 3) / 6 1 / 6, (4 / 3) (2 / 3) (4 / 3) 2 / 3

(4 / 3) (2 / 3) (4 / 3) 2 / 3, (2 / 3) (2 / 3) / 6 1 / 6

1
3 2

2
3 2

3
3 2

4
3 2  

	 10.5	 a.	 s 5 20.4 	 b.  N N N5 5 2 50.28, 0.12, 0.841 2 3    c.  x« 5 2 3 23 10 12 (for Fig. (a))

	 10.6	 a.	 s 5 0.5 	 b.  5 2 5 5 5N N N u0.125, 0.375, 0.75 0.0015 mm (all for Fig. (a))1 2 3 A  

	 10.8		  4.859 10 m (right end), 2.793 10 m (center)2
4

3
4u u5 3 5 32 2  

	10.13		  f f pLt f f pLts s s t s s s t5 5 5 50, / 2, 0, / 23 3 4 4  

	10.14	 a.	 f fs t s t5 5500 N, 500 N3 4        b.  f fs t s t5 5166.33 N, 83.33 N1 4  

	10.15	 a.	 1.918,    b.  0.667,    c.  0.400,    d.  2.87,    f.  0    g.  2.705 (Exact)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Answers to Selected Problems 929

	 11.3	 a.	 x y z

xy yx zxτ τ τ
s s s5 5 5 2

5 5 2 5

1298.33 MPa, 144.16 MPa, 816.66 MPa

191.66 MPa, 385.0 MPa, 96.16 MPa

 

 		  b.	 x y z

xy yz zxτ τ τ
s s s5 5 5

5 2 5 5 2

144.23 MPa, 144.23 MPa, 336.53 MPa

576.92 MPa, 480.76 MPa, 384.61 MPa

 

	 11.6	 a.	 B

























5 3

2

2 2

2 2

2 2 2

2 2 2 2

2 2 2

[ ]
1

18,750

625 0 0 0 0 0 0 0 0 625 0 0
0 375 0 0 750 0 0 0 0 0 375 0
0 0 375 0 0 0 0 0 750 0 0 375

375 625 0 750 0 0 0 0 0 375 625 0
0 375 375 0 0 750 0 750 0 0 375 375

375 0 625 0 0 0 750 0 0 375 0 625

 

 		  b.	 5

2

2 2

2 2

2 2 2

2 2 2 2

2 2 2

























B[ ]

0.125 0 0 0 0 0 0 0 0 0.125 0 0
0 0.05 0 0 0.2 0 0 0 0 0 0.15 0
0 0 0.05 0 0 0 0 0 0.2 0 0 0.15
0.05 0.125 0 0.2 0 0 0 0 0 0.15 0.125 0
0 0.05 0.05 0 0 0.2 0 0.2 0 0 0.15 0.15
0.05 0 0.125 0 0 0 0.2 0 0 0.15 0 0.125

 

	 11.8	 a.	 34.62 MPa, 80.77 MPa, 34.62 MPa

28.21 MPa, 15.38 MPa, 43.59 MPa
x y z

xy yz zx

s s s5 5 5

5 5 5τ τ τ
 

	 11.9	 u a a x a y a z a xy a xz a yz a x a y a z5 1 1 1 1 1 1 1 1 11 2 3 4 5 6 7 8
2

9
2

10
2 

	11.10	 Loads must be in the y – z plane

	11.11	
(1 )(1 )(1 )

8
,

(1 )(1 )(1 )

8
,

(1 )(1 )(1 )

8
,

(1 )(1 )(1 )

8
,

(1 )(1 )(1 )

8
(1 )(1 )(1 )

8
,

(1 )(1 )(1 )

8

2 3

4

5 6

7 8

N
s t z

N
s t z

N
s t z

N
s t z

N
s t z

N
s t z

N
s t z

5
2 2 2 9

5
2 1 2 9

5
2 1 1 9

5
1 2 1 9

5
1 2 2 9

5
1 1 2 9

5
1 1 1 9

 

	11.12	 N
s t z s t z

N
s t z s t z

5
2 2 1 9 2 2 1 9 2

5
2 2 2 9 2 2 2 9 2

(1 )(1 )(1 )( 2)

8
,

(1 )(1 )(1 )( 2)

8

1

2

 

	11.14	 5 2w 14.61 mm under the load, 5 2w 14.45 mm at front corner

	11.15	 5 2d 0.439 mmmax  at free end

	11.19	 Largest 758 MPavMs 5  at elbow, 4.13 mmmaxd 5  at free end

	11.21	 Largest 219 MPavMs 5  at elbow, 18.8 mmmaxd 5  at free end

	11.26	 Largest 534 MPavMs 5  due to 1200 N

	11.28	 Largest 186 MPavMs 5  at inner semi-circular face
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Chapter 12

	 12.1	 Using an 8 8 mesh3 , d 5 0.00155 m,max  s 5 66.4 MPavM  (These values match the 
analytical solution.)

	 12.2	 d s5 2 50.188 mm, 11,77 MPamax vM  

	 12.3	 d s5 2 58.55 mm, 216 MPamax max  

	 12.4	 d 5 0.0324 mmmax  

	 12.6	 d 5 22.59 mm (6 mm thick plate)max  

	 12.8	 0.3306 mm, 22.73 MPamax maxd s5 5  

	 12.9	 0.379 mm, 55.8 MPamax vMd s5 2 5  

	12.10	 68.9 mmmaxd 5  (too large for small deflection assumption)

Chapter 13

	 13.1	 t t5 8 5 8166.7 C, 233.3 C2 3  

	 13.2	 t t t5 8 5 8 5 866.2 C, 41.8 C, 20.3 C2 3 4  

	 13.3	 t t F5 8 5 8 5 225.4 C, 32.4 C, 0.84 W2 3 1  

	 13.4	 t t t t5 8 5 8 5 8 5 867.54 C, 65.92 C, 61.06 C, 52.96 C1 2 3 4  

	 13.5	 t t t t5 8 5 8 5 8 5 858.3 C, 66.7 C, 75 C, 83.3 C2 3 4 5  

	 13.6	 t t q5 8 5 8 5457 C, 243 C, 2145 W m2 3
(3) 2 

	 13.7	 t t5 8 5 8318.2 C, 427.3 C2 3  

	 13.8	 t t t q5 8 5 8 5 8 5230 C, 110 C, 50 C, 6000 W m1 2 3
(3) 2 

	 13.9	 t t t t5 8 5 8 5 2 8 5 2 814.5 C, 14.2 C, 7.88 C, 8.15 C1 2 3 4  

	13.10	 t t t t q5 8 5 8 5 2 8 5 2 8 518.5 C, 16.7 C, 17.7 C, 19.3 C, 14.5 W m1 2 3 4
(1) 2 

	13.12	 185 C8  at right end, 439 Wmaxq 5  

	13.13	 5 8 5 8 5 2 8 5 2 818.84 C, 15.0 C, 14.46 C, 14.54 C1 2 3 4t t t t  

	13.14	 t t5 8 5 8291 C, 372 C2 3  

	13.15	 t t t t5 8 5 8 5 8 5 8232 C, 228 C 224 C, 220 C1 2 3 4  

	13.16	 t t t5 8 5 8 5 887.95 C, 86.72 C, 86.4 C2 3 4  

	13.17	 k
AK

L
xx

5
2

2
[ ] 1 1

1 1








  

	13.18	 fh5 5 `[k ] hA
1 0
0 0

, { } hT A
1
0h left left



















 

	13.19	



























5

2

2 5[ ]
196.94 74.79 9.03

185.69 2.77
11.80

, { }
5204
5204
50

Wk f  
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	13.20	 5

2

2
8

[ ]
60.88 4.55 26.12

7.73 3.18
59.52

W

C
k

















 

	13.23	 5 860 Cmaxt  

	13.35	 t 24.28 C (at right end)5 8  

	13.37	 167 W, 108 Wmax minq q5 5 2  

	13.42	 t 189 C (at right end)5 8  

	13.44	 T 323 K5  located where q* is applied

	13.48	 5 8 5 8 5 8 5 817.79 C, 24.66 C, 31.04 C, 36.61 C2 3 4 5t t t t  

Chapter 14

	 14.1	 4.545 m, 1.818 m, 10.91 m/s, 21.82 m /s2 3
(1) (1) 3p p v Qx f5 5 5 5  

	 14.2	 40 m, 90 m, 140 m, 50 m/s, 100 m /s2 3 4
(1)

1
3p p p v Qx5 2 5 2 5 2 5 5  

	 14.3	 5 5 5 5

5 5

16.364 cm, 10.909 cm, 0.364 cm/s, 0.546 cm/s,

1.09 cm/s, 8.736 cm /s

2 3
(1) (2)

(3) (1) 3

p p v v

v Q

x x

x f

 

	 14.4	 6 cm, 16 cm, 2.4 cm/s, 4 cm/s,

12 cm /s

2 3
(1) (2)

1 2
3

p p v v

Q Q

x x5 2 5 2 5 5

5 5

 

	 14.6	 5 5 5 54.0 cm/s, 8.0 cm/s, 32 cm /s(1) (2) (1) (2) 3v v Q Q  

	 14.7	 a.	 0.897 N/m , 0.691 N/m , 0.515 N/m , 0.897 m /s,

0.103 m /s, 0.059 m /s, 0.044 m /s, 0.103 m /s

1
2

2
2

3
2

1
3

2
3

3
3

4
3

5
3

p p p q

q q q q

5 5 5 5

5 5 5 5

 

 		  b.	 5 5 5 5 5

5 5 5

8512.8 Pa, 5538.5 Pa, 2974.5 Pa, 851 m /s, 149 m /s,

85 m /s, 64 m /s, 59 m /s

1 2 3 1
3

2
3

3
3

4
3

5
3

p p p q q

q q q

 

	 14.8	 fQ 5{ }
54.76
28.57
16.67

m /s3












 

	 14.9	 5 5 520 cm /s, 01 3
3

2f f f  

	14.10	 12 m, 11 m2 3 5p p p5 5 5  

	14.17	 0.161 amps, 0.027 amps, 0.487 amps, branch amps :

0.134 amps, 0.513 amps
1 2 3 AD

BC

I I I I

I

5 5 5 2 5

5

 

	14.18	 0.853 amps, 0.458 amps, 0.158 amps, 0.695 amps,

0.30 amps
1 2 3 AB

BC

I I I I

I

5 2 5 2 5 2 5 2

5 2
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	14.19	 Original resistors too small, standard resistor sizes, 715 ohms, 806 ohms1 2R R5 5  
make 0.024 amps, 0.011 amps1 2I I5 5  and branch amps: 0.013 amps,ADI 5  

0.011 ampsBCI 5  

	14.20	 Original resistors too small, standard resistor sizes, 2000 ohms, 1270 ohms1 2R R5 5 ,  
make 0.015 amps, 0.00945 amps1 2I I5 5 . So diode amps are less than 0.015 amps.

Chapter 15

	 15.1	 s5 5 50.18 mm, 0.36 mm, 02 3u u x  

	 15.2	 0, 70.2 MPa2u xs5 5  

	 15.3	 s

s s

5 5 2 5

5 2 5

0.255 mm, 17.85 MPa (T)

25.2 MPa (C), 17.85 MPa (T)

1 1
(1)

(2) (3)

u v  

	 15.4	

s s s

5 2 5 2

5 2 5 5 2

0.208 mm, 0.072 mm

2.520 MPa (C), 5.040 MPa (T), 2.520 MPa (C)

1 1

(1) (2) (3)

u v  

	 15.5	 2.88 10 m, 38.4 MPa (C), 19.2 MPa (C)2
4 (1) (2) (3)u s s s5 3 5 2 5 5 22  

	 15.6	 0, 9.0 10 m, 15.8 MPa (C)

27.3 MPa (T)

1 1
4 (1) (3)

(2)

u v s s

s

5 5 3 5 5 2

5

2  

	 15.7	 0, 3.6 10 m, 01 1
4 (1) (2)u v s s5 5 2 3 5 52  

	 15.8	 s s5 5 50.396 mm, 5040 kPa (T), 10,080 kPa (C)2u st br  

	 15.9	 810 C increase in elements 1 and 3 also

	15.11	 Yes, s s5 3 5 5 22450 10 L, 18.90 MPa (T), 18.90 MPa (C)6
1u st a  

	15.12	 a.	 3 27.02 10 m6  	 b.  s s5 2 5 278.63 MPa, 52.406 MPabr mg  

	15.13	 5 5 5 2

5 5 5 2

6750 N, 13,590 N, 6750 N

13,590 N, 0, 27,000 N

1 1 2

2 3 3

f f f

f f f

T x T y T x

T y T x T y

 

	15.14	 71.9 kN, 0, 71.9 kN, 143.8 kN

0, 143.8 kN

1 1 2 2

3 3

f f f f

f f

T x T y T x T y

T x T y

5 2 5 5 5 2

5 5

 

	15.15	 5 2 5 2 5 5

5 5

79.2 kN, 118.8 kN, 79.2 kN, 0,

0, 118.8 kN

1 1 2 2

3 3

f f f f

f f

T x T y T x T y

T x T y

 

	15.16	 134 kN, 134 kN, 134 kN, 0

0, 134 kN

1 1 2 2

3 3

f f f f

f f

T x T y T x T y

T x T y

5 5 5 2 5

5 5 2

 

	15.17	 τs s5 5 2 551.92 MPa (C), 0x y xy  

	15.18	 x y xys s5 5 567.2 MPa, 67.2 MPa, 0τ  

	15.19	 f
AE T

T
a

5
2{ }

3

2
1
1

0 






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	15.20	
AE t t

t t
a 2 2

12
1 2

1 2












 

	15.21	 f
rAE T B

T

T

ν



















p a
5

2
{ }

2 ( )[ ]

1 2

1
1
1
0

 

	15.22	 stresses are zero

	15.23	 s 5 756 MPamax  

	15.24	 Same answers as P15.3 

	15.25	 Same answers as P15.6 

Chapter 16

	 16.1	 M
ALr

5[ ]
6

2 1 0
1 4 1
0 1 2
















 

	 16.2	 a.	 M
AL



















r
5[ ]

2

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

 

 		  b.	 M
AL



















r
5[ ]

6

2 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2

 

	 16.3	 uv v m5 50.806 , 2.811 2  

	 16.4	 v v5 3 5 35.496 10 rad/s, 17.974 10 rad/s1
3

2
3

	 16.5	 a.	

t (s) di (m) �di (m/s) /��di (m s )2

0 0 0 8.33

0.03 0.00375 0.235 7.36

0.06 0.01412 0.3425 20.231

0.09 0.0243 0.224 27.63

0.12 0.0276 20.1167 215.1

0.15 0.0173 20.478 28.967
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	 16.6	 a.	

t (s) di (m) �di (m/s) /��di (m s )2

0 0 0 3.33

0.02 3 26.667 10 4 0.056 2.262

0.04 3 22.24 10 3 0.092 0.656

0.06 4.34 3 1023 0.092 21.27

0.08 5.93 3 1023 0.0505 22.89

0.10 6.36 3 1023 20.0168 23.816

		  b.	

t (s) di (m) �di (m/s) /��di (m s )2 F(t) (N)

0.00 0.00000 0.000 3.33 100

0.02 5.98 3 1024 0.0564 2.31 80

0.04 2.08 3 1023 0.0864 20.69 60

0.06 3.835 3 1023 0.0836 20.975 40

0.08 5.21 3 1023 0.048 22.51 20

0.10 5.61 3 1023 20.0109 23.38 0.0

	16.11	 a.	
3.15

,
16.24

1 2

1/2

2 2

1/2









L

EI

A L

EI

A
v

r
v

r
5 5  (2 element model),

 		  b.	
L

EI

A
v

r
5

198.4
1 2

1/2





 (3 element model),

 		  c.	
L

EI

A
v

r
5

9.8
1 2

1/2





 (2 element model),     d. 
L

EI

A
v

r
5

14.8
2

1/2





 (2 element model)

	16.18	
Node: 1 2 3 4 5 6

i t (s) Temperature ( C)88

0 0 200 200 200 200 200 200

1 8 0 159.0095 191.4441 198.2110 199.6110 199.8444

2 16 0 135.5852 178.1491 193.6620 198.2112 199.1445

3 24 0 120.2309 165.7003 187.3485 195.5379 197.5152

4 32 0 109.1993 154.9587 180.4038 191.7446 194.8115

5 40 0 100.7600 145.7784 173.4129 187.1268 191.1242

6 48 0 94.00311 137.8529 166.6182 181.9599 186.6590

7 56 0 88.39929 130.9034 160.1012 176.4598 181.6395

8 64 0 83.61745 124.7101 153.8759 170.7856 176.2620

9 72 0 79.43935 119.1075 147.9316 165.0508 170.6822

10 80 0 75.71603 113.9733 142.2502 159.3352 165.0171
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	16.19	

Node

Time (s) 1 2 3 (using consistent capacitance matrix)

Temperature ( C)88

0 25 25 25

0.1 85 18.53611 26.36189

0.2 85 29.61303 21.63526

0.3 85 36.18435 22.42717

0.4 85 40.72491 25.30428

0.5 85 44.27834 28.85201

0.6 85 47.29072 32.49614

0.7 85 49.95809 36.01157

0.8 85 52.37152 39.31761

0.9 85 54.57756 42.39278

1 85 56.60353 45.23933

1.1 85 58.46814 47.86852

1.2 85 60.1859 50.29457

1.3 85 61.76908 52.53218

1.4 85 63.22852 54.59557

1.5 85 64.574 56.49814

1.6 85 65.81448 58.25235

1.7 85 66.95818 59.86974

1.8 85 68.01265 61.36096

1.9 85 68.98485 62.73586

2 85 69.88121 64.0035

2.1 85 70.70765 65.17226

2.2 85 71.46961 66.24984

2.3 85 72.17214 67.24336

2.4 85 72.81986 68.15938

2.5 85 73.41705 69.00393

2.6 85 73.96766 69.78261

2.7 85 74.47531 70.50053

2.8 85 74.94336 71.16246

2.9 85 75.3749 71.77274

3 85 75.77277 72.33542
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Appendix A

	 A1.	 a.	 6 0
3 12









  	 b.  Nonsense	 c.  Nonsense

 		  d.	
20
26
8












 	 e.  Nonsense	 f. 

2 2

19 26 3
3 2 9









 

	 A2.	
2

01
4

1
32

1
8














 

	 A3.	
2 2

2

2

1

220

50 10 10
10 24 2
10 2 46
















 

	 A4.	 Nonsense

	 A5.	
2

01
2

1
4

1
4














 

	 A6.	 Same as A3.

	 A8.	












cos sin

sin cos

u u

u u

2
 

	 A10.	
E

L
2

2

1 1
1 1









  

Appendix B

	 B1.	 x x5 54, 31 2  

	 B2.	 x x5 54, 31 2  

	 B3.	 x x x5 5 2 5 22.3, 0.1, 0.21 2 3  

	 B4.	 x x x5 5 2 5 23, 1, 21 2 3  

	 B5.	 a.	
x

x

y

y
5

2

2

3 2
2 1

1

2

1

2


































 	 b. 

z

z

y

y
5

2

2

7 4
16 10

1

2

1

2


































 

 		  c.	
y

y

z

z
5

2

2

5

3

2

3
8

3

7

6

1

2

1

2










































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	 B6.	 x x x x x5 5 5 5 50, 1, 2, 2, 01 2 3 4 5  

	 B7.	 x x5 54, 31 2  

	 B8.	 a.	 Nonunique    b.  Unique    c.  Nonexistent    d.  Nonunique

Appendix D
	 D1.	 a.	 5 5 2 5 2 5 225 kN, 37.5 kN-m1 2 1 2f f m my y  

 		  b.	 5 5 2 5 2 5 225 kN, 28.125 kN-m1 2 1 2f f m my y  

 		  c.	 5 5 2 5 2 5 275 kN, 125 kN-m1 2 1 2f f m my y  

 		  d.	 5 2 5 2 5 2 585.625 kN, 29.375 kN, 80.625 kN-m, 46.875 kN-m1 2 1 2f f m my y  

 		  e.	 5 2 5 2 5 2 527.0 kN, 63.0 kN, 36.0 kN-m, 54.0 kN-m1 2 1 2f f m my y  

 		  f.		 4.01 kN, 0.99 kN, 2.04 kN m, 5.10 kN m1 2 1 2f f m my y5 2 5 2 5 2 ? 5 ?  

 		  g.	 6 kN, 7.5 kN m1 2 1 2f f m my y5 5 2 5 2 5 2 ?  

 		  h.	 10 kN, 6.67 kN m1 2 1 2f f m my y5 5 2 5 2 5 2 ?  
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A
Adjoint matrix, 837
Adjoint method, 835–837
Admissible variation, 58–59
Amplitude, 763
Approximation functions, 78–80, 213, 344–348, 438–

440, 455–457, 578–580, 607–608, 626–627
axisymmetric elements, 455–457
bar elements, 78–82
beam elements, 213
conforming (compatible) functions, 81
constant-strain triangular (CST) elements, 344–348
displacement functions, 79–82, 213, 344–348, 438–

440, 578–580
heat transfer, 607–608, 626–627
interpolation functions, 80
linear-strain triangle (LST) elements, 438–440
plate bending elements, 578–580
shape functions, 80, 347, 438–439, 456–457 
temperature functions, 607–608, 626–627

Aspect ratios, 392–395
Axial (longitudinal) displacement, 73–76
Axial displacement function, 75
Axial symmetry, 109
Axis of symmetry (revolution) for, 452
Axisymmetric elements, 10,11, 451–485, 732–733, 

799–800
applications of, 468–473
axis of symmetry (revolution) for, 452
body force distribution, 459–460
defined, 10, 11
discretization, 462–463
displacement functions, 455–457
element type selection, 455
mass matrix, 799–800
pressure vessels, 462–468
shape functions, 456–457, 799–800
stiffness matrix, 451–462, 463–467
strain/displacement relationships, 454, 457–458
stress/strain relationships, 452–454, 457–458
surface forces of, 460–461
thermal stress in, 732–733
von Mises stresses of, 470–472

B
Banded matrix, 857
Banded-symmetric matrices, 856–863
Bar elements, 72–168, 258–261, 487–492,  

515–520, 731, 733, 764–768, 780–789
arbitrarily oriented in plane, 84–89
body forces and, 491
boundary conditions, 767–768
displacement functions, 78–82, 488–489, 764
dynamic analysis of, 764–768, 780–784
element type selection, 75, 487–488, 764
exact solution, 132–136
finite element comparison, 132–136
frames with beam elements and, 258–261
Galerkin’s residual method, 136–139
global equations, 767–768
gradient matrix, 124, 490, 498
isoparametric formulation, 487–492, 515–520
Jacobian matrix, 490
linear-strain (three-node), 515–520
local coordinates, 73–78
mass matrix, 765–767
natural frequency, 780–784
one-dimensional, 78–82, 136–143, 731, 733, 78–789
potential energy approach, 121–132
residual methods for, 136–143
shape functions, 80, 488–489
stiffness matrix, 73–78, 84–89, 487–492, 765–767
strain/displacement of, 75, 489–490, 764–765
stress, computation for in x–y plane, 89–91
stress/strain relationships, 75, 489–490, 764–765
surface forces and, 491–492
thermal stress in, 731, 733
three-dimensional, 100–109, 143
time-dependent (dynamic) analysis, 764–768, 

780–789
transformation of vectors in two dimensions, 82–84
two-dimensional, 82–84

Beam elements, 169–238, 239–243, 280–294, 789–796
frames with bar elements and, 258–261
boundary conditions, 180–182
curvature (k ) of, 172
defined, 170

I N D E X
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direct stiffness method for, 182–195
displacement functions, 173–174
distributed loading, 195–208
element type selection, 172–173
Euler-Bernoulli beam theory, 171–177
exact solution, 208–214
finite element solution, 208–214
flexure formula for, 175
frame equations, 239–243, 280–294
Galerkin’s method for, 225–227
global equations, 180–182
load replacement, 197–198
mass matrix, 789–796
natural frequency, 789–796
nodal forces, 198–199
nodal hinges for, 214–221
plane, arbitrary orientation in, 239–243
potential energy approach to, 222–225
shape functions, 174
sign conventions, 170–171
space, arbitrary orientation in, 280–294
stiffness matrix for, 171–182
stiffness, 170–180
strain/displacement relationship, 174–175
strain energy, 225
stress/strain relationship, 174–175
time-dependent (dynamic) analysis,  

789–796
Timoshenko beam theory, 177–180
transformation matrix, 239–243, 282–285
transverse shear deformation and, 177–180
work-equivalence method for, 196–198

Bending, 281–285, 378–379, 572–598
CST and Q4 displacement comparison, 378–379
frame equations, 281–285
geometry and deformation from, 573
Kirchhoff assumptions for displacement from, 

573–575
plate elements, 572–598
pure, 378–379

Bilinear quadratic (Q6) elements, 521–522
Body forces, 357–359, 459–460, 491, 500, 543–544

axisymmetric elements, 459–460
bar elements, 491
centrifugal, 358
plane stress and plane strain from, 357–359
rectangular (Q4) plane elements, 500
tetrahedral elements, 543–544

Boundary conditions, 35, 40–55, 180–182,  
353–355, 603–604, 612, 676–678, 682, 709–710, 
767–768

bar elements, 767–768
beam elements, 180–182
constant-strain triangular elements, 353–355
differential equations and, 603–604, 676–678
electrostatics, 709–710
fluid flow, 676–678, 682, 709–710
heat transfer, 603–604, 612
homogeneous, 41–42
nodal displacements and, 40–44
nonhomogeneous, 42–44
spring elements, 35, 40–55
stiffness method and, 35, 40–44
time-dependent (dynamic) analysis, 767–768

Boundary elements for support evaluation, 120–121
Branch elements, 687–688

C
Cartesian coordinates, 537–538
Central difference method, 768–774
Centrifugal body forces, 358
Coarse-mesh generation, 343
Coefficient matrix inversion, 846–847
Coefficient of thermal expansion, 728
Cofactor matrix, 836
Cofactor method, 835–837
Collocation method, 140–141
Column matrix, 5, 827
Combining elements, 21, 23, 403–404

finite element method for, 21, 23
modeling, 403–404

Compatibility equations, 867–869
Compatibility of modeling results, 405–408
Complete pivoting, 854
Computational fluid dynamics (CFD), 21
Computer programs, 25–27, 144–145, 414–419, 584–

588, 808–816, 861–863
damping, 812–816
finite element method and, 25–27
plate bending element solutions, 584–588
simultaneous linear equations, 861–863
step-by-step modeling, 414–419
structural dynamics solutions, 808–816
time-dependent problem solutions, 808–816
truss problem solutions, 144–145

Computer role in finite element method 6–7
Concentrated (point) loads, 402
Conduction, 601–605, 608–612, 628–629

element conduction matrix, 608–612, 628–629
Fourier’s law of heat conduction, 602
one-dimensional heat transfer, 601–605, 608–612
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Conduction (continued )
two-dimensional heat transfer, 603–604, 628–629
with convection, 604–605
without convection, 601–604

Conforming (compatible) functions, 81
Conservation of energy principle, 601–602, 642
Conservation of mass, 674–675
Consistent loads, 353
Consistent-mass matrix, 766–767, 790, 797–800
Constant-strain triangular (CST) elements,  

342–357, 362–363, 377–379, 402, 444–447
boundary conditions, 353–355
displacement functions, 344–348
displacement results, 378–379
element forces (stresses), 355
element type selection, 343
explicit expression for, 362–363
global equations, 353–355
LST elements, comparison of, 444–447
nodal displacements, 355
plane stress and plane strain equations,  

342–357, 362–363
potential energy approach for, 350–353
rectangular (Q4) plane elements comparison to, 

377–379
shape functions, 347
stiffness matrix, 342–357
strain/displacement relationship, 348–350
stress results, 379
stress/strain relationship, 350
transition triangles for modeling, 402

Constitutive law, 12
Convection, heat transfer with, 604–606
Coordinates, 73–78, 487, 537–538

bar elements, 73–78
Cartesian, 537–538
local, 73–78
natural (intrinsic), 487
stiffness matrix, 73–78
stress analysis, 537–538
three-dimensional elements, 537–538
trusses, 73–78

Coulomb’s law, 701–702
Cramer’s rule, 845–846
Cross sections for grid equations, 265–267
CST elements, see Constant-strain triangular (CST) 

elements
Cubic elements, 10, 11
Cubic rectangles (Q12), 525–526
Current flow, 698–699
Curvature, 170–171, 576–577, 580–581

beams, 170–171

moments of, 576–577, 580–581
plate bending elements, 576–577, 580–581
stress/strain relationships and, 576–577
strain/displacement relationships, 580–581

D
Damping, 812–816
Darcy’s law, 675
Deformation of plate bending elements, 573
Degrees of freedom, 15, 16, 32
Determinants, 835–837
Dielectric constants, 704–705
Differential equations, 601–605, 674–678

boundary conditions and, 603–604, 676–678
conservation of energy, 601–602
conservation of mass, 674–675
convection, 604–605
Darcy’s law, 675
fluid flow, 674–678
Fourier’s law of heat conduction, 602
heat transfer, 601–605
one-dimensional heat conduction, 601–603
pipes, flow through, 677–678
porous medium, flow through, 674–676
solid bodies, flow around, 677–678
two-dimensional heat conduction, 603–604

Differentiating a matrix, 833–834
Direct methods, 8, 14, 31–71

force (flexibility), 8
displacement (stiffness), 8, 31–71

Direct stiffness method, 3, 14
Direct stiffness method, 3, 14, 31, 38–40, 182–195, 612, 

624–626. See also Superposition
beam analysis using, 182–195
global equations assembled using, 14, 612
heat transfer equations from, 612, 624–626
history of, 8
spring analysis using, 38–40
superposition methods as, 14, 31
total stiffness matrix from, 38–40

Discretization, 2, 9–10, 364–365, 395–397, 462–463
axisymmetric pressure vessels, 462–463
coarse-mesh generation, 343
finite method use of, 2, 9–10, 364–365
natural subdivisions for, 395–397
plane stress and, 364–365

Displacement, 32–33, 35, 40–41, 73–76, 78–82, 378–
379, 573–575. See also  
Strain/displacement relationships

axial (longitudinal), 73–76
bar elements, 73–76
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CST and Q4 result comparison, 378–379
Kirchhoff assumptions and, 573–575
nodal, 32–33, 35, 40–41, 73–76, 78–82
plate bending elements, 573–575
spring elements, 32–33, 35, 40–41
truss elements, 76, 78–82

Displacement functions, 10–12, 78–82, 173–174, 
344–348, 375, 438–440, 455–457, 488–489, 495, 
540–542, 578–580, 764

axisymmetric elements, 455–457, 488–489
bar elements, 78–82, 764
beam elements, 173–174
conforming (compatible) functions, 81
constant-strain triangular (CST) elements, 344–348
finite element method selection of, 10–12
interpolation functions, 80
isoparametric formulation and, 488–489, 495
linear-strain triangle (LST) elements, 438–440
one-dimensional bars, 78–82
plate bending elements, 578–580
rectangular (Q4) plane elements, 375, 495
shape functions and, 80, 174, 456–457, 488–489
tetrahedral elements, 540–542
time-dependent (dynamic) analysis, 764

Displacement (stiffness) method, 8, 31–71. See also 
Stiffness method

Distributed loading, 195–208
beam elements, 195–208
fixed-end reactions and, 195–196
load replacement, 197–198
nodal forces, 198–199
work-equivalence method for, 196–198

Dynamic analysis, 761–826
axisymmetric elements, 799–800
bar elements, 764–768, 780–784
beam elements, 789–796
computer program solutions, 808–816
damping, 812–816
dynamic equations, 764–768
heat transfer, 801–807
mass matrix, 765–767, 789–800
natural frequency, 763, 780–784, 789–796, 808–812
numerical time integration, 768–780,  

802–804
one-dimensional bar elements, 780–789
plane frame elements, 797–798
plane stress/strain elements, 798–799
spring-mass system, 762–764
tetrahedral (solid) elements, 800
time-dependent problems, 764–768, 784–789, 

801–807
truss elements, 796–797

E
Effective nodal forces, 257
Elasticity theory, 865–872

compatibility equations, 867–869
equations of equilibrium, 865–867
strain/displacement equations, 867–869
stress/strain relationships, 867–872

Electric displacement fields, 707, 710
Electric field/potential gradient relationship,  

706–707, 710
Electrical networks, 697–701

current flow, 698–699
fluid flow and, 697–701
Kirchhoff’s current law, 699
Ohm’s law, 697
sign convention, 698–699
voltage drop, 697–699

Electrostatics, 701–715
boundary conditions, 709–710
Coulomb’s law, 701–702
dielectric constants, 704–705
electric displacement fields, 707, 710
electric field/potential gradient relationship, 706–

707, 710
element type selection, 705
finite element method for, 705–715
fluid flow and, 701–715
Gauss’s law, 702–704
global equations, 709–710
Poisson’s equation, 704
potential function, 705–706
stiffness matrix, 707–709
two-dimensional triangular elements, 705–710
voltage (potential) gradient, 706–707

Elements, 9–13, 32–36, 38–40, 65–66, 72–168, 169–
238, 342–357, 362–363, 374–379, 392–395, 
403–404, 437–438, 444–447, 455, 487–488, 
493–495, 539–540, 578, 607–613, 626–629, 679, 
681, 705, 764

axisymmetric, 455
bars, 72–168, 487–488, 764
beams, 169–238
conduction matrix and equations, 608–612,  

628–629
connecting different types of, 403–404
constant-strain triangular (CST), 342–357, 362–363
discretization and, 9–11
electrostatics, 705
finite element steps for, 9–18
fluid flow, 679, 691, 705
forces, 36, 77, 355
heat transfer and, 607–613, 626–629
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Elements (continued )
isoparametric formulation of, 487–488, 493–495
linear-strain triangle (LST), 437–438
LST and CST comparison of, 444–447
plane stress and plane strain in, 342–357,  

362–363, 374–379
plate bending, 578
rectangular (Q4) plane, 374–379, 493–495
shapes for modeling, 392–395
springs, 32–36, 38–40, 65–66
stiffness matrix and equations, 12–13, 32–36, 38–40, 

65–66
stresses, 355
temperature function, 607–608, 626–627
temperature gradients, 608, 613, 627–628
tetrahedral, 539–540
time-dependent (dynamic) analysis, 764
triangular, 691
trusses, 75, 77

Energy method, 12–13
Equations, 1–2, 6, 7, 12–14, 12–13, 32–36,  

38–40, 55–66, 72–168, 169–238, 337–390, 437–
450, 601–605, 607–636, 647–678,  
843–864, 865–872. See also Conduction matrix; 
Stiffness matrix

bar elements, 72–168
beams,169–238
compatibility, 867–869
constant-strain triangular elements, 342–357, 

362–363
differential, 601–605, 674–678
elasticity theory, 865–872
element stiffness matrix, 12–13, 32–36, 38–40, 65–66
equilibrium, 865–867
finite element method and, 1–2, 7
fluid flow, 674–678
global conduction, 612–613
global stiffness, 6,14, 35
heat transfer, 601–605, 607–636
homogeneous, 843
linear-strain triangle (LST) elements, 437–450
matrix forms, 12–14
nonhomogeneous, 843
plane stress and plane strain, 337–390
Poisson’s, 704
potential energy approach for, 55–65
simultaneous linear, 843–864
spring elements, 32–36, 38–40, 55–66
strain/displacement, 12, 34, 867–869
stress/strain, 12, 15, 34
trusses, 72–168

Equilibrium, equations of, 865–867
Equilibrium of modeling results, 405–408
Equivalent joint force replacement method, 253–258
Equivalent nodal forces, 198–199
Errors, checking models for, 404
Euler-Bernoulli beam theory, 171–177
Exact solution, 132–136, 208–214

bar elements, 132–136
beam elements, 208–214
finite element method compared to, 132–136, 

208–214
External forces, potential energy and, 121–123
Explicit numerical integration method, 804

F
Field problems, 55
Finite element method, 1–30, 123–127, 132–136, 

208–214, 363–374, 392–408, 607–636, 639–641, 
642–646, 678–695, 705–715, 764–768

advantages of, 21, 24
applications of, 14–25
bar elements, 132–136, 764–768
beam elements, 208–214
computer programs for, 25–27
computer, role of, 6–7
defined, 1
degrees of freedom, 15
direct equilibrium method, 12
direct methods, 8
direct stiffness method and, 3, 624–626
discretization for, 2, 9–10, 364–365
displacement function selection, 10–12
electrostatics, 705–715
element conduction matrix and equations,  

608–612, 628–629
element stiffness matrix and equations, 12
energy method, 12–13
exact solution compared to, 132–136, 208–214
fluid flow, 678–695, 705–715
Galerkin’s residual method for, 642–646
global stiffness matrix, 365–370
heat transfer equations, 607–636, 639–641, 642–646
history of, 3–4
hydraulic networks, 687–691
mass transport and, 642–646
matrix notation, 4–6
maximum distortion theory and, 373
modeling, 2, 392–408
nonstructural problems, 16
one-dimensional fluid flow, 678–691
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one-dimensional heat conduction, 607–626
plane stress solutions, 363–374
potential energy approach for equations, 123–127
result interpretation, 15
steps of, 7–14
strain/displacement relationships, 12
stress/strain relationships, 12, 15
structural problems, 15
three-dimensional heat transfer, 639–641
time-dependent (domain) analysis, 764–768
two-dimensional fluid flow, 691–695
two-dimensional heat transfer, 626–636
variational methods, 8–9, 607–626
weight residual methods, 9–12
weighted residual method, 13–15
work method, 12–13

Fixed-end forces, 253–254
Fixed-end reactions, 195–196
Flexure formula, 175
Flowcharts, 143, 413, 646–650, 696–697,  

771, 776
central difference method, 771
fluid flow, 696–697
heat transfer, 646–650
modeling, 413
Newmark’s method, 776
numerical integration, 771, 776
time-dependent (dynamic) analysis, 771, 776
truss analysis, 143

Fluid flow, 673–726
boundary conditions, 676–678, 682, 709–710
conservation of mass, 674–675
Coulomb’s law, 701–702
Darcy’s law, 675
differential equations, 674–678
electrical networks, 697–701
electrostatics, 701–715
finite element method for, 678–695
flowcharts, 696–697
Gauss’s law, 702–704
hydraulic networks, 687–691
Kirchhoff’s current law, 699
line or point sources, 695
Ohm’s law, 697
one-dimensional, 674–676, 678–691
pipes, 677–678
porous medium, 674–676
potential functions, 679, 691–692, 705–706
solid bodies, flow around, 677–678
two-dimensional, 676, 691–695
velocity potential function, 677–678

Force/displacement equations, 296–297
Force matrix, 377
Force (flexibility) method, 8
Forced convection, 604, 606
Forces, 36, 42, 77, 121–123, 198–199, 253–254, 355, 

357–362, 459–461, 491–492, 500–501, 543–544, 
764

axisymmetric elements and, 459–461
body, 357–359, 459–460, 491, 500, 543–544
centrifugal body, 358
effective nodal, 257
element solutions, 36, 77, 355
equivalent nodal, 198–199
external, 121–123
fixed-end, 253–254
friction, 764
nodal, 42, 198–199, 257
isoparametric formulation of, 491–492, 500–501
reactions (nodal force), 42
stresses as, 355
surface, 359–362, 460–461, 491–492,  

500–501, 544
three-dimensional elements, 543–544

Forcing function, 808–809, 811
Foundation load, 403
Frame equations, 239–262, 280–336

bar elements, 258–261
beam elements, 239–243, 280–294
bending and, 281–285
effective nodal forces, 257
equivalent joint force replacement method, 253–258
fixed-end forces, 253–254
inclined supports, 261–262
plane, arbitrary beam orientation in, 239–243
rigid plane frames, 243–261
skewed supports, 261–262
space, arbitrary beam orientation in, 280–294
stiffness matrix, 293–243, 289–294
substructure analysis using, 295–299
three-dimensional orientation, 280–294
transformation matrix, 239–243, 282–285
two-dimensional orientation, 239–262 

Free-end deflections, 377
Friction forces, 764
Functional, defined, 13

G
Galerkin’s residual method, 136–139, 142–143,  

225–227, 642–646
bar elements (one-dimensional), 137–139, 142–143
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Galerkin’s residual (continued )
beam elements, 225–227
finite element formulation and, 642–646
general formulation of, 136–137
heat transfer with mass transport equations by, 

642–646
weighting functions and, 142–143

Gauss points, 550
Gaussian elimination, 847–854

complete pivoting, 854
partial pivoting, 854
sequential pivot elements, 853–854
simultaneous linear equations and, 847–854
zero pivot element, 852–853, 

Gaussian quadrature, 506–515
integration using, 506–509
stiffness matrix evaluation by, 509–513
stress evaluation by, 513–515
two-point formula for, 507–508

Gauss-Jordan method, 837–839
Gauss’s law, 702–704
Gauss-Seidel iteration, 854–856
Global conduction equations, 612–613
Global mass matrix, 796–797, 799
Global stiffness equations, 6, 14, 35, 76, 180–182, 353–

355, 682, 709–710, 767–768
beam elements, 180–182
bar elements, 767–768
boundary conditions and, 14
constant-strain triangular elements, 353–355
defined, 6
electrostatics, 709–710
finite element assembly of, 14
fluid flow, 682
spring elements, 35 
time-dependent (dynamic) analysis, 767–768
truss elements, 76

Global stiffness matrix, 32, 73–78, 365–370
bars arbitrarily oriented in the plane, 73–78
defined, 32
plane stress, 365–370
superposition for assembly of, 365–370

Gradient matrix, 124, 211, 350, 490, 498, 608, 627–628, 
679–680, 706–707

beam equations, 211
hydraulic, 679–680
temperature, 608, 627–628
strain-displacement, 350
truss equations, 124
voltage (potential), 706–707

Grid, defined, 262
Grid equations, 262–280

cross sections for, 265–267
polar moment of inertia (J) for, 265–266
shear center (SC) for, 267
stiffness matrix for, 263–269
torsional constant for, 265–267
transformation matrix for, 268

H
Heat flux/temperature gradient relationships, 608, 

627–628
Heat transfer, 599–672, 801–807

boundary conditions for, 603–604, 612
conduction (with convection), 604–605
conduction (without convection), 601–604
conservation of energy principle, 601–602, 642
convection and, 604–606
differential equations for, 601–605
finite element method for, 607–613, 626–636, 639–

641, 642–646
flowcharts for, 646–650
Fourier’s law of heat conduction, 602
Galerkin’s residual method for, 642–646
line sources for, 636–638
mass matrix, 802
mass transport and, 601, 641–646
numerical time integration, 802–804
one-dimensional, 601–605, 607–626, 641–642
point sources for, 636–638
temperature distribution and, 600
temperature function, 607–608, 626–627
thermal conductivities, 605–606
three-dimensional, 639–641
time-dependent (dynamic) analysis, 801–807
two-dimensional, 603–604, 626–636
units of, 605–606
variational method for, 607–626

Heat-transfer coefficients, 605–606
Hexahedral elements, 547–555

Gauss points for, 550
isoparametric formulation and, 547–555
linear, 547–550
quadratic, 550–555
shape functions for, 548, 551
stress analysis for, 547–555

Hinge nodes in beam elements, 214–221
Homogeneous boundary conditions, 41–42
Homogeneous equations, 843
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Hydraulic gradient, 679–680
Hydraulic networks, fluid flow through, 687–691

I
Identity matrix, 831
Inclined supports, 112–121, 261–262

frame equations for, 261–262
truss equations for, 112–121

Infinite medium, 403
Infinite stress, 402
Integration, 503–509, 834–835

Gaussian quadrature, 506–509
isoparametric formulation and, 503–509
matrix, 834–835
Newton-Cotes method for, 503–506
two-point formula for, 507–508

Interpolation functions, 80
Inverse of a matrix, 832, 835–839

adjoint method, 835–837
cofactor method, 835–837
defined, 832
determinants, 835–837
Gauss-Jordan method, 837–839
row reduction, 837–839

Isoparametric, defined, 487
Isoparametric formulation, 486–535, 547–555

bar elements, 487–492
bilinear quadratic (Q6) elements, 521–522
cubic rectangles (Q12), 525–526
Gaussian quadrature, 506–515
hexahedral elements, 547–555
higher-order functions, 515–526
linear-strain bars, 515–520
natural (intrinsic) coordinates, 487
Newton-Cotes numerical method, 503–506
quadratic rectangles (Q8 and Q9), 522–525
rectangular (Q4) plane elements, 492–503
stiffness matrix from, 486–503, 509–513
transformation mapping and, 487

Iteration, Gauss-Seidel method for, 854–856

J
Jacobian matrix, 490

K
Kirchhoff assumptions for plate bending elements, 

573–575
Kirchhoff’s current law, 699

L
Least squares method, 141–142
Line sources, 636–638, 695
Linear elements, 10, 11
Linear equations, see Simultaneous linear equations
Linear hexahedral elements, 547–550
Linear-strain bars, isoparametric formulation for, 515–520
Linear-strain triangle (LST) elements, 437–450

CST elements, comparison of, 444–447
defined, 440
displacement functions for, 438–440
element type selection, 437–438
Pascal triangle for, 438–439
shape functions for, 438–439, 443
stiffness, determination of, 442–444
stiffness matrix for, 437–442
strain/displacement relationships, 440–441
stress/strain relationships, 440–441

Load discontinuities, natural subdivisions at, 395–397
Load replacement, 197–198
Loading, 195–208, 402–403

concentrated (point), 402
distributed, 195–208
foundation, infinite medium for, 403

Local stiffness matrix, 35
LST elements, see Linear-strain triangle (LST) elements
Lumped-mass matrix, 765–766, 789–790, 797–799

M
Mass flow rate, 641
Mass matrix, 765–767, 789–800

axisymmetric elements, 799–800
bar elements, 765–767
beam elements, 789–796
consistent, 766–767, 790, 797–800
global, 796–797, 799
lumped, 765–766, 789–790, 797–799
plane frame elements, 797–798
plane stress/strain elements, 798–799
shape functions and, 797–799
tetrahedral (solid) elements, 800
time-dependent (dynamic) analysis, 765–767, 789–800
truss elements, 796–797

Mass transport, 601, 641–646
conservation of energy principle, 642
finite element method for, 642–646
Galerkin’s residual method for, 642–646
heat transfer with, 601, 641–646
one-dimensional heat transfer with, 641–642
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Matrices, 4–6, 32–36, 38–40, 73–78, 82–89, 100–109, 
124, 342, 350, 377, 490, 498, 608–612, 627–629, 
679–680, 692, 731–733, 765–767, 789–800, 827, 
831–833, 836–837, 839–840, 856–863. See also 
Matrix algebra; Stiffness matrix

adjoint, 837
cofactor, 836
column, 5, 827
banded, 857
banded-symmetric, 856–863
defined, 4, 827
element conduction, 608–612, 628–629
force, 377
global stiffness, 35, 73–78
gradient, 124, 490, 498
hydraulic gradient, 679–680, 692
identity, 831
Jacobian, 490
local stiffness, 35
mass, 765–767, 789–800
notation for, 4–6
orthogonal, 832–833
positive definite, 839
positive semidefinite, 840
rectangular, 5, 827
row, 827
singular, 837
square, 827
stiffness, 32–36, 38–40, 73–78, 84–89,  

100–109, 839–840
strain-displacement gradient, 350
stress–strain (constitutive), 342
symmetric, 831
system stiffness, 38
temperature gradient, 608, 627–628
thermal force, 731–733
thermal strain, 731–732
total (global) 38–40, 76
transformation (rotation), 82–84, 100–109, 832
unit, 831

Matrix algebra, 827–842
addition, 829
adjoint method, 835–837
cofactor method, 835–837
definitions, 827–828
determinants, 835–837
differentiation, 833–834
integration, 834–835
inverse of a matrix, 832, 835–839
multiplication by a scalar, 828
multiplication of matrices, 829–830
operations, 827–835

orthogonal uses, 832–833
row reduction, 837–839
stiffness matrix properties, 839–840
symmetry, 831, 839
transpose of a matrix, 830–831
types of matrices, 827

Maximum distortion energy theory, 373. See also von 
Mises stress

Mechanical event simulation (MES), 18
Mesh revision and convergence, 397–401, 408–411

modeling accuracy from, 397–401
patch test for, 408–411
refinement methods for, 397–401

Mindlin plate theory, 583, 585
Modeling, 2, 391–436

aspect ratios, 392–395
compatibility of results, 405–408
computer program-assisted step-by-step solution, 

414–419
concentrated (point) loads, 402
connecting (mixing) different elements, 403–404
element shapes for, 392–395
equilibrium of results, 405–408
errors, 404
finite element method, 2, 392–408
flowcharts, 413
foundation load and, 403
infinite medium and, 403
infinite stress and, 402
load discontinuities and, 395–397
mesh revision and convergence, 397–401, 408–411
methods of refinement, 397–401
natural subdivisions, 395–398
patch test for, 408–411
plane stress and plane strain problems, 413–419
postprocessor results, 404–405
results, 404–408
stresses interpreted for, 411–413
symmetry and, 395
transition triangles for, 402
von Mises (equivalent) stress and, 417–419

Moments of curvature, 576–577, 580–581

N
Natural (free) convection, 604, 606
Natural (intrinsic) coordinates, 487
Natural frequency, 763, 780–784, 789–796, 808–816 

circular, 763
computer analysis and, 808–816
beam elements, 789–796
damping, 812–816
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one-dimensional bar elements, 780–784
time-dependent (dynamic) analysis, 763,  

780–784, 789–796, 808–812
Natural subdivisions at load discontinuities, 395–398
Natural subdivisions, 395–398
Newmark’s method, 774–778
Newton-Cotes numerical integration, 503–506
Newton’s second law of motion, 762
Nodal degrees of freedom, 15, 16, 32, 173–174
Nodal displacements, 10–12, 32–33, 35, 40–41, 73–76, 

78–82, 355
bar elements, 73–76
boundary conditions and, 40–41
constant-strain triangular elements, 355
degrees of freedom, 32
determination of, 35
displacement functions for, 10–12, 78–82
spring elements, 32–33, 35, 40–41
stiffness method, 32–33, 36
truss elements, 76, 78–82

Nodal forces, 198–199
Nodal hinges for beam elements, 214–221
Nodal potentials, 682
Nodal temperatures, 613
Nodes, 10–11, 32, 395–398, 623–624

defined, 32
heat balance equations at, 623–624
natural subdivisions at, 395–398
placement of in elements, 10–11

Nonexistence of solution, 845
Nonhomogeneous boundary conditions, 42–44
Nonhomogeneous equations, 843
Nonstructural problems, finite element method for, 16
Nonuniqueness of solution, 844
Normal (longitudinal) strains, 341
Numerical comparisons, plate bending elements, 

582–584
Numerical time integration, 768–780, 802–804

central difference method, 768–774
explicit, 804
heat transfer solution by, 802–804
Newmark’s method, 774–778
time-dependent (dynamic) analysis, 768–780, 

802–804
trapezoid rule for, 802
Wilson’s method, 779–780

O
Ohm’s law, 697
One-dimensional bar elements, 78–82, 136–143, 731, 

733, 780–789

displacement functions, 78–82
Galerkin’s residual method for, 136–139, 142–143
natural frequency, 780–784
residual methods for, 136–142
thermal strain matrix, 731, 733
time-dependent (dynamic) analysis,  

780–789
truss bars, 78–82, 136–143

One-dimensional fluid flow, 674–676, 678–691
boundary conditions, 676–678, 682
branch elements, 687–688
conservation of mass, 674–675
Darcy’s law, 675
differential equations, 674–676
element type selection, 679
finite element method for, 678–691
global equations for, 682
hydraulic gradient, 679–680
hydraulic networks, 687–691
nodal potentials, 682
permeability of materials, 680
Poiseuille’s law, 687
potential function, 679
stiffness matrix for, 680–681
velocity/gradient relationship, 679–680, 682
volumetric flow rate, 682

One-dimensional heat transfer, 601–605, 607–626, 
641–642

boundary conditions for, 603, 612
conduction with convection, 604–605
conduction without convection, 601–604
differential equations for, 601–605
direct stiffness method for, 612, 624–626
element conduction matrix, 608–612
element type selection, 607
finite element method for, 607–626
global conduction equations, 612–613
heat balance equations at nodes, 623–624
heat flux/temperature gradient relationships, 608
mass transport and, 641–642
nodal temperatures, 613
temperature function, 607–608
temperature gradients, 608, 613
variational methods for, 607–626

Open sections, 266
Orthogonal matrix, 832–833
Orthogonality condition, 284

P
Parasitic shear, 378
Partial pivoting, 854
Pascal triangle, 438–439
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Patch test, 408–411
Period of vibration, 763
Permeability of materials, 680
Pinned boundary condition, 145
Pipes, fluid flow through, 677–678
Pivot elements, 852–854
Plane stress/strain, 337–390, 413–419, 731–732, 

798–799
body forces and, 357–359
computer program-assisted step-by-step solution, 

414–419
constant-strain triangular (CST) elements,  

342–357, 362–363, 377–379
defined, 338–339
discretization for, 364–365
finite element solution for, 363–374
flowcharts for, 413
global stiffness matrix for, 365–370
mass matrix, 798–799
maximum distortion theory for, 373
modeling problems, 413–419
principal angle, 340
principal stresses, 340
rectangular (Q4) plane elements, 374–379
shape functions for, 347, 798
surface forces and, 359–362
thermal strain matrix, 731–732
two-dimensional state of, 339–342

Plane trusses, solutions for, 91–100
Planes, 239–261, 374–379, 492–503, 797–798. See also 

Two-dimensional elements
arbitrary beam orientation in, 239–243
equations for elements in, 243–261
frames, 239–261, 797–798
isoparametric formulation for, 492–503
mass matrix, 797–798
rectangular (Q4) elements, 374–379, 492–503
rigid frames, 243–261

Plate bending elements, 572–598
computer solutions for, 584–588
concept of, 572
curvature relationships, 580–581
deformation of, 573
displacement and, 573–575
displacement functions, 578–580
element type selection, 578
geometry of, 573
Kirchhoff assumptions for, 573–575
Mindlin plate theory, 583, 585
numerical comparisons, 582–584
potential energy of, 577

stiffness matrix for, 577–582
strain/displacement relationships, 580–581
stress (moment)-curvature relationships, 580–581
stress/strain relationships, 575–577
Veubeke “subdomain” formulation, 583

Point sources, 636–638, 695
Poiseuille’s law, 687
Poisson’s equation, 704
Polar moment of inertia (J), 265–266
Porous medium, fluid flow through, 674–676
Positive definite matrix, 839
Positive semidefinite matrix, 840
Postprocessor modeling results, 404–405
Potential energy approach, 55–65, 121–132,  

222–225, 350–353
admissible variation, 58–59
approximate values from, 123
bar elements, 121–132
beam elements, 222–225
constant-strain triangular elements, 350–353
external forces, 121–123
finite element equations from, 123–127
matrix differentiation, 127
principle of minimum potential energy, 56, 123
spring element equations by, 55–65
stationary value of a function, 58
strain energy and, 57, 225
total potential energy, 56–59, 61, 123–127,  

222–224
truss equations, 121–132
variation of, 58–59

Potential energy of plate bending elements, 577
Potential functions, 679, 691–692, 705–706

electrostatics, 705–706
fluid flow, 679, 691–692
one-dimensional flow, 679
two-dimensional flow, 691–692

Pressure vessels, 462–468
discretization, 462–463
stiffness matrix, 463–467

Primary unknowns, 15
Principal angle, 340
Principal stresses, 340
Pure bending, 378–379

Q
Q4 symbol, 374
Quadratic elements, 10, 11, 515–526, 550–555. See also 

Rectangular (Q4) plane elements
bilinear quadratic (Q6), 521–522
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cubic rectangles (Q12), 525–526
defined, 10, 11
hexahedral, 550–555
isoparametric formulation for, 515–526, 550–555
linear-strain bars, 515–520
quadratic rectangles (Q8 and Q9), 522–525

Quadratic rectangles (Q8 and Q9), 522–525
Quadrilateral consistent-mass matrix, 799

R
Reactions (nodal force), 42
Rectangular (Q4) plane elements, 374–379, 492–503

body forces and, 500
constant-strain triangular (CST) comparison to, 

377–379
displacement functions, 375, 495
displacement results, 378–379
element type selection, 374, 493–495
force matrix for, 377
free-end deflections, 377
isoparametric formulation for, 492–503
plane stress and plane strain in, 374–379
shape functions for, 375, 494–495
stiffness matrix for, 374–377, 492–503
strain/displacement relationship, 376,  

496–499
stress results, 379
stress/strain relationship, 376, 496–499
surface forces and, 500–501

Rectangular matrix, 5, 827
Refinement, 397–401

h method of refinement, 399
mesh revision and convergence, 397–401
modeling accuracy from, 397–401
p method of refinement, 399–401
r method of refinement, 401

Reflective symmetry, 109–112
Residual methods, 136–143

bar element formulation for, 137–139
collocation method, 140–141
Galerkin’s residual method, 136–139, 142–143
least squares method, 141–142
one-dimensional bar elements, 136–142
subdomain method, 141
truss equations, 136–143

Resistors, see Electrical networks
Rigid plane frames, 243–261
Rotation matrix, see Transformation (rotation) matrix
Row matrix, 827
Row reduction, 837–839

S
Shape functions, 80, 174, 211, 347, 375, 438–439, 443, 

456–457, 488–489, 494–495, 541–542, 548, 551, 
797–800

axisymmetric elements, 456–457, 799–800
bar elements, 80, 488–489
beam elements, 174, 211
constant-strain triangular (CST) elements, 347
hexahedral elements, 548, 551
isoparametric formulation and, 488–489, 494–495
linear-strain triangle (LST) elements, 438–439, 443
mass matrix and, 797–800
plane stress/strain elements, 347, 798–799
rectangular (Q4) plane elements, 375, 494–495
tetrahedral elements, 541–542, 800
truss elements, 797

Shear center (SC) for grid equations, 267
Shear locking, 378
Shear strain, 341
Simple harmonic motion, 763
Simultaneous linear equations, 843–864

banded-symmetric matrices, 856–863
coefficient matrix inversion, 846–847
computer programs for, 861–863
Cramer’s rule, 845–846
Gaussian elimination, 847–854
Gauss-Seidel iteration, 854–856
general form of, 843
nonexistence of solution, 845
nonuniqueness of solution, 844
pivot elements, 852–854
skyline, 856–857
uniqueness of solution, 844
wavefront method, 858–861

Singular matrix, 837
Skewed supports, 112–121, 261–262

frame equations for, 261–262
truss equations for, 112–121

Skyline, 856–857
Solid bodies, fluid flow around, 677–678
Space, arbitrary beam orientation in, 280–294
Spring constant, 32–33
Spring elements, 31–71

assemblage of, 36–38
boundary conditions for, 35, 40–55
compatibility (continuity) requirement for, 36
degrees of freedom, 32
element forces of, 36
element type selection, 33–34
global equation for, 35
nodal displacements for, 32–33, 35
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Spring (continued )
potential energy approach, 55–65
stiffness matrix for, 32–36, 38–40
stiffness method for, 32–38, 55–65
strain/displacement relationship, 34
stress/strain relationship, 34
superposition for, 38–40
system (global) stiffness matrix, 38
total stiffness matrix for, 38–40
strain energy (internal) in, 57

Spring-mass system, 762–764
amplitude, 763
dynamic analysis, 762–764
period of vibration, 763
simple harmonic motion, 763
vibration, 763–764

Square matrix, 827
Stationary value of a function, 58
Stiffness, 170–180, 442–444

beams, 170–180
LST determination of, 442–444

Stiffness equations, see Stiffness matrix
Stiffness influence coefficients, 5
Stiffness matrix, 32–36, 38–40, 73–78, 84–89, 100–

109, 171–182, 239–243, 289–294, 337–390, 
437–442, 451–462, 463–467, 486–503, 509–513, 
543–547, 577–582, 680–681, 692–693, 707–709, 
765–767, 839–840

axisymmetric elements, 451–462, 463–467
bar elements, 73–78, 84–89, 487–492, 765–767
beam elements, 171–182
boundary conditions, 35, 180–182
constant-strain triangular (CST) elements, 342–357
defined, 32
electrostatics, 707–709
element types, 33–34, 75, 172–173
Euler-Bernoulli beam theory, 171–177
fluid flow, 680–681, 692–693
frame elements, 293–243, 289–294
Gaussian quadrature evaluation of, 509–513
global, 32, 73–78, 180–182
integration for, 441–442
isoparametric formulation of, 486–503, 509–513
linear-strain triangle (LST) elements, 437–442
local coordinates, 73–78
local, 35
plane stress and plane strain, 337–390
plate bending elements, 577–582
potential energy approach to, 350–352
pressure vessel equations, 463–467
properties, 839–840

rectangular (Q4) plane elements, 374–377, 492–503
spring elements, 32–36, 38–40
stress analysis using, 543–547
superposition, assemblage by, 38–40
system (global), 38
tetrahedral elements, 543–547
time-dependent (dynamic) analysis, 765–767
Timoshenko beam theory, 177–180
total (global) 38–40, 76, 181–182
transformational matrix for, 100–109, 239–243, 

282–285
truss equations, 73–78, 84–89, 100–109 

Stiffness (displacement) method, 8, 31–71
boundary conditions for, 35, 40–55
direct method of, 8, 31
equations for, 32, 34–35, 65–66
examples for solution of assemblages, 44–55
nodal displacements, 32–33, 35, 40–41
potential energy approach, 55–65
spring elements, 32–38, 55–65
stiffness matrix for, 32–36, 38–40
superposition for, 38–40

Strain, 339–342, 537–539, 731–733. See also Plane strain
normal (longitudinal), 341
shear, 341
state of, 339–342
thermal strain matrix, 731–733
three-dimensional elements, 537–539
two-dimensional (plane) elements, 339–342

Strain/displacement relationships, 12, 34, 75, 174–175, 
348–350, 376, 440–441, 454, 457–458, 489–490, 
496–499, 542–543, 580–581, 764–765, 867–869

axisymmetric elements, 454, 457–458
bar elements, 75, 489–490, 764–765
beam elements, 174–175
constant-strain triangular (CST) elements, 348–350
curvature and, 580–581
elasticity theory, 867–869
equations, 867–869
finite element step, 12
isoparametric formulation and, 489–490, 496–499
linear-strain triangle (LST) elements, 440–441
plate bending elements, 580–581
rectangular (Q4) plane elements, 376, 496–499
spring elements, 34
tetrahedral elements, 542–543
time-dependent (dynamic) analysis, 764–765

Strain energy, 57, 225, 729–730
beam elements, 225
potential energy approach, 57, 225
thermal stress and, 729–730
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Stress, 89–91, 337–390, 402, 411–419, 470–472, 513–
515, 537–539, 580–581

bar in x–y plane, 89–91
CST and Q4 result comparison, 379
element forces as, 355
finite element model interpretation of, 411–413
Gaussian quadrature evaluation of, 513–515
infinite, 402
moment-curvature relationships, 580–581
plane, 337–390, 414–419
plate bending elements, 580–581
three-dimensional elements, 537–539
von Mises (equivalent), 373, 417–419, 470–472

Stress analysis, 536–571
Cartesian coordinates, 537–538
hexahedral elements, 547–555
isoparametric formulation and, 547–555
strain representation, 537–539
strain/displacement relationships, 542–543
stress representation, 537–539
stress/strain relationships, 538, 542–543
tetrahedral elements, 539–547
three-dimensional elements, 536–571

Stress–strain (constitutive) matrix, 342
Stress/strain relationships, 12, 15, 34, 75, 174–175,  

350, 376, 440–441, 452–454, 457–458, 489–490, 
496–499, 538, 542–543, 575–577, 764–765, 
867–872

axisymmetric elements, 452–454, 457–458
bar elements, 75, 489–490, 764–765
beam elements, 174–175
constant-strain triangular (CST) elements, 350
elasticity theory, 867–872
finite element, 12, 15
isoparametric formulation and, 489–490, 496–499
linear-strain triangle (LST) elements, 440–441
moments of curvature and, 576–577
plate bending elements, 575–577
rectangular (Q4) plane elements, 376, 496–499
spring elements, 34
tetrahedral elements, 542–543
three-dimensional elements, 538, 542–543
time-dependent (dynamic) analysis, 764–765

Structural dynamics, see Dynamic analysis
Structural problems, finite element method for, 15
Subdomain method, 141
Substructure analysis, 295–299
Superposition, 38–40, 365–370. See also Direct stiffness 

method
global stiffness matrix assembled by, 365–370
total stiffness matrix assembled by, 38–40

Supports, 112–121
boundary elements for, 120–121
inclined, 112–121
skewed, 112–121
truss equations for, 112–121

Surface forces, 359–362, 460–461, 491–492, 500–501, 544
axisymmetric elements, 460–461
bar elements, 491–492
plane stress and plane strain from, 359–362
rectangular (Q4) plane elements, 500–501
tetrahedral elements, 544

Symmetric matrix, 831
Symmetry, 109–112, 395, 451–485, 831

axis of revolution, 452
axisymmetrical elements, 451–485
matrix operations, 831
modeling problems and, 395
structures, 109–112

T
Temperature, 600, 607–608, 613, 626–628, 728–729

distribution, 600
function, 607–608, 626–627
gradients, 608, 613, 627–628
heat transfer and, 600, 607–608, 613, 626–628
nodal, 613
thermal stress and, 728–729
uniform change, 728–729

Tetrahedral elements, 539–547, 800
body forces, 543–544
displacement functions for, 540–542
element type selection, 539–540
mass matrix, 800
shape functions for, 541–542
stiffness matrix for, 543–547
strain/displacement relationships, 542–543
stress analysis of, 539–547
stress/strain relationships, 542–543
surface forces, 544

Thermal conductivities, 605–606
Thermal force matrix, 731–733
Thermal strain matrix, 731–732
Thermal stress, 727–760

axisymmetric elements, 732–733
coefficient of thermal expansion, 728
one-dimensional bars, 731, 733
solution procedure, 733
strain energy and, 729–730
two-dimensional (plane) elements, 731–733
uniform temperature change and, 728–729
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Three-dimensional elements, 10–11, 100–109, 143, 
280–294, 536–571

bar elements, 100–109, 143
beams, arbitrary orientation of, 280–294
bending in, 281–285
Cartesian coordinates, 537–538
flowcharts for, 143
frame equations for, 280–294
hexahedral, 547–555
mass matrix, 800
node placement, 10–11
solid, 539–547, 800
space, 10–11, 100–109, 143, 280–294
stiffness matrix, 100–109
stress analysis for, 536–571
tetrahedral, 539–547, 800
transformation matrix, 100–109

Three-dimensional heat transfer, 639–641, 646–650
Time-dependent problems, 764–768, 784–789, 801–816

bar elements, 764–768, 780–784
boundary conditions, 767–768
computer program solutions, 808–816
displacement functions, 764
dynamic equations, 764–768
element type selection, 764
finite element equations, 764–768
forcing function, 808–809, 811
global equations, 767–768
heat transfer, 801–807
mass matrix, 765–767
numerical time integration, 768–780, 802–804
one-dimensional bar analysis, 784–789
stiffness matrix, 765–767
strain/displacement relationships, 764–765
stress/strain relationships, 764–765

Timoshenko beam theory, 177–180
Torsional constant (J), 265–267
Total potential energy, 56, 61
Transformation (rotation) matrix, 82–84, 100–109, 

239–243, 268, 282–285, 832–833
beam elements, 239–243, 282–285
displacement vectors in two dimensions, 82–84
frame equations and, 239–243, 282–285
grid equations and, 268
orthogonal matrix uses, 832–833
stiffness matrix from, 100–109, 239–243, 282–285
three-dimensional (space) orientation, 100–109, 

282–285
truss equations and, 82–84, 100–109
two-dimensional (plane) orientation, 239–243

Transformation mapping, 487
Transition triangles, 402
Transverse shear deformation, 177–180
Trapezoid rule, 802
Triangular elements, 342–357, 362–363, 377–379, 402, 

437–450, 451–485, 691, 705–710
axisymmetric elements, 451–485
constant-strain (CST), 342–357, 362–363,  

377–379, 402, 444–447
electrostatic flow, 705–710
linear-strain (LST), 437–450
two-dimensional fluid flow, 691, 705–710

Truss equations, 72–168, 796–797. See also Bar 
elements

bar elements, 72–168
boundary elements for, 120–121
collocation method for, 140–141
computer programs for, 144–145
displacement functions, 78–82
exact solution, 132–136
finite element comparison for, 132–136
flowcharts for, 143
Galerkin’s residual method for, 136–139, 142–143
inclined supports, 112–121
least squares method for, 141–142
local coordinates, 73–78
mass matrix, 796–797
nodal displacements, 76
plane truss solution, 91–100
potential energy approach for, 121–132
residual methods for, 136–143
skewed supports, 112–121
stiffness matrix, 73–78, 84–89, 100–109
strain/displacement, 75
stress computation for, 89–91
stress/strain relationships, 75
subdomain method for, 141
symmetry in structures, 109–112
total (global), 76
transformation (rotation) matrix, 82–84, 100–109
vectors, transformation of in two dimensions, 82–84

Two-dimensional (plane) elements, 10–11, 82–89, 
239–262, 339–342, 705–710, 731–733

bars, arbitrarily oriented, 82–89
beams, arbitrarily oriented, 239–262 
electrostatic (fluid flow) in, 705–710
frame equations for, 239–262 
inclined supports for, 261–262
node placement, 10–11
rigid plane frames, 243–261
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skewed supports for, 261–262
state of stress and strain, 339–342
thermal stress in, 731–733
transformation matrix, 82–84, 239–243
triangular, 705–710
truss equations, 82–89
vector transformation in, 82–84

Two-dimensional fluid flow, 676, 691–695
differential equations, 676
finite element method for, 691–695
hydraulic gradient, 692
line or point sources, 695
potential function, 691–692
stiffness matrix, 692–693
triangular element, 691
velocity/gradient relationship, 692

Two-dimensional heat transfer, 603–604, 626–638, 
646–650

boundary conditions, 604
conduction without convection, 603–604
differential equations, 603–604
element conduction matrix, 628–629
element type selection, 626
finite element method for, 626–636
flowcharts for, 646–650
heat flux/temperature gradient relationships,  

627–628
line or point sources, 636–638
temperature function, 626–627
temperature gradients, 627–628

Two-point formula, 507–508

U
Uniqueness of solution, 844
Unit matrix, 831

V
Variation of potential energy, 58–59

Variational methods, 8–9, 55, 607–626
Vectors, transformation of in two dimensions, 82–84
Velocity potential function, 677–678
Velocity/gradient relationship, 679–680, 682, 692
Veubeke “subdomain” formulation, 583
Vibration, 763–764
Voltage drop, 697–699
Voltage (potential) gradient, 706–707
Volumetric flow rate, 682
von Mises (equivalent) stress, 373, 417–419, 470–472

axisymmetric elements, 470–472
maximum distortion energy theory for, 373
modeling and, 417–419

W
Wavefront method, 858–861
Weight residual methods, 9–12
Weighted residual methods, 9, 13–14, 136–143, 225–

227, 642–646
bar elements, 136–143
collocation, 140–141
element behavior from, 14
finite element method and, 19, 13–14
Galerkin’s, 136–139, 142–143, 225–227, 642–646
least squares, 141–142
steps for, 9–12
subdomain, 141

Weighting functions, 142–143
Wilson’s method, 779–780
Work methods, 12–13, 55–65, 121–132, 196–198, 

222–225
bar elements, 121–132
beam elements, 196–197, 222–225
functional for, 13
load replacement, 197–198
potential energy approach, 55–65, 121–132, 222–225
spring elements, 55–65
stiffness matrix and equations from, 12–13
work-equivalence method, 196–198
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PHYSICAL PROPERTIES IN SI AND USCS UNITS

Property Sl USCS

Water (fresh)

specific weight 9.81 kN/m3 62.4 lb/ft3

mass density 1000 kg/m3 1.94 slugs/ft3

Aluminum

specific weight 26.6 kN/m3 169/lb/ft3

mass density 2710 kg/m3 5.26 slugs/ft3

Steel

specific weight 77.0 kN/m3 490 lb/ft3

mass density 7850 kg/m3 15.2 slugs/ft3

Reinforced concrete

specific weight 23.6 kN/m3 150 lb/ft3

mass density 2400 kg/m3 4.66 slugs/ft3

Acceleration of gravity

(on the earth’s surface)

Recommended value 9.81 m/s2 32.2 ft/s2

Atmospheric pressure

(at sea level)

Recommended value 101 kPa 14.7 psi

TYPICAL PROPERTIES OF SELECTED ENGINEERING MATERIALS

Ultimate 0.2% Yield

Strength Strength Modulus of Sheer Coefficient of

�u �y Elasticity Modulus Thermal Expansion, � Density, �

——————— —————— E G —————————— ——————

Material ksi MPa ksi MPa (106 psi GPa) ð106 psi) 10�6=�F 10�6=�C lb/in.3 kg/m3

Aluminum

Alloy 1100-H14

(99 % A1) 14 110(T) 14 95 10.1 70 3.7 13.1 23.6 0.098 2710

Alloy 2024-T3

(sheet and plate) 70 480(T) 50 340 10.6 73 4.0 12.6 22.7 0.100 2763

Alloy 6061-T6

(extruded) 42 260(T) 37 255 10.0 69 3.7 13.1 23.6 0.098 2710

Alloy 7075-T6

(sheet and plate) 80 550(T) 70 480 10.4 72 3.9 12.9 23.2 0.101 2795

Yellow brass (65% Cu, 35% Zn)

Cold-rolled 78 540(T) 63 435 15 105 5.6 11.3 20.0 0.306 8470

Annealed 48 330(T) 15 105 15 105 5.6 11.3 20.0 0.306 8470

Phosphor bronze

Cold-rolled (510) 81 560(T) 75 520 15.9 110 5.9 9.9 17.8 0.320 8860

Spring-tempered

(524) 122 840(T) — — 16 110 5.9 10.2 18.4 0.317 8780

Cast iron

Gray, 4.5%C,

ASTM A-48 25 170(T) — — 10 70 4.1 6.7 12.1 0.260 7200

95 650(C)

Malleable,

ASTM A-47 50 340(T) 33 230 24 165 9.3 6.7 12.1 0.264 7300

90 620(C) — —
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TYPICAL PROPERTIES OF SELECTED ENGINEERING MATERIALS (Continued )

Ultimate 0.2% Yield

Strength Strength Modulus of Sheer Coefficient of

�u �y Elasticity Modulus Thermal Expansion, � Density, �

——————— —————— E G —————————— ——————

Material ksi MPa ksi MPa (106 psi GPa) ð106 psi) 10�6=�F 10�6=�C lb/in.3 kg/m3

Copper and its alloys

CDA 145 copper,

hard 48 331(T) 44 303 16 110 6.1 9.9 17.8 0.323 8940

CDA 172 beryllium

copper, hard 175 1210(T) 240 965 19 131 7.1 9.4 17.0 0.298 8250

CDA 220 bronze,

hard 61 421(T) 54 372 17 117 6.4 10.2 18.4 0.318 8800

CDA 260 brass,

hard 76 524(T) 63 434 16 110 6.1 11.1 20.0 0.308 8530

Magnesium alloy

(8.5% A1) 55 380(T) 40 275 4.5 45 2.4 14.5 26.0 0.065 1800

Monel alloy 400 (Ni-Cu)

Cold-worked 98 675(T) 85 580 26 180 — 7.7 13.9 0.319 8830

Annealed 80 550(T) 32 220 26 180 — 7.7 13.9 0.319 8830

Steel

Structural

(ASTM-A36) 58 400(T) 36 250 29 200 11.5 6.5 11.7 0.284 7860

High-strength low-alloy

ASTM-A242 70 480(T) 50 345 29 200 11.5 6.5 11.7 0.284 7860

Quenched and tempered alloy

ASTM-A514 120 825(T) 100 690 29 200 11.5 6.5 11.7 0.284 7860

Stainless, (302)

Cold-rolled 125 860(T) 75 520 28 190 10.6 9.6 17.3 0.286 7920

Annealed 90 620(T) 40 275 28 190 10.6 9.6 17.3 0.286 7920

Titanium alloy

(6% A1, 4% V) 130 900(T) 120 825 16.5 114 6.2 5.3 9.5 0.161 4460

Concrete

Medium strength 4.0 28(C) — — 3.5 25 — 5.5 10.0 0.084 2320

High strength 6.0 40(C) — — 4.5 30 — 5.5 10.0 0.084 2320

Granite 35 240(C) — — 10 69 — 4.0 7.0 0.100 2770

Glass, 98% silica 7 50(C) — — 10 69 — 44.0 80.0 0.079 2190

Melamine 6 41(T) — — 2.0 13.4 — 17.0 30.0 0.042 1162

Nylon, molded 8 55(T) — — 0.3 2 — 45.0 81.0 0.040 1100

Polystyrene 7 48(T) — — 0.45 3 — 40.0 72.0 0.038 1050

Rubbers

Natural 2 14(T) — — — — — 90.0 162.0 0.033 910

Neoprene 3.5 24(T) — — — — — 0.045 1250

Timber, air dry, parallel to grain

Douglas fir, construction

grade 7.2 50(C) — — 1.5 10.5 — varies varies 0.019 525

Eastern spruce 5.4 37(C) — — 1.3 9 — 1.7– 3– 0.016 440

Southern pine,construction

grade 7.3 50(C) — — 1.2 8.3 — 3.0 5.4 0.022 610

The values given in the table are average mechanical properties. Further verification may be necessary for final design or analysis. For ductile

materials, the compressive strength is normally assumed to equal the tensile strength. Abbreviations: C, compressive strength; T, tensile strength. For

an explanation of the numbers associated with the aluminums, cast irons, and steels, see ASM Metals Reference Book, latest ed., American Society

for Metals, Metals Park, Ohio 44073
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PROPERTIES OF PLANE AREAS Notes: A ¼ area, I ¼ area moment of inertia, J ¼ polar moment of inertia.
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